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ABSTRACT: 

Agricultural robotics rely on digital tools and sensor integration in order to improve efficiency and sustainability of cultivations. One 

part of orchard inventory is the identification of a tree trunk i.e. localization and diameter determination. However, this is a challenging 

task, due to thin trunks, presence of leaves and low branches. In this paper we present a case study for determining these parameters 

using the example of peach orchard, for which a high-density LiDAR data (over 3000 points/m2) was obtained with a small unmanned 

aerial system (UAS) during a leafy and leafless season. We applied point thresholding by height and by components of normal vector, 

in order to identify points reflected from trunks. Alpha-shape algorithm was used to aggregate together points, that belong to the same 

trunk and their centroid determined the trunk location. Trunk diameters were calculated using two alternative approaches: the Principal 

Component Analysis (PCA) and circle fit. For the leafy season trunk identification is challenging. Omission errors were caused due to 

few reflections from trunks and commission errors occurred because of the unfiltered reflections from low branches and young twigs 

oriented towards the ground. All 194 trunks were identified from data collected during the leafless season. The accuracy of tree location 

was 0.27 m and the accuracy of diameter determination using PCA was 0.03 m. 

1. INTRODUCTION

Modern agriculture and horticulture are becoming more and 

more automated, efficient and sustainable due to the use of 

modern technologies. Agricultural robotics, which is based on a 

variety of digital tool and sensor integration, is developing 

rapidly and results in the reduction of human resources for 

harvesting (Shamshiri et al., 2018). Robots and vehicles can 

already perform some cultivation treatment, i.e. target spraying 

(Ogawa et al. 2006), pruning (Ishigure et al., 2013), weeding 

(MacKean et al., 2017), nursing (Jørgensen et al., 2007) and 

general tillage (Bawden et al., 2014). Over the last decade, there 

has been intensive work on building an autonomous harvesting 

system (Li et al., 2011). Although automatic harvesting of ground 

crops over flat fields is already well established (Zhang et al., 

2014), autonomous robotic fruit picking in orchards is still a 

challenging task. This is mainly due to complexity of decision 

and picking system, which has to identify the ripeness of fruit 

under different lighting, often in the presence of branches and 

leaves, as well as to gently collect fruit without damaging the fruit 

and tree (Shamshiri et al., 2018). 

Identification of fruit in an orchard allows accurate estimation of 

the yield, knowledge of which is critical for the proper 

management of water resources, pesticides dosing, involvement 

of equipment and labour (Linker, 2017). Yield in an orchard can 

be roughly estimated by multiplying the average number of fruit 

collected from a single tree by the number of trees per unit area, 

i.e. orchard density (Gongal et al., 2015). Such results are reliable

for large and well-structured courts (Sarron et al., 2018).

Otherwise, a detailed knowledge on the exact number of trees and

fruit mass for each tree is required.
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In this context, some work concentrates on an accurate 

determination of the number and fruit mass on a single tree, using 

a variety of sensors. Payne et al. (2013) and Qureshi et al. (2017) 

counted mango fruit using daytime images of individual trees. A 

similar approach was successfully used for apples (Linker et al. 

2012; Silwal et al., 2016; Thanh et al., 2016). Bargoti and 

Underwood (2017) presented an image-based object 

identification framework for fruit detection. Red and infrared 

laser diodes were used for cherries (Tanigaki et al., 2008), 

thermal imaging for citrus (Bulanon et al., 2008) and apple fruits 

(Stajnko et al., 2004). Colour (RGB) and near-infrared (NIR) 

imagery was captured for vineyards (Nuske et al., 2014) and 

sweet peppers (Sa et al., 2016). Okamoto and Lee (2009) detected 

green citrus from hyperspectral images. Recently, Light 

Detection and Ranging (LiDAR) is also used as a tool for fruit 

detection (Stein et al., 2016; Underwood et al, 2016). 

For automated harvesting and tree determination for yield 

estimation it is beneficial to localize tree trunks, i.e. to determine 

the position of the geometric centre of a trunk and its diameter. 

Machine vision for detection of the trunk in orchards often fails, 

due to small trunk diameters, presence of branches, leaves and 

fruits (Gongal et al., 2015). It is particularly difficult when trees 

have overlapping crowns, low branches and the crown base 

heights are low. 

Usually tree crowns are detected from remote sensing imagery 

(Ke, Quackenbush, 2011), but the success rate of such methods 

depends on tree species, crown size, distance between trunks, 

terrain topography and image resolution (Hirschmugl et al., 

2007). Satellite multispectral imagery was used to detect citrus 
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trees with an accuracy from 78% to 98% (Santoro et al., 2013) 

and oil palm trees with an accuracy of 98% (Santoso et al., 2016). 

Airborne imagery allowed semi-automatic detection and 

counting of 95% of oil palm trees (Shafri et al., 2011). Only 80% 

of citrus trees were detected from multi-spectral images obtained 

from unmanned aerial system (UAS) (Koc-San et al., 2018). 

Recently, a Convolutional Neural Networks (CNN) for tree 

identification was also applied. Satellite imagery for palm tree 

detection using CNN allowed to identify 92% to 98% of trees 

depending on a study area (Cheang et al., 2017). CNN approach 

combined with UAS images was also presented for citrus (Csillik 

et al., 2018) and orange (Osco et al., 2020) orchards. 

 

Trees can also be detected using point clouds obtained from 

LiDAR. A terrestrial scanning system can map fruit distribution, 

detect and predict yield for an individual tree in an almond 

orchard (Underwood et al., 2016). Orchard inventory using a 

terrestrial scanning system was also developed for an apple 

orchard (Gené-Mola et al., 2020). 99% of apple trees were 

identified and some geometric parameters were determined with 

a sub-decimeter accuracy using high-density point cloud 

obtained with UAS (Hadas et al., 2019).  

 

In this paper a study on trunk determination in a peach orchard 

using a high-density point cloud obtained with LiDAR from a 

small UAS is presented. Results of trunk location and diameter 

determination are compared with direct field measurements for 

validation purposes. 

 

2. DATA AND METHODS 

2.1. Test area and test periods 

A part of a peach (Persica vulgaris Mill.) orchard located in 

South West Poland near Trzebnica city (51.3100° N, 17.0457° E) 

was selected as the test area. The study area was about 3500 m2, 

covered by 194 trees planted in 12 rows. The trees varied in 

height, crown size and branch density.  

 

 

Figure 1. A peach tree in the test orchard during a leafy period 

 

Two test periods were selected: September 2017 and March 

2018, to which we further refer to as leafy and leafless season, 

respectively. During the leafy season, the ground was covered 

with some dry and green grass, and weeds of different lengths 

(Figure 1). The trees had no fruits but branches were full of 

leaves. During the leafless season only individual leaf buds on 

branches were present. However, under some trees parts of 

branches were left, that remained after pruning and the grass was 

much higher. 

  

2.2. LiDAR data 

We used a custom-made small UAS which consisted of 

hexacopter Leica Aibot X6V2, laser scanner Velodyne HDL-

32E, Global Navigation Satellite System (GNSS) receiver 

NovAtel OEM615 and Inertial Measurement Unit (IMU) 

Sensonor STIM30 (Karpina et al., 2016). A GNSS receiver Leica 

Vica GS14 served as a ground reference station. 

 

Data was collected during two 6 minute long flights, one for leafy 

and one for leafless season. For both flights, the average flight 

height was 30 m. UAS trajectory and georeferencing of LiDAR 

data was obtained from a common processing of GNSS and IMU 

data, following the typical procedure of kinematic LiDAR data 

processing described by Jozkow et al., (2017). As a result, two 

point clouds were obtained, one for each test period, which were 

georeferenced in the Polish coordinate frame PL-2000. Each 

point cloud consisted of more than 100 million points. 

 

2.3. Direct field measurements 

During the leafy season we visually inspected the orchard and 

counted the number of trees planted inside the test area. Then, we 

randomly selected 50 trees for which we measured trunk 

location. For this purpose, we used a GNSS receiver Trimble R6, 

which determined its position in the Real-Time Network (RTN) 

mode. This approach allowed us to measure the location of tree 

trunks with centimeter-level accuracy. Moreover, we used a ruler 

and measured trunk circumferences about 0.5 m above the 

ground. From circumferences we calculated stem diameters, 

which varied from 0.051 m to 0.154 m (0.114 m on average). For 

trees, which already had branches below 0.5 m in height, we 

measured the circumference just below the lowest branch. 

 

During the leafless season we confirmed the presence of all trees 

in the orchard, including the 50 test trees. We assumed that they 

neither changed their location nor the trunk grew significantly, 

therefor we did not renew our measurements. 

 

2.4. Pre-processing of point-clouds 

Pre-processing of point clouds was performed in the 

CloudCompare v2.10.2 (www.danielgm.net/cc/) software. First, 

point clouds were cut to the extent of the study area, which 

limited the number of points to about 10 million per point cloud. 

Then, we used the Cloth Simulation Filter (Zhang et al., 2016) to 

automatically classify points as ground and non-ground 

(vegetation) points. Ground point were used to generate a Digital 

Terrain Model (DTM) with a grid size of 0.5 x 0.5 m. Afterwards 

we calculated normalized heights (Hnorm), i.e. point distances to 

the DTM (Figure 2). Finally, normal vector components NX, NY, 

NZ were calculated (each in the range from -1 to +1) using plane 

as a local surface model, considering a spherical neighborhood 

with a radius of 1 meter and minimum spanning tree to define the 

orientation. 
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Figure 2. Normalized point cloud of the test area for the a) leafy 

and b) leafless period; color-coded using height 

 

2.5. Strategy for trunk identification 

The normalized point cloud was further processed with Matlab 

in order to extract points describing trunks. First, non-ground 

points were filtered by height. For leafless season the accepted 

height range was 0.2 m to 0.5 m, while for the leafy season the 

range was 0.1 m to 0.4 m. The higher bottom boundary of the 

height threshold in the leafless season was due to the presence of 

branches that remained after pruning, and the lower top boundary 

of the height threshold during the leafy season was due to many 

hanging branches and leaves. From two normal vector 

components NX, NY we took the absolute maximum for 

measuring the tilt of a local surface model with respect to a 

horizontal plane. For both test periods we removed points with 

the value <0.3, in order to remove reflections from near-

horizontal surfaces. 

 

In the next step, alpha-shape algorithm (Edelsbrunner et al., 

1983) with 0.2 m radius was performed on remaining points. As 

a result, preliminary trunk contours were obtained. The 

geometric centre of all points inside a contour was assumed as 

trunk location. Additionally, a simple quality control procedure 

was performed, i.e. distances between trunk locations were 

calculated. Due to regular planting of trees, we assumed that there 

should be no trunks which are closer to each other than 1 m. 

Therefore, if a distance between two trunks lower than 1 m was 

found, the trunk location was determined as the geometric center 

of points inside both corresponding contours. 

 

Finally, we used points reflected from a single trunk in order to 

determine trunk diameter, following two approaches. In the first 

approach, we used Principal Component Analysis (PCA) and the 

diameter was the average value of ranges of the first two 

components. In the second approach we used a circle fit 

following the procedure described by Pratt (1987), and the 

diameter was calculated as double the radius of the fitted circle. 

 

2.6. Validation 

We calculated the total number of automatically determined trees 

and compared it with the true number of trees from direct orchard 

inspection. The accuracy of trunk location determined from 

LiDAR data was analysed by calculating the distances between 

determined trunk locations and reference field measurements for 

the 50 test trees. For test trees we also compared determined trunk 

diameters with diameters calculated from trunk circumferences, 

which were measured in the field. 

 

3. RESULTS 

3.1. Cloud filtering and trunk location 

 
Figure 3. Exemplary point cloud of a tree for the a) leafy and b) 

leafless season; height coded with value of the inclination angle 

 

Height thresholding did not allow to filter out grass points, 

especially during the leafless season, when grass and weeds were 

relatively high. Moreover, some reflections from low branches 

still remained in the leafy season. We calculated inclination angle 
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as a maximum of absolute values of the first two components of 

the normalized vector: 

 

𝑖 = max(|𝑁𝑋|, |𝑁𝑌|)   (1) 

 

We noticed that the inclination angle for trunk points was 

relatively large (Figure 3). Therefore, the removal of points with 

low inclination angle allowed to filter out grass points as well as 

some points reflected from branches in the lower part of the tree 

crown. 

 

 
Figure 4. Tree identification results for a) leafy and b) leafless 

season; tree location is in the center of a red circle; black dots 

represent identified trunk points 

 

Filtering results for the leafy season were not satisfactory and the 

corresponding trunk identification failed for many trees (Figure 

4a). We justify this by the two following factors. First of all, there 

were less reflections from trunks (Figure 3a) due to leafy crowns 

that prevented laser beam penetration. As a consequence, 

omission errors were present (Figure 4a, bottom left). Secondly, 

low branches and young twigs oriented towards the ground were 

not filtered out, hence classified as trunk points, which caused 

obvious commission errors (Figure 4a, top right). Although we 

tested several other values for height and inclination threshold, 

there was no clear improvement of results. 

 

For the leafless season there were sufficient reflections from tree 

trunks (Figure 3b) for successful identification of a trunk for all 

trees in the study area (Figure 4b). Identified trunk locations 

clearly formed rows and were separated with regular distances 

from each other, therefore reflecting the orchard structure well. 

 

3.2. Validation 

Locations of identified trunks were compared with corresponding 

location of trees measured in the field (Figure 5). From the 50 

test trees, only 29 were detected during the leafy season. The root 

mean square error (RMSE) of distances between identified trunks 

and their location measured in the field was 0.77 m, with a 

maximum distance of 1.26 m for tree no. 11. Only 11 trunks were 

identified with accuracy better than 0.50 m. 

 

For the leafless season the RMSE of distances was equal to 

0.27 m. The maximum position error was 0.66 m for tree no. 4. 

Only two trees were identified with accuracy worse than 0.50 m 

and 24 trunks of the 50 test trees were identified with accuracy 

better than 0.20 m. 

 

 
Figure 5. Distance between the measured and detected stem 

center location for the leafy and leafless test periods 

 

Due to the unsatisfactory results of tree trunk identification 

during the leafy period, validation of stem diameter 

determination was performed only for the leafless period. Figure 

6 presents the comparison of stem diameters obtained with PCA-

based approach and from circle fitting with diameters calculated 

from circumferences measured directly in the field for the 50 test 

trees. Both methods were able to determine a diameter for all test 

trees, but with significantly different accuracy. The RMSE of 

differences between diameters determined from LiDAR with 

circle fitting and measured in the field was 0.06 m, with the 

largest difference of 0.28 m for tree no. 14. For 42 trees the 

diameter error was below 0.05 m and for another 4 trees it was 
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smaller than 0.10 m. The correlation coefficient between 

determined and measured diameters was 0.48. 

 

Results obtained with the PCA-based method were superior to 

circle fitting. The RMSE was 0.03 m, maximum error reached 

0.07 m and the correlation coefficient was 0.76. Locations of 45 

tree trunks were determined with accuracy better than 0.05 m. 

 

 
Figure 6. Comparison of stem diameters from field 

measurements with diameters detected for the leafless period 

using the two methods 

 

4. CONCLUSIONS 

We have demonstrated that a high-density point cloud obtained 

from LiDAR with a custom-made UAS allows to identify the 

trunk of peach trees. The point-cloud processing strategy was not 

complex, yet effective. It was composed of the following steps: 

height normalization, calculation of normal vector components, 

point filtering, point aggregation with the alpha-shape algorithm, 

determination of point geometric center and PCA analysis. 

 

For the leafless season our strategy successfully identified all 194 

tree trunks in the study area. For the 50 test trees, the accuracy of 

tree location, by means of the RMSE of horizontal position error, 

was 0.27 m. Trunk diameter estimation with PCA was superior 

to circle fitting approach and the RMSE of trunk diameter 

estimation with respect to direct field measurements was 0.03 m.  

 

A more sophisticated strategy is required for processing a noisy 

point-cloud obtained during the leafy season. In such a case, 

dense leafage of crowns prevents laser beam penetration and few 

points are reflected from trunks. As a result neither all trees are 

identified, nor is the accuracy of trunk location satisfactory. 

Classification of trunk points in the presence of various 

disturbances in a complex and heterogeneous environment (e.g. 

high grass and nettle, low branches, young twigs oriented 

towards the ground) still remains a challenge. 
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