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ABSTRACT:

Terrestrial laser scanners are commonly used for remotely sensing natural surfaces into 3D point clouds. Time series of such 3D
point clouds can be analysed to gain information of surface changes that are induced by Earth surface shaping processes. The
atomic unit in time series analysis is a bitemporal change detection and quantification. This should involve an estimation of the
minimum quantifiable change, the Level of Detection, to separate signal from noise, e.g. stemming from the measurement. To
enable such an estimation through error propagation, a model of the sensing instrument’s measurement uncertainty is required. In
this work, we present an investigation on the ranging component of terrestrial laser scanning on this uncertainty and its influence
on 3D distances between point clouds of two epochs. Specifically, we analyse the effects of incidence angle, intensity and range
for different object materials, and make additional considerations with respect to waveform information returned by the sensor. We
estimate a model for the rangefinder uncertainty of a terrestrial laser scanner and apply it on experimental data. The results show
that using a sensor-specific model of ranging uncertainty allows an appropriate estimation of the Level of Detection. At a range of
60m and a rotational displacement of 10◦, this Level of Detection ranges between 0.1mm to 1mm for a white and a grey surface
and up to 5mm for a black surface. The completeness of the detection of significant change ranges from 60.2% (black) to 89.8%
(grey) for the proposed method and from 65.5% to 88.9% for the baseline, when compared to tachymeter measurements. The
similarity between the results is expected and suggests the validity of error propagation for the derivation of the Level of Detection.

1. INTRODUCTION

The availability of high-resolution topographic 3D point cloud
time series has enabled the detection and quantification of
changes in surface geometry (Eitel et al., 2016; Fey and Wich-
mann, 2017; Zahs et al., 2019). These 3D point clouds are un-
ordered, irregular sets of points in 3D space acquired, e.g., by
terrestrial laser scanning (TLS). TLS sensors are used to re-
peatedly sample the Earth’s surface, but the exact locations of
the sampled points differ from scan to scan and therefore from
epoch to epoch. To obtain a reliable measure of surface change,
points are aggregated to local surface models. Often, a loc-
ally planar surface is assumed. The most developed method to
quantify distances between two point clouds for geographic ap-
plications is the multiscale model-to-model cloud comparison
(M3C2, Lague et al., 2013), which directly compares two point
clouds by such a locally planar model.

To separate real change from change values stemming from
measurement and other noise, statistical tests can be employed.
Lague et al. (2013) estimate the required second-order moments
by modelling the laser rangefinder uncertainty1 from the dis-
tribution of points in the local point cloud neighbourhood. A
coregistration term accounts for the misalignment of the data-
sets of the two epochs. James et al. (2017) present an extension
∗ Corresponding author
1 We take care to use the term ”uncertainty” as defined in the Guide to

the expression of uncertainty in measurement: ”The uncertainty [...]
reflects the lack of exact knowledge of the value of the measurand”
(JCGM, 2008), in contrast to ”error”, which is ”an idealized concept
and [...] cannot be known exactly” (JCGM, 2008).

to this uncertainty model for a photogrammetric point cloud by
using ”precision maps” which map a spatially variable coregis-
tration uncertainty to the dataset. Still, the per-point uncertainty
is only estimated from the data and its fit to a planar model.

On the sensor side, multiple studies have investigated the influ-
ence of parameters like incidence angle (Soudarissanane et al.,
2007; Kersten et al., 2009; Zámečnı́ková et al., 2014), colour
(Clark and Robson, 2004; Mechelke et al., 2007) and intensity
(Pfeifer et al., 2007; Wujanz et al., 2017, 2018) on the ranging
precision of laser scanners. Furthermore, Fey and Wichmann
(2017) have quantified how range and incidence angle influence
the positional uncertainty of 3D laser scanning points, and have
applied their findings to geomorphic change detection in alpine
terrain.

These studies suggest that a combination of the models derived
from the sensing process and from data analysis could lead to
a better understanding of the distribution of measurement un-
certainties throughout a dataset. Knowledge of these uncertain-
ties can then be used to estimate the resulting uncertainty in a
change analysis, allowing for a clear separation of measurement
noise and change signal.

We therefore perform an experiment to investigate the influence
of material, range and incidence angle on intensity, pulse shape
deviation and, most prominently, ranging uncertainty (i.e., ran-
ging precision), with the goal of detecting change in a bi-
temporal dataset acquired with TLS. Subsequently, we create
a model that allows the estimation of the ranging uncertainty
for each point of the point cloud individually. We show how to
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use this estimation in a change detection analysis and present
the applicability of our method by comparing our results to the
state-of-the-art method of M3C2.

2. METHODS

2.1 Experimental design

To evaluate the influence of different object and sensing proper-
ties, we conducted an experiment under controlled conditions.
This consisted of scanning a locally planar wooden board at
different ranges and different incidence angles. Additionally,
we covered the board with dull plastic foil (black and white)
and toned paper (grey), resulting in different reflectance values.
The reflectance at approximately 0◦ incidence angle was cal-
ibrated by using a target with known reflectance (SphereOptics
Zenith LITE with a reflectivity of 92.5 % at λ = 1550 nm) at
the same range. The resulting values are listed in Table 1.

Material Black foil Grey paper White foil
Reflectance [%] 83.66 89.33 94.92

Std. dev. [%] 2.09 1.44 1.42

Table 1. Reflectance values at 0◦ incidence angle for the
different surface materials.

The wooden board was mounted in an upright (vertical) posi-
tion, and subsequently rotated from normal to the laser beam
(0◦) to angles of up to 60◦, in increments of 10◦. Via this ro-
tation, we cover a number of different incidence angles of the
laser beam. We define the incidence angle as the angle between
the inverted beam vector and the local surface normal vector
oriented towards the scanner. Furthermore, the rotation acts
as controlled displacement for the surface change quantifica-
tion. The scans of all seven rotations were repeated for ranges
of about 30, 60, 90, 160 and 220m, resulting in a total of 35
scans.

As a reference for the displacement quantification, eight retro-
reflective targets were installed on the board and measured with
a tachymeter (Leica TCRA705power). During the TLS scans,
we covered the targets to avoid any interferences. Since dis-
placement only regards relative movement, the total station was
not tied in with the TLS coordinate system, but we assume the
scale of both systems to match. The experiment was carried out
under controlled atmospheric conditions in a basement with ar-
tificial lighting, and with two different TLS instruments (RIEGL
VZ-400 and RIEGL VZ-2000i). The measurement setup is
shown in Figure 1.

To ensure that the recorded noise stems from the sensor and not
from roughness in the surface itself, we used a sanded OSB-3
wooden board, which has a tolerance in thickness of 0.3mm
according to EN300 (DIN, 2006). This is an order of magnitude
lower than the expected ranging precision given by the TLS
manufacturer, which is 3mm at 100m range for both employed
TLS systems (RIEGL LMS, 2019). Figure 2 shows the board
in the measurement environment.

2.2 Modelling range uncertainty

We evaluate the ranging uncertainty by calculating the offset
of individual point measurements from the locally best fitting
plane. First, the 3D points on the board are manually segmen-
ted from the full point cloud and separated into the three surface
materials. A local neighbourhood of 10 points (corresponding

Figure 1. Measurement setup. Left: RIEGL VZ-2000i, center:
Leica TCRA705power, right: RIEGL VZ-400. In the

background, the experiment board can be seen at a range of
30m. The experiment was carried out in a basement which

allows a maximum target range of about 250m.

Figure 2. Wooden board with white, grey and black surface
materials. The reflective tape markers along the edges are used
for the tachymetry. The image shows the board at an offset of

approximately 20◦with respect to the ranging direction.
Refelections can be seen in the black surface, indicating that the

surface is not Lambertian.

to a circle with a radius of approx. 3 cm at 60m range with the
used scan parameters) is then used to define the local plane for
each point using a least-squares optimization, which allows us
to disregard potential low-magnitude but large-scale deforma-
tions like a bend of the board.

We then project the quality of the plane fit (σ0, i.e. standard
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deviation of the points in the local neighbourhood in direction
of the plane normal vector) onto the beam vector of the neigh-
bourhood centroid to get an estimate of the ranging precision.
Since our ranging distance is large compared to the extent of the
board, we average the ranging precision per surface material.

In addition to the range and angular measurements of the TLS,
we record the signal intensity Int and the pulse shape deviation
Dev. In accordance with RIEGL LMS (2012), we define the
intensity to be a unitless [dB] measure of the amplitude of the
returned signal without any corrections corresponding to range
or incidence angle normalized to 16 bits. The pulse shape devi-
ation is a unitless measure of how similar the outgoing and the
incoming pulses are shaped, and can therefore be related to the
quality of the range measurement.

With the 35 estimates of ranging uncertainty made at five differ-
ent ranges and seven different incidence angles respectively, we
use a least squares method to create a model of linear combin-
ation for the estimation of the ranging uncertainty. The inputs
to this model are the cosine of the incidence angle, the devi-
ation and the recorded intensity. In accordance with Wujanz
et al. (2017), we rely on the range equation (Eq. 1) to model
the change in range implicitly via the change in intensity. To
test this assumption, we add the range as a separate input and
analyse the correlation between the parameters.

Pr =
PtD

4
r

4πR4β2
ηsysηatmσ (1)

where Pr = received signal power
Pt = transmitted signal power
Dr = diameter of receiver aperture
R = range from sensor to target
β = beam divergence
ηsys = system efficiency
ηatm = atmospheric transmission factor
σ = target cross section

(Jelalian, 1992)

2.3 Change detection and quantification

We first quantify change between point clouds by using the
common M3C2 point cloud distance measure (Lague et al.,
2013). It aggregates points within a local neighbourhood
formed by a cylinder oriented along the local normal vector
of the reference epoch point cloud. The points within these
local cylinders are then projected onto the cylinder axis for each
epoch separately, where the difference between their mean po-
sitions is used as a distance measure. The standard M3C2 then
uses the standard deviation of the points along the cylinder axis
as a precision measure.

In our experiment, we use the board at a 0◦ incidence angle,
with the board normal to the laser beam, as reference epoch, and
quantify change orthogonal to this epoch, as shown in Figure 3.

Subsequently, we detect significant change as a binary label us-
ing a two-sided t-Test. This test can be reformulated to find the
minimum quantifiable change, referred to as the Level of De-
tection (LoDetection, Eq. 2). Here, σi refers to the standard de-
viation of the points along the cylinder axis and ni to the num-
ber of points within the cylinder, for epochs i = 1 and i = 2,

Figure 3. Change detection and quantification schema. The
distance d is calculated orthogonal to the board position at

Epoch 1.

respectively. The term reg. is an additional constant coregistra-
tion uncertainty, which is neglected in this experiment because
of the static setup, since the scanner was not moved during the
acquisitions at a constant range.

LoDetection95 = 1.96

√
σ1

n1
+
σ2

n2
+ reg. (2)

Instead of applying Equation 2, we propose to propagate the
ranging uncertainty from the TLS to the individual laser points.
Since it extends the M3C2 algorithm by error propagation2, we
refer to it as M3C2-EP.

We estimate a full covariance matrix for the local neighbour-
hood centroids of each epoch. Since we are looking for sig-
nificant change in the specific direction normal to the planar
surface, we subject this matrix to a projection onto the normal
vector ~n and derive a Level of Detection using a test statistic,
which is distributed according to Hotelling’s t-squared distri-
bution (Rencher, 1998). This distribution can be related to an
F-distribution, giving the expression in Equation 3. This corres-
ponds to a two-sided test of multivariate normally distributed
means with p = 3 degrees of freedom.

LoDetection95 =

√
F0.95(p, n1 + n2 + 1− p)

~nT Ĉ−1~n · n1+n2+1−p
(n1+n2)p

(3)

Here, Ĉ is the pooled covariance matrix (Eq. 4), n1 and n2

are the number of points, and C1 and C2 are the covariance
matrices for the respective epochs.

Ĉ =
1

n1 + n2
(C1n1 + C2n2) (4)

To achieve full 3D per-point uncertainties in the form of co-
variance matrices for each laser point, we assume the scan-
ner to have an angular standard deviation defined mainly by
the laser beam divergence. This neglects the influence of the
2 Because of the common use of the term ”error propagation” (cf.

JCGM, 2008, Section E.3.2), we do not refer to it as ”uncertainty
propagation”, even though this formulation would be more precise.
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angular measurement resolution, in contrast to the work by
Lichti and Jamtsho (2006). For the specific scanner used,
the beam divergence accounts for most of the angular uncer-
tainty. According to the datasheet, the beam divergence of
the RIEGL VZ-2000i is 0.27mrad (0.3mrad for the RIEGL
VZ-400), and is defined at the 1/e2 points of the energy
distribution. Assuming a constant reflectance of the board
within a single laser footprint, we use a quarter of this beam
divergence as standard deviation in scan and yaw angles:
σScan = σY aw = 0.27mrad/4 = 0.0675mrad.

Since the scanners were not moved when changing the incid-
ence angle, we disregard any terms concerning the coregistra-
tion, leading to a simple functional model for the error propaga-
tion, as shown in Equation 5. Here, ϕ represents the yaw angle
(horizontal), θ the scan angle (vertical), r the range and (x, y, z)
the cartesian coordinates for each point i.

(x, y, z)Ti = ri · (cosϕi sin θi, sinϕi sin θi, cos θi)
T (5)

By comparing the quantified change with the reference change
measured by tachymeter, we can evaluate the detection metric
in form of a confusion matrix, as shown in Table 2. We assume
change to be significant (i.e. detectable) if the change calcu-
lated from the tachymeter measurements is greater than or equal
to the estimated LoDetection of the respective method, and to
be indistinguishable from noise otherwise. This significance
is then compared to the one from the statistical test using the
quantified change by means of correctness and completeness
(Eq. 6). Here, ”TP” refers to a change calculated by tachymeter
measurement that is larger than the associated LoDetection and
is estimated as significant from the TLS point cloud. ”FP” is a
change that is estimated as significant from the TLS data, but
is not larger than the LoDetection when calculated from tachy-
metry. Similarly, ”TN” and ”FN” refer to changes estimated as
not significant and are smaller and larger or equal to the LoDe-
tection (when change is calculated from tachymetry), respect-
ively. The LoDetection is always derived from the TLS data.

Reference
LoDetec. ≥ real LoDetec. < real

Est. Significant TP FP
Insignificant FN TN

Table 2. Comparison between significance from estimation and
tachymeter control measurements in form of a confusion matrix.
The reference significance is created by comparing the Level of
Detection estimated from the point cloud with the real change

measured by tachymeter.

Correctness =
TP

TP + FP

Completeness =
TP

TP + FN

(6)

3. RESULTS AND DISCUSSION

We first present dependencies between different factors of influ-
ence by visual analysis of respective scatterplots in Section 3.1.
Subsequently, a ranging uncertainty model is estimated from
the data (Section 3.2), which is then used and validated in er-
ror propagation for the detection of significant change in Sec-
tion 3.3.

3.1 Dependencies between ranging uncertainty, range, in-
cidence angle, intensity and pulse shape deviation

In order to find a functional model describing the ranging un-
certainty, we examine how different measures provided by the
rangefinding system itself (intensity, range, and deviation) and
by the data (incidence angle) correlate with each other and with
the ranging uncertainty.

Figure 4 shows a scatter plot between ranging uncertainty and
range for the VZ-2000i system at a constant incidence angle
of about 0◦. The curve shows a clear trend for all three ma-
terials that the ranging uncertainty increases with larger ranges.
Similarly, the ranging uncertainty decreases for increasing in-
tensities, as shown in Figure 5.

Figure 4. VZ-2000i ranging uncertainty vs. range for a constant
incidence angle of 0◦.

Figure 5. VZ-2000i ranging uncertainty vs. intensities for a
constant incidence angle of 0◦.

The similar patterns in Figures 4 and 5 suggest that much of the
influence of different ranges on the ranging uncertainty can be
modelled adequately by the drop in intensity, as given by the
range equation (LiDAR Equation, Eq. 1). To verify this, we
show the decrease of intensity with respect to range in Figure 6.

Similar observations can be made for intensities and incidence
angles, where the intensity decreases with an increasing incid-
ence angle (Fig. 7). However, the quality of the plane fit and
also of the projected ranging uncertainty exhibit different beha-
viours for different surface materials. For the black surface, the
ranging uncertainties increase with increasing incidence angles
as would be expected and was also shown in previous studies
(e.g. Soudarissanane et al., 2007), even if the effect is more
prominent with phase scanners than with time-of-flight scan-
ners like the RIEGL sensors (Kersten et al., 2009). But for the
grey and white surfaces, the uncertainties decrease for incid-
ence angles above about 20◦ (Fig. 8). This behaviour is similar
for all ranges, and suggests that the type of material influences
the ranging precision going beyond just the strength of returned
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Figure 6. VZ-2000i recorded intensity vs. range for a constant
incidence angle of 0◦.

signal, i.e. that the material is not behaving like a Lambertian
reflector. This suggestion is further supported by the fact that
especially the black foil has specular reflective properties as vis-
ible in Figure 2. For the black surface, only three data points are
available, since no points were recorded for incidence angles
above 20◦ at the range of 60m.

Figure 7. VZ-2000i recorded intensity vs. incidence angle for a
constant range of 60m.

Figure 8. VZ-2000i ranging uncertainty vs. incidence angle for a
constant range of 60m.

The data recorded with the RIEGL VZ-400 shows a similar pat-
tern (Fig. 9), with the maximum ranging uncertainty shifted to-
wards higher incidence angles. Still, the ranging uncertainty
decreases for higher incidence angles. However, this can be ex-
plained by the projection of the plane fit onto the beam vector
reducing the uncertainty by the cosine of the incidence angle
(where the angular uncertainty starts to contribute more to the
total positional uncertainty). We also plot the quality of the
plane fit against the incidence angle (Fig. 10). This shows an al-
most linear relationship, which fits the theoretical expectation.
For the RIEGL VZ-2000i, this relation is not that prominent,
but the decrease of the ranging uncertainty with increasing in-
cidence angles (Fig. 8) is partly explained.

Figure 9. VZ-400 ranging uncertainty vs. incidence angle for a
constant range of 60m.

Figure 10. VZ-400 plane fit quality vs. incidence angle for a
constant range of 60m.

Figure 11. VZ-2000i deviation vs. incidence angle for a constant
range of 60m.

In addition to the polar measurements and the intensity, the
scanners deliver information on how the received pulse shape
deviates from the outgoing one. Plotting this deviation as a
function of the incidence angle shows a similar pattern to the
ranging uncertainty (Fig. 11), suggesting that the deviation can
be used, at least in part, to explain the behaviour of a decreasing
ranging uncertainty for high (flat) incidence angles.

Similarly, a plot of the ranging uncertainty as a function of the
pulse shape deviation shows higher ranging uncertainties with
a larger pulse shape deviation for the grey and the white sur-
faces as expected, but an inverted effect for the black surface
(Fig. 12), that we again attribute to the non-Lambertian proper-
ties of the material.

3.2 Ranging uncertainty model

The observations presented in Section 3.1 indicate that a single
model is not sufficient to adequately describe the ranging un-
certainty for all three surface materials. Instead, each surface
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Figure 12. VZ-2000i ranging uncertainty vs. deviation for a
constant range of 60m.

individually exhibits its own material properties which influ-
ence the ranging uncertainty. Therefore, we estimate a function
σr = f(. . .) separately for each surface material. This also
covers the difference in colour, i.e. reflectance at λ = 1550 nm,
as described by Clark and Robson (2004).The TLS system fur-
ther has specific characteristics, especially concerning the (un-
corrected) intensity signal. Therefore, individual models have
to be created for different TLS models (Wujanz et al., 2017,
2018).

We choose f = a + b · Int with unknown parameters a and b
and the recorded intensity Int as a starting point for our model.
In contrast to Wujanz et al. (2018), we do not model an addi-
tional parameter in the exponent of Int, because this did not
lead to a converging solution with our data. Still, we expect this
function to adequately model the influence of different meas-
urement ranges, as these explain much of the variation in the
intensity (see Fig. 6). Additionally, we consider the cosine of
the incidence angle cos(ϕ) and the pulse shape deviation Dev
as additional linear influences with factors c and d. The full
model is stated in Equation 7.

σr = a+ b · Int+ c · cos(ϕ) + d ·Dev (7)

The parameters for the different surfaces are estimated for the
RIEGL VZ-2000i using a least-squares method on all available
data. The results are listed in Table 3.

â [m] b̂ [m] ĉ [m] d̂ [m]
White 0.00175 -3.54 ·10−7 0.00253 1.27 ·10−5

Grey 0.00333 -4.71 ·10−7 0.00207 -4.40 ·10−5

Black -0.00223 -6.48 ·10−7 0.00875 -1.75 ·10−4

Table 3. Estimated coefficients for the three different surface
types. These values are subsequently used in the estimation of

per-point uncertainty in ranging direction.

An analysis of the correlation matrix of the estimated paramet-
ers for the white surface shows a maximum absolute correlation
of 0.46 between parameters a (the constant term) and d (the de-
viation dependent term). When including the range as an addi-
tional linear parameter, the respective coefficient highly correl-
ates (0.92) with parameter b, the amplitude dependent term.

The models for the other surfaces exhibit slightly higher cor-
relations, especially the one for the black surface, where a and
c (the constant term and the incidence angle-dependent term)
correlate with a coefficient of 0.95, even without including the
range dependent term in the model. This is not surprising, as

only data for low incidence angles is available, limiting the
model’s ability to separate the influence of incidence angle from
a constant term, validating our assumptions.

3.3 Error propagation and assessment of significant
change

We apply the model presented in Section 3.2 to the original
point cloud, generating a stochastic point cloud in accordance
with Wujanz et al. (2017). In order to investigate the ranging
uncertainty as the major contribution in the uncertainty of the
change quantification, we calculate changes of the rotated board
with respect to the 0◦ position, and look for changes along the
normal vector of this position (see Fig. 3).

Because of the noise in the intensity and deviation signals, the
resulting per-point covariance varies in small neighbourhoods.
However, since the M3C2 algorithm includes an aggregation,
these variations are averaged out when testing for significant
changes between the two epochs. Figure 13 shows the per-point
covariance by means of the semimajor axis of the error ellipsoid
for one scan after this aggregation step. The different materi-
als show specific patters of their respective ranging uncertainty
models. Since the incidence angle is assumed constant in this
example and local variations in intensity and deviation are aver-
aged out within the search cylinders, the only remaining influ-
ence is the range - which is slightly (i.e., by a few mm) larger
at the edges of the board. Therefore, Figure 13 shows the de-
pendency of the uncertainty by range, only changing by a few
micrometers across the board.

Figure 13. Semimajor axis of the error ellipsoid estimated for
the scan at 60m range and 0◦ incidence angle. The different

models for the different materials show different patterns, even
though the absolute values are not affected much in this setup.

We show the differences between the reference change and the
quantified change for an increase of incidence angle from 0◦

to 10◦ in Figure 14. The reference change was calculated by
fitting 2.5D quadrics to the tachymeter measurements in the re-
spective epochs, sampling points on these surfaces and then ap-
plying M3C2. The same sampled points are then used as neigh-
bourhood query centers for the subsequent, point cloud-based
analysis. By comparing the quantified change to the estimated
LoDetection, significant change is identified. The quantified
change is calculated using the M3C2 algorithm with a search ra-
dius of 5 cm. The normal vectors are taken from the artificially
sampled point cloud at approximately 0◦ incidence angle.

Two different charts of significant change are shown in Fig-
ure 15 for a part of the board. The detection of significant
change between the standard M3C2 and our method with error
propagation is practically equal. Additionally, the difference of
the LoDetection is shown in Figure 16, where our method es-
timates a much more homogeneous LoDetection for all surfaces
than the baseline model. By comparing the estimated LoDetec-
tion to the change quantified by the tachymeter, we estimate a
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Figure 14. Difference between change estimated from the
tachymetry measurements and the M3C2 change quantification.
Differences up to 5mm appear, especially in the black surface.

truth for significance of the change, as presented in Section 2.3.
Correctness and completeness for both methods are listed in
Table 4. Comparing the state-of-the-art M3C2 model with ours
shows very similar values.

Figure 15. Significant changes for the change detection at 60m
range and between 0◦ and 10◦ incidence angle, cropped to the

center part of the board. Points beyond the faded boundaries are
all ”True Positive” (TP) change. The points are coloured

according to their confusion matrix, i.e. whether the indicated
significance matches the one from the reference.

Figure 16. Comparison of the LoDetection between the M3C2
method and our method stemming from error propagation using

the estimated model for the ranging precision (M3C2-EP).
While our model shows a generally lower LoDetection, it is

slightly higher than the baseline on the black surface material.
The baseline method suffers from effects of locally lower point

densities especially at the edges and close to data gaps.

Material M3C2 M3C2-EP (ours)

White Comp. 78.79% 79.31%
Corr. 61.90% 65.71%

Grey Comp. 88.89% 84.93%
Corr. 91.43% 89.86%

Black Comp. 65.48% 60.24%
Corr. 65.48% 66.67%

Table 4. Change detection metrics (completeness, correctness)
for the standard M3C2 significance test and the one stemming

from error propagation (M3C2-EP).

4. CONCLUSIONS

In this contribution, we present an experiment investigating how
the precision of the laser rangefinder of a terrestrial laser scan-
ner varies for different surfaces, ranges, and intensities. We pro-
pose a novel uncertainty model that makes use of object prop-
erties (surface material), scan geometry properties (incidence
angle), and properties of the measurement itself (amplitude and
pulse shape deviation).

We subsequently apply this uncertainty model to estimate per-
point uncertainties which are used in a change analysis to
identify significant change, and compare this to the state-of-the-
art change detection of M3C2. The herein presented method
requires more information about both the data acquisition (sys-
tem and geometry) and the sensed objects (i.e., which model
of surface material to use) than the baseline method. How-
ever, it allows a more rigorous analysis of the errors involved
and can therefore provide a better prediction of change signific-
ance. The model itself may be derived from the data, given that
a careful planning of scan positions is undertaken.

In the context of time series analysis of topographic data, the
presented method is a two-fold improvement of the state of
the art: (1) Since the application of the rangefinder uncertainty
model does not have a requirement for planar objects, observa-
tions of natural objects with curved or ragged surfaces are not
limited by planarity constraints. This also applies for data gaps,
where planarity measures suffer from the inexistence of data.
(2) Including the sensing process in the analysis allows the rig-
orous combination of multiple data sources, e.g. combining
airborne laser scanning data with terrestrial laser scanning data.
The individual uncertainty components of each sensing method
can be modelled and then propagated to the change quantifica-
tion.

While the findings remain to be shown with real-world, topo-
graphic data, we assume that an improved uncertainty model
allows the detection of changes that were previously discarded
as non-significant, especially on non-planar surfaces. With in-
creased acquisition frequencies and a trend towards 4D point
cloud analyses using more than 2 epochs (e.g. Anders et al.,
2020), these considerations become increasingly important.
With respect to the model generation, further investigations
should show whether (1) models from experiments like the one
shown in this paper can be transferred to real data or (2) the
scanner’s uncertainty can be estimated from patches of overlap-
ping point clouds acquired from different scan positions.
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