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ABSTRACT: 

 

Unmanned aerial vehicle laser scanning (ULS) has recently become available for operational mapping and monitoring (e.g. for 

forestry applications or erosion studies). It combines advantages of terrestrial and airborne laser scanning, but there is still little proof 

of ULS accuracy. For the detection and monitoring of small-magnitude surfaces changes with multitemporal point clouds, an 

estimate of the level of detection (LOD) is required. The LOD is a threshold applied on distance measurements to separate real 

surface change (e.g. due to erosion or deposition by geomorphic processes) from errors. This paper investigates key components of 

the error budget for two ULS point clouds acquired for erosion monitoring at a grassland site in the Alps. In addition to the 

registration error and effects of the local surface roughness, we assess the positional uncertainties of each point that result from laser 

footprint effects, which are a function of the scanning geometry (including range, incidence angle and beam divergence). By 

removing erroneous points with an increasingly stricter point error criterion, we illustrate that the positional point errors strongly 

affect the LOD and discuss how this type of error can be mitigated. Moreover, our experimental results with three different surface 

classes (bare earth and rock, buildings and grassland) show that the level of detection tends to be slightly better for areas with bare 

earth and rock than for grass-covered areas (due to their roughness). For all these surface types reliable distance measurements are 

possible with sub-decimetre levels of detection. 

 

 

 
*  Corresponding author 

1. INTRODUCTION 

Today, laser scanning is an operational method in 

environmental monitoring and geomorphic applications (e.g. 

Höfle and Rutzinger, 2011; Telling et al., 2017; Hooke, 2020). 

The advent of unmanned aerial vehicle laser scanning (ULS) 

provides new possibilities in 3D change detection of 

geomorphological processes by overcoming difficulties of 

ground-based oblique-view mapping techniques, such as 

terrestrial laser scanning (TLS). The striking advantage of ULS 

is that it can acquire detailed data of larger areas with a 

minimum of flight strips and with better viewing angles, smaller 

ranges (and thus smaller footprint sizes), more homogeneous 

point distributions and less object shadow effects compared to 

TLS. For the detection and monitoring of small-magnitude 

surfaces changes with multitemporal ULS point clouds, an 

estimate of the level of detection (LOD) is required. This LOD 

can be applied as a threshold on distance measurements to 

separate systematic errors and noise from actual changes and, 

thus, obtain more reliable estimates for geomorphic process 

magnitudes and frequencies (e.g. Lane et al., 2003; Wheaton et 

al., 2010; Lague et al., 2013). The determination of LODs 

requires detailed knowledge of the error budgets of acquired 

data sets (Schär et al., 2007; Glennie, 2007). 

 

This paper demonstrates the estimation of an LOD for ULS 

point clouds for an Alpine grassland site, aiming to assess the 

suitability of ULS data for shallow erosion studies. The paper 

investigates several key components of the error budget. In 

addition to the registration error and effects of the local surface 

roughness, we consider the positional uncertainties of each 

point that result from laser footprint effects and thus are a 

function of the scanning geometry (including range, incidence 

angle and beam divergence; Schär et al., 2007; Fey and 

Wichmann, 2017). To the authors knowledge, LOD studies for 

ULS surveys do not yet exist, and thus the presented study 

provides important information for environmental monitoring 

tasks. 

 

The paper is structured as follows. Section 2 gives a brief 

summary of related work, section 3 describes the test site 

characteristics and data sets used, and section 4 introduces the 

workflow and methods applied. Section 5 discusses the results, 

and section 6 concludes on applicability in geomorphological 

research and on possibilities for further improvement of LODs. 

 

 

2. RELATED WORK 

2.1 Erosion studies using laser scanning 

In steep Alpine grasslands, shallow erosion is an abundant 

phenomenon, which results in a large number of relatively well-

constrained spots, where the bare earth (soil, unconsolidated 

sediments or bedrock) is exposed (Wiegand and Geitner, 2013). 

The development of such eroded areas can be initiated by 

different processes, such as trampling and grazing by cattle 

(Torresani et al., 2019), shallow landsliding (Cruden and 

Varnes, 1996), as well as abrasion and stripping of the 

vegetation and topsoil by snow gliding (Wiegand and Geitner, 

2013; Höller et al., 2014). 

 

Shallow eroded areas are monitored by laser scanning for 

morphological characterisation and enhanced insights to process 

dynamics (Mayr et al., 2019a), for assessing the spatial 
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distribution of affected areas (Đomlija et al., 2019), for 

analysing their spatio-temporal occurrence (Zieher et al., 2016), 

and to estimate volumetric process magnitudes (Mayr et al., 

2019b). Furthermore, laser scanning data and derivatives are 

inputs to erosion models (Schindewolf et al., 2016; Zieher et al., 

2017). With typical process magnitudes in the decimetre-range 

(in terms of elevation change caused by erosion events), shallow 

erosion monitoring based on airborne laser scanning (ALS) is 

limited by ALS data accuracy and resolution (Zieher et al., 

2016; Đomlija et al., 2019). 

 

2.2 Unmanned aerial vehicle laser scanning 

For a few years, survey-grade ULS systems have been in use for 

mapping and monitoring of forests (e.g. Brede et al., 2017; 

Wieser et al., 2017; Liang et al, 2019) or landslides and 

infrastructure (Pfeiffer et al, 2019; Zieher et al.; 2019). Due the 

high accuracy of laser point measurements combined with 

accurate positioning solutions (IMU/DGNSS), the geometric 

stability within individual ULS epochs is high (i.e. low internal 

distortions; see e.g. Mayr et al. 2019b). In many cases, a 

reasonable co-registration of multitemporal point clouds can be 

achieved via stable surface patches, which are either user-

defined or automatically detected (e.g. Wujanz et al., 2016). 

This eliminates the need for targets or ground control points 

placed across the survey area. Besides reducing the workload in 

the field, this has advantages for applications in hazardous or 

inaccessible terrain (e.g. Pfeiffer et al., 2018). 

 

The wide field-of-view of ULS-specific laser scanners (Sect. 3) 

results in a relatively large swath width and a potential for high 

strip overlap, but also in unfavourable scanning geometries for 

many points. Hence, a strong variation in point quality can be 

assumed, which is further amplified if the beam divergence of 

the scanner is comparatively large (e.g. 0.5 mrad in this study; 

Sect. 3), due to strong footprint effects (cf. Glennie, 2007; Schär 

et al., 2007; see Sect. 2.3). Thus, we adopt the idea of Schär et 

al (2007) and Fey and Wichmann (2017) to apply a quality-

based filtering to laser scanning point clouds, and we test how 

this affects the level of detection in the case of ULS. 

 

2.3 3D Point cloud quality for change detection and 

deformation monitoring 

Laser scanning based change detection and deformation 

analysis, e.g. in geomorphological studies, requires a thorough 

assessment of the elevation data quality. For example, Heritage 

and Hetherington (2007) discussed the problem of change 

detection analysis in fluvial geomorphology and limitations 

related to input digital elevation model resolution and quality. 

Prokop and Panholzer (2009) showed that knowledge of the 

data quality is necessary for the interpretation of erosion and 

deposition rates in a landslide area. 

 

Schär et al. (2007) presented a quality measure for ALS point 

clouds aiming at an enhancement for applications such as 

classification and digital terrain model generation. They 

proposed a quality indicator comprising errors due to the direct 

georeferencing of the laser beam, the measurement errors of the 

laser itself, local curvature, and scan geometry (i.e. range, 

incidence angle, and beam divergence). Lague et al. (2013) 

proposed a method to obtain a spatially variable estimate of the 

LOD with a certain confidence interval, considering registration 

errors and the local surface roughness as key error sources. Fey 

and Wichmann (2017) extended this approach by including the 

positional uncertainties due to laser footprint effects (Schär et 

al., 2007), incidence angle, and surface roughness. This allowed 

them to define an LOD for separating real changes at mountain 

slopes from noise and systematic measurement errors, enabling 

a more detailed and reliable slope deformation monitoring by 

long-range TLS. 

 

Kromer et al. (2017) monitored a landslide using permanent 

TLS. They introduced a spatio-temporal LOD, which considers 

system geometry, point density, atmospheric effects and surface 

roughness, and also includes the frequency of available scans.  

Anders et al. (2019) investigated dynamics of a sandy beach by 

analysing high-frequency long-range TLS time series. They 

defined the LOD after Kromer et al. (2017) by considering TLS 

system measurement accuracy, influence of scan geometry, 

registration and georeferencing errors, surface roughness, and 

atmospheric parameters. They analysed the LOD spatially and 

in time, and they discussed how scans with a high temporal 

frequency can improve the LOD. 

 

 

3. TEST SITE AND DATA 

The data used in our experiment was acquired at a test site in 

the Italian Alps (Villnöß Valley, Autonomous Province of 

Bozen – South Tyrol), with elevations between approx. 2100 m 

and 2450 m a.s.l. (Fig. 1). Most of this area around the summit 

of Zendleser Kofel (2423 m) is covered by grassland, which is 

partly used as meadow or pasture for cattle and partly 

abandoned today. Trees and shrubs, in contrast, are relatively 

scarce. The area contains several hiking trails and a gravel road 

leading to the buildings of a guesthouse for hikers. Bare rock is 

exposed at several small cliffs and boulders, which are scattered 

across the test site. Moreover, shallow eroded areas (Wiegand 

and Geitner, 2013) are an abundant phenomenon, resulting from 

different processes (Sect. 2.1). 

 

 

Figure 1. Test site Zendleser Kofel (South Tyrol, Italy) showing 

the ULS data coverage (red), the flight trajectories from 2019 

(blue) and the rectangular test site subset (yellow). Orthophoto 

and contours: Autonomous Province of Bozen - South Tyrol, 

2020) 

 

Within an erosion monitoring project (http://erodyn.

mountainresearch.at/), two ULS flight campaigns with a Riegl 

RiCopter (Riegl LMS, 2019) were conducted in summer 2018 

and 2019, respectively. This octocopter-type UAV carries a 

Riegl VUX-1LR laser scanner (Riegl LMS, 2019), as well as an 

Applanix AP20 inertial measurement unit (IMU) integrated 
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with a differential global navigation satellite system (DGNSS) 

receiver (Applanix, 2019). A major requirement was to cover 

the project test site (approx. 48 ha) with three sets of batteries. 

Accordingly, the flight plan comprised three flights per 

campaign, each consisting of strips in different elevations above 

sea level to account for the complex terrain with > 300 m 

elevation difference. The average flying altitude was 

approximately 70 m and the planned flight speed was 8 m/s. 

The laser scanner was configured to a pulse repetition rate 

(PRR) of 820 kHz and an angular scan resolution of 0.0496°. 

The beam divergence of the VUX-1LR laser scanner is 

0.5 mrad, which results in a beam cross section diameter 

(gaussian beam definition) of 50 mm at 100 m scan range (Riegl 

LMS, 2019). 

 

The IMU/GNSS data for the recorded trajectories was post-

processed with Applanix PosPac (Applanix, 2019) using data 

from a permanent base station in the area (STPOS, 2019). Sub-

sequent processing steps included point cloud extraction, 

georeferencing and strip adjustment with dedicated Riegl soft-

ware packages (Riegl LMS, 2019). The resulting point clouds 

from the two campaigns (2018 and 2019) contain approx. 

500 Mio points each and a mean point density of 760 (± 374) 

pts/m² (2018 point cloud). A rectangular subset of the test site 

was selected for the investigation presented in this paper 

(Fig. 1). 

 

 

4. METHODS 

Using the two point cloud epochs from 2018 and 2019, we first 

determined some of the main factors contributing to the total 

error budget of point cloud distance measurement (deformation 

monitoring). Subsequently, we investigated the magnitude and 

distribution of the level of detection.  Furthermore, we modelled 

point errors (Schär et al., 2007) to filter the point clouds used 

for distance calculation and analysed how a removal of 

erroneous points affects the LOD. These analyses were done for 

(i) the rectangular test site subset (Fig. 1, Fig. 2) and (ii) for 

manually selected sample areas of different surface classes 

(landcover types; i.e. bare earth and rock, buildings and 

grassland; Fig. 2). All processing steps presented in the 

following were performed using SAGA GIS (Conrad et al., 

2015) with the LIS extension (Laserdata GmbH, 2020) and 

Python scripting (Python Software Foundation, 2020). 

 

 

Figure 2. Test site subset and sample areas representing 

different landcover classes (yellow: bare earth and rock, red: 

buildings, green: grassland). Contour equidistance is 5 m. 

4.1 Registration of epochs 

Point cloud (co-)registration and registration accuracy 

assessment was performed using small subsets of the two point 

clouds from 2018 and 2019 at circular surface patches (with 3 m 

diameter). These patches were selectively placed on vegetation-

free areas (such as rock cliffs, boulders etc.), which are spread 

across the test site. Based on field observations (i.e. lack of 

visible geomorphological activity) and the local terrain context, 

these surface patches were assumed to be stable. 

 

The registration by direct georeferencing, based on the sensor 

trajectories and orientations, was improved by using a set of 

five surface patches for iterative closest point (ICP) adjustment 

(Besl and McKay, 1992). A second set of 18 validation patches 

was used for estimating the registration error (reg) as the sum of 

(i) unsigned mean and (ii) standard deviation of the 3D point 

cloud distance. This distance was calculated according to Lague 

et al. (2013) and Fey and Wichmann (2017). 

 

4.2 Quality-based point cloud filtering 

In the next step, we considered the positional uncertainties for 

each point that result from laser footprint effects and, thus, are a 

function of the scanning geometry (including range, incidence 

angle and beam divergence) as an important criterion for point 

quality (Schär et al., 2007). First, we modelled these positional 

uncertainties, following the approach of Schär et al. (2007). 

Each footprint is formed by the intersection of the laser beam 

with the local surface and, thus, the point error depends on (i) 

the beam cross section at the given measurement range and (ii) 

the incidence angle of the laser beam on the local surface. The 

cross section of the laser beam is estimated from the (scanner-

to-surface) measurement range and the beam divergence 

(0.5 mrad for the scanner used). 

 

The measurement range and the beam direction were calculated 

for each point, using its corresponding scanner position in the 

trajectory (identified via a unique time stamp). As a description 

of the local tangent plane, the local normal vector for each point 

was calculated by fitting planes to point sets in a spherical 

neighbourhood of 0.1 m radius. From this normal vector and the 

laser beam direction, the incidence angle of the beam was 

determined. Based on this incidence angle and the beam cross 

section, the laser footprint was then modelled as an ellipse in 

3D. This ellipse was decomposed into its maximum extensions 

in horizontal and vertical direction to estimate the horizontal 

error, the vertical error and the total 3D point error, according to 

Schär et al. (2007) and Fey and Wichmann (2017). 

 

Subsequently, we used this modelled total point error pe (i.e. 

positional uncertainty of each point) for a quality-based filtering 

of the point clouds. We first analysed the magnitude and 

frequency of point errors in both point cloud epochs for the test 

site subset (Fig. 3) to select a range of thresholds for filtering 

(tpe [m] = {0.20, 0.10, 0.08, 0.06, 0.04, 0.02, 0.01}). Different 

versions of the point cloud epochs were created, where all 

points with pe > tpe were removed. The intention for this step 

was to tackle the large errors first and to investigate how a 

gradually more restrictive filtering can further improve the level 

of detection (Sect. 4.3) but also how this affects the 

completeness of the point clouds for further analysis (such as 

distance calculation). 
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4.3 Level of detection for point cloud distances 

In the context of distance calculation between point clouds, it is 

important to know the minimum magnitude of geometric 

surface change (i.e. deformation or erosion/deposition) that can 

be distinguished from point cloud errors. For this purpose, 

Lague et al. (2013) developed a method to determine the local 

level of detection at the 95% confidence interval (LOD95), 

which considers registration errors and effects of the surface 

roughness on the distance calculation. Calculated distance 

values with a magnitude > LOD95 are then regarded as “real” 

distance (i.e. difference of the surface geometry), while the 

others are considered as unreliable. Fey and Wichmann (2017) 

extended this approach to account also for those uncertainties of 

each point that are due to footprint effects on the positional 

accuracy (point errors, Sect. 4.2). 

 

Based on the registration accuracy assessment with stable 

surface patches, a fixed value for the registration error reg 

(Sect. 4.1 and Sect. 5.1) was used for all points. We applied the 

implementation by Fey and Wichmann (2017) of the Multiscale 

Model to Model Cloud Comparison (M3C2) algorithm for point 

cloud distance calculation (Lague et al., 2013). Within the 

M3C2 method the local surface roughness and the point 

measurement noise affect the results, because the distance is 

calculated between planes fitted (least-squares) to the 

neighbourhoods of corresponding point pairs in the two epochs. 

Consequently, the LOD95 calculation includes the standard 

deviations of the point sets from these fitted planes. For our 

experiment, we defined a spherical neighbourhood with a radius 

of 0.15 m for querying these point sets. To get insights into 

surface roughness or noise effects (Sect. 5.4), we also computed 

the total standard deviation of the planes fitted in both point 

cloud epochs, calculated as the square root of the summed 

variances. Using the method of Fey and Wichmann (2017), the 

LOD with a confidence interval of 95% was calculated for two 

point cloud epochs A and B as 

 

𝐿𝑂𝐷95 = ±1.96 (√(
𝜎𝐴
2

𝑛𝐴
+

𝜎𝐵
2

𝑛𝐵
) + 𝑟𝑒𝑔 +

𝑚𝑎𝑥 {
1

𝑛𝐴
∑ 𝑝𝑒𝐴|

1

𝑛𝐵
∑ 𝑝𝑒𝐵
𝑛𝐵
𝑖=1

𝑛𝐴
𝑖=1 })   (1) 

 

where σ = plane fitting standard deviation, 

n = number of points in the plane fitting 

neighbourhood, 

 reg = registration error, 

 pe = point error. 

 

 

5. RESULTS AND DISCUSSION 

5.1 Registration 

Based on the assessment with the validation patches, the mean 

registration error with direct georeferencing was estimated as 

reg = 0.066 m (0.043 m ± 0.023 m) for the entire test site. After 

fine-registration by (global) ICP adjustment on the five 

registration patches, the registration error was reduced to reg = 

0.018 m (0.002 m ± 0.016 m), again as assessed by the 

validation patches. Accordingly, we use reg = 0.018 m as input 

for estimating the LOD95 (Sect. 4.3). 

 

5.2 Point errors 

Fig. 3 shows the magnitude of 3D point errors for the test site 

subset (see Fig. 1) that are related to footprint effects, i.e. they 

depend on the range and incidence angle of the individual 

point’s laser measurement (Sect. 4.1). Note that points with pe > 

0.20 m are already excluded here. In both point cloud epochs, 

the majority of these point errors is small, but existing larger 

errors can severely compromise a change analysis locally. 

 

 

Figure 3. Histogram for the 3D point error (pe) in the 

rectangular test site subset for the 2018 point cloud (left) and 

the 2019 point cloud (right). 

 

The distribution of 3D point error magnitudes in the samples is 

very similar for the class bare earth and rock and for the class 

grassland (Fig. 4). In the buildings samples, however, there are 

(relatively) more points with larger errors. We attribute this 

phenomenon to the situation that the few buildings are all 

located in the same peripheral part of the test site (Fig. 1) and 

that, due to the projects’ erosion monitoring scope, the flight 

pattern was not planned to cover this area very well. Hence, a 

less favourable scanning geometry is assumed to have negative 

impacts on the point accuracies here. 

 

 

Figure 4. Distribution of 3D point error (pe) magnitudes (shown 

as kernel density estimate, KDE) in the 2019 point cloud for all 

samples and per class. 

 

 

5.3 Level of detection 

The computed level of detection (LOD95) for the least restrictive 

filtering threshold (tpe = 0.20 m) is very variable throughout the 

point cloud samples of all three classes (Fig. 5), with minima as 

low as 0.05 m to 0.06 m and maxima of up to approximately 

0.25 m. For approximately 25% of the distance calculations the 

LOD95 exceeds 0.15 m (third quartile). 

 

In our experiment, the quality-based point cloud filtering with 

stricter thresholds tpe improved the median level of detection 
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(LOD95) for all three investigated classes by several 

centimetres, as shown by the boxplots in Fig. 5. The effect on 

the upper quartile of the distribution (i.e. above the upper 

whiskers in the plot) was even more pronounced, thus also 

reducing the variability of the LOD strongly. These effects are 

also illustrated exemplarily for two and three different 

thresholds in Tab. 1 and Fig. 6, respectively. 

 

The improvements in LOD by quality-based filtering, however, 

came at the cost of a decreased point number and point density. 

The reduction of points by excluding those with pe > tpe is 

amplified by the circumstance that for a valid calculation of the 

distance and the LOD certain requirements must be fulfilled 

(i.e. (i) enough points for plane fitting within the search radius 

and (ii) a corresponding point in point cloud B (the 2018 epoch) 

within the search cylinder; see Fey and Wichmann (2017) for 

details regarding the distance calculation). Therefore, the 

number of points with a valid distance and LOD was reduced 

considerably by the quality-based filtering (Tab.1). In some 

areas of the test site, there will still be enough points for an 

analysis and interpretation of surface changes, while in other 

areas the point cloud became strikingly incomplete and 

dominated by gaps (Fig. 6). We interpret these spatial patterns 

as being governed largely by the flight plan. Optimizing the 

flight plan towards higher point density and lower point error by 

simply reducing the strip spacing, however, would reduce the 

productivity of ULS data acquisition (in terms of areal coverage 

in the given time). As data gaps are clearly increasing with 

stricter point error filtering (Fig. 6), the point error threshold 

must be chosen carefully. Future studies could implement a 

locally adaptive threshold, which considers the local point error 

distribution and point density. 

 

 

Figure 5. Level of detection (LOD95) for different surface 

classes with various point error thresholds (tpe) used for filtering 

the point clouds. 

 

 tpe [m] 

 0.20 0.04 

LOD95 minimum [m] 0.045 0.045 

LOD95 maximum [m] 0.359 0.139 

LOD95 mean [m] 0.090 0.073 

LOD95 standard deviation [m] 0.020 0.010 

Number of points 40.4 Mio 34.7 Mio 

Number of points with a valid 

distance and LOD95 
32.9 Mio 28.2 Mio 

Table 1. Level of detection and number of points in the 

rectangular test site subset for two different point error 

thresholds tpe. 

 

Figure 6. LOD95 maps of the test site subset with three different 

filtering thresholds for the point error (tpoint error). For 

visualization, the point cloud attribute values for the LOD95 

were aggregated to rasters with 0.1 m cell size, by calculating 

the arithmetic mean per cell. White areas represent cells without 

points with a valid distance and LOD95 calculation. Contour 

equidistance is 5 m. 

 

 

5.4 Surface roughness effects 

For an enhanced understanding of the level of detection 

(Sect. 5.3), this section takes a look at the plane fitting standard 

deviation (Sect. 4.3) and briefly discusses its contribution to the 

total error budget and the LOD, respectively. The standard 

deviation of locally fitted planes (required for M3C2 distance 

calculation; Lague et al., 2013) can be affected by (i) point 
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cloud noise due to point errors and (ii) surface roughness. For 

visualization, the plane fitting standard deviation of quality-

filtered point clouds (tpe = 0.04 m) was rasterized as the 

arithmetic mean of the point values per 0.1 m cell (Fig. 7). Here, 

most areas with bare earth (such as the gravel road, hiking path 

or eroded areas) are characterized by low standard deviations. In 

comparison, grassland areas tend to have higher standard 

deviations, unless the grass is mown (e.g. in the area west and 

northwest of the buildings). These spatial patterns are partly 

reflected in the LOD maps (Fig. 6). For the samples, the 

tendency of higher standard deviations in grassland (compared 

to bare earth and rock) persists across all filtered point cloud 

versions in our experiment (Fig. 8), indicating that there is an 

effect of real surface roughness (not noise). However, Fig. 8 

shows also a reduction of the plane fitting standard deviations 

by the quality-based filtering, which is most notable for the 

buildings class (tin roofs). This reflects the removal of noise 

(due to point errors) as well as the planarity of these artificial 

surfaces, and it highlights that the quality-based filtering can 

indirectly enhance the LOD (in addition to its direct effect by 

improving the point cloud accuracy). 

 

 

 

Figure 7. Total standard deviation (plane fitting sd) of the 

planes fitted in both point cloud epochs filtered with 

tpe = 0.04 m. 

 

 

 

Figure 8. Plane fitting standard deviation for different surface 

classes with various point error thresholds (tpe) used for filtering 

the point clouds. 

 

5.5 Erosion monitoring example 

To illustrate the applicability of the methods for shallow erosion 

monitoring, a small subset of the test site is shown in Fig. 9, 

with 3D point cloud distances representing surface change by 

secondary erosion. Between the two scans (2018 and 2019), the 

majority of existing eroded areas in the subset remained stable, 

but at one eroded area a clod of turf and soil was dislocated 

from the scarp and deposited in several smaller pieces 

approximately 40 m downslope (horizontal distance). For all 

points in this subset with distances exceeding the LOD95 (i.e. 

“real change”), the LOD95 ranges between 0.063 m and 

0.358 m, with a mean of 0.080 m (± 0.017 m). The absolute (i.e. 

unsigned) 3D distances are ranging between 0.065 m and 

0.761 m, with a mean of 0.196 m (± 0.126 m). 

 

For cleanly visualizing this example, spurious effects of 

vegetation change on the deformation measurement were 

largely filtered out by deleting small point groups, i.e. points 

with less than 25 points in their spherical neighbourhood (with 

0.2 m radius). Distances are signed to indicate if the new 

surface is below or behind (-) and above or in front of (+) the 

old surface, respectively. We conclude that the topographic 

change by this secondary erosion process with its decimetre-

scale event magnitude is well captured by the ULS-based 

distance measurement. 

 

 

6. CONCLUSIONS 

The presented study shows that sub-decimetre 3D change 

detection by multitemporal unmanned aerial vehicle laser 

scanning (ULS) is feasible over areas with tens hectares and 

with complex terrain. As expected (due to the different 

roughness of these surface types), the level of detection (LOD) 

tends to be slightly better for areas with bare earth and rock than 

for grass-covered areas. For shallow erosion monitoring, these 

LODs confirm that ULS point clouds are suitable to reliably 

detect new eroded areas, where the magnitude of change events 

typically is around 0.2 m (mean eroded area depth; Wiegand 

and Geitner, 2013). In addition, these findings indicate that also 

secondary erosion events (see e.g. Fig. 9) and tendencies over 

multiple years, such as retrogressive erosion or a reactivation of 

the movement at shallow landslides (cf. Mayr et al., 2019a) can 

be monitored by ULS. 

 

However, our results show also that, if centimetre-level 

accuracy of the change detection is required, this calls for an 

assessment and filtering of point errors related to the scanning 

geometry (i.e. incidence angle and range) to improve the quality 

of the ULS point clouds. Such a quality-based filtering of the 

point clouds, however, can result in areas with low point density 

or even data gaps, depending on the terrain, flight plan, and 

sensor configuration. Consequently, filtering thresholds must be 

chosen carefully and should consider or adapt to local variations 

of the point density and quality, to maintain point clouds that 

are consistently complete and accurate across the area of 

interest. 

 

To optimize both point cloud quality and completeness, the 

scanning geometry and the required LOD should be considered 

already during flight planning. Future work could integrate 

these aspects into dedicated flight planning and point cloud 

simulation tools (cf. Bechtold and Höfle, 2016, Bremer et al., 

2019). 

 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-765-2020 | © Authors 2020. CC BY 4.0 License.

 
770



 

 

Figure 9. Subset of the test site with surface deformation (3D point cloud distance) due to secondary erosion and deposition of eroded 

material. (a) Planimetric view of the point cloud coloured by deformation exceeding the LOD95, with RGB coloured point cloud, 

shaded relief and 5-m contours as background. (b) Oblique view of the RGB-coloured point cloud subset. (c) Oblique view of the 

point cloud subset, coloured by deformation exceeding the LOD95. 
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