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ABSTRACT: 

 

Accurate geometric registration of images and pointclouds is the key step of many 3D-reconstruction or 3D-sensing tasks. In this 

paper, a novel L-junction based approach is proposed for semi-automatic accurate registration of aerial images and the airborne laser 

scanning (ALS) point-cloud in urban areas.  The approach achieves accurate registration by associating the LiDAR points with the 

local planes extracted via L-junction detection and matching from multi-view aerial images. An L-junction is an intersection of two 

line-segments. Through the forward intersection of multi-view corresponding L-junctions, an accurate local junction-plane can be 

obtained. In the proposed approach, L-junction is manually collected from one view on the flat object-surfaces like walls, roads, and 

roofs and then automatically matched to other views with the aid of epipolar-geometry and vanishing-point constraints. Then, a 

plane-constrained bundle block adjustment of the image-orientation parameters is conducted, where the LiDAR points are treated as 

reference data. The proposed approach was tested with two datasets collected in Guangzhou city and Ningbo city of China. The 

experimental results showed that the proposed approach had better accuracy than the closest-point based method. The 

horizontal/vertical registration RMS of the proposed approach reached 4.21cm/5.72cm in Guangzhou dataset and 4.46cm/4.34cm in 

Ningbo dataset, which was much less than the average LiDAR-point distance (over 25cm in both datasets) and was very close to the 

image GSDs (3.2cm in Guangzhou and 4.8cm in Ningbo) and the a-priori ranging accuracy of the ALS equipment (about 3cm). 

 

 

 
*  Corresponding author 

 

1. INTRODUCTION 

The recent two decades have witnesses the rapid development 

of the digital cameras and the Light Detection and Ranging 

(LiDAR) sensors. With the acquisition expense gets lower, the 

integration of both data sources (images and LiDAR 

pointclouds) becomes popular in dealing with 3D-sensing tasks 

like topographic mapping, auto-pilot, indoor Simultaneous 

Localization and Mapping (SLAM), 3D reconstruction, 3D 

object detection (Huang, et al., 2019), etc. For whatever tasks, 

the accurate geometric registration of the two data sources 

should be ensured at the beginning (Mishra and Zhang, 2012; 

Zhang and Lin, 2016). The geometric registration of both data 

sources is mainly implemented through two types of methods, 

i.e., the 2D multi-modal image-matching methods and the 3D-

feature-registration methods.  

 

In the methods based on multi-modal image-matching, the 3D 

information in LiDAR data should be projected onto the 2D 

image-space at the beginning. In (Wong and Orchard, 2008), the 

intensity of the LiDAR reflections was projected onto the 

image-space to form the intensity map, and then the registration 

was achieved by extracting point-matches between the intensity 

map and the aerial images. In (Shorter and Kasparis, 2008), the 

edges of the buildings were extracted from the LiDAR point-

clouds and projected onto the image-space to be matched with 

the aerial images through phase correlation. In (Barsai, et al., 

2017), the edges of the buildings were extracted from both the 

LiDAR point-clouds and the aerial images, then the registration 

was achieved by minimizing the overall distances of the two 

sets of 2D-edges without establishing explicit correspondences. 

The above-mentioned methods transform the 3D alignment 

problem into a 2D multi-modal image-matching problem or a 

2D structure-registration problem, and as a result, the alignment 

accuracy is strongly related to the average LiDAR-point 

distance and the ground sampling distance (GSD) of aerial 

images.   

 

In the methods based on 3D feature registration, structures like 

points, line-segments, or planes are extracted from both the 

images and the LiDAR point-clouds. The structures extracted 

from the images need to be back-projected to the 3D-space 

through the forward-intersection process before the 3D-

registration is processed. For the aerial images and the airborne 

laser scanning (ALS) data acquired over urban areas, the widely 

existing corners, lines, and planes should be used to get better 

registration accuracy. Because the airborne laser scanning (ALS) 

data usually has better ranging accuracy (2cm-5cm) than its 

ground sample distance (GSD, 20cm-30cm). Extracting 

structures from LiDAR pointcloud usually begins with 

extracting planes. Two planes are needed to get a line-segment 

and three are needed to get a corner point. Line-segments and 

corner points can be easily extracted from the images, while 

planes cannot. Although a plane can be determined by three or 

more tie-points extracted from multi-view images, it is not easy 

to judge whether this plane is on an existed flat object surface. 

As a result, many researchers achieved accurate 3D registration 

through corners and line-segments. In (Gruen and Akca, 2005; 

Akca, 2007), the point-cloud extracted through dense-match of 

the aerial images were used for the registration with the LiDAR 

point-cloud. In (Zheng, et al., 2013; Huang, et al., 2018), the 3D 

points extracted from the images were constrained with the 

planes extracted from the LiDAR data through normal-shooting 

strategy. In (Costa, et al., 2017; Costa and Mitishita, 2019; Peng 

and Zhang, 2019), the line-segments or the corner points of the 
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buildings, extracted from the LiDAR data through intersecting 

the point-cloud planes, were registered with those extracted 

from the images. In (Armenakis, et al., 2013), the author 

discussed the potential of directly using the planes extracted 

from both the images and the LiDAR data as the constraints for 

3D registration. The above-mentioned 3D-registration methods 

utilize different geometric structures to deal with different tasks, 

scales, and targets. 

 

In this paper, a new plane-based approach is proposed for the 

geometric registration of the aerial images and the LiDAR 

point-clouds in urban areas. The new approach extracts planes 

from the aerial images through obtaining the L-junctions from 

multi-view aerial images and then achieves accurate 3D 

registration through associating the junction-planes with the 

nearby LiDAR points. The novelty of the approach is in two 

aspects: 

 

1. A new method of automatically matching the L-junction of 

the line-segments is proposed, with the aid of epipolar-

geometry and the vanishing-point constraints. 

2. A new plane-constrained bundle block adjustment model of 

the aerial images is designed to achieve the accurate 

registration of the aerial images and the ALS pointcloud. 

 

The workflow of the proposed approach is illustrated in Figure 

1. The process has three main steps. First, the initial orientation 

models of the aerial images are prepared through tie-point 

matching and POS-aided bundle adjustment. Second, the L-

junctions are manually collected from the aerial images and 

then automatically matched to other views. The collected L-

junctions should correspond to real-existed planar object-

surfaces. Thus, the 3D planes can be extracted through the 

forward intersection process of the multi-view L-junctions, and 

by associate the planes with the nearby LiDAR points, the 

planar constraints are established. Finally, a plane-constrained 

bundle block adjustment is operated to the image orientation 

parameters to achieve accurate 3D registration between the two 

data sources. 

 

The reminder of this paper is as follows. In Section 2, the 

method and the related theory of automatic L-junction matching 

and is introduced. In Section 3, the way of linking the LiDAR-

points and the junction-planes is described and the planar 

constrained block adjustment model is introduced in detail. In 

Section 4, two datasets are used to demonstrate the proposed 

approach. In Section 5, conclusions are drawn. 

 

2. EXTRACT PLANES FROM AERIAL IMAGES 

As in Figure 1, three steps are needed for extracting planes from 

aerial images, i.e., collect the L-junctions manually, match the 

L-junctions automatically, and obtain the 3D junction-plane via 

forward intersection of the multi-view L-junctions.  

 

2.1 Detect L-Junctions 

Although there are many well-designed methods for 

automatically detecting the corners, line-segments, or junction-

like structures, this approach chooses to get the first image-

correspondence of an L-junction manually and then find its 

correspondences from other views automatically. Because 

currently, no automatic detection methods can ensure its results 

satisfying the following rules.  

 

Rules of L-junction Collection: 

1. The plane yielded by the two branches of an L-junction 

must correspond to a real existed flat object-surface.  

2. Each of the branch of an L-junction should be either 

horizontal or vertical.  

 

The first rule ensures that the collected L-junctions and their 

correspondences can be used to extract real existed planes for 

3D-registration (see Figure 2), while the second rules ensures 

that the L-junctions are easy to match under the vanishing-point 

constraints. The images-space L-junctions is a two-branch 

junction, which is denoted as: 

 

  , ,J = c p q  (1) 

 

where c  is the junction-centre, p  and q  are two branches. The 

branch of a L-junction is a line-segment from the junction-

centre to its terminal point (denoted as p and q).  
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Figure 1. Workflow of the proposed approach. 
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Figure 2. The L-junctions in white solid lines can be used to 

extract planes, while those in red dash lines cannot. 

 

2.2 Match the L-junctions 

It is quite easy for a person to find an L-junction from an aerial 

image that satisfies the Rules of L-junction Collection in 

Section 2.1. However, it is quite difficult to find 

correspondences for an L-junction from unordered aerial images. 

Even the images have been bundle-adjusted, a well-designed 

graphical user-interface is needed to manually match them and 

the job is still very time-costing because one L-junction may 

have tens of image-correspondences in a set of oblique aerial 

images. Thus, an automatic method is proposed. 

 

In this approach, the purpose of matching the L-junctions is to 

extract the 3D-planes yielded by the junction-branches. Thus, 

two image-space L-junctions (  , ,J = c p q  and  , ,J    = c p q ) 

will be treated as correspondences when: 

1. The junction-centre c  and c  are corresponding points; 

2. The junction-branch p  and p  are on two corresponding 

straight-lines; 

3. The junction-branch q  and q  are on two corresponding 

straight-lines; 

 

As is described above, the terminate points of the corresponding 

branches do not need to be corresponding points. During the 

automatic matching process, the correspondence (denoted as J  ) 

of the junction J  can be searched under the following 

constraints (see Figure 3).  

 

 
Figure 3. Searching the corresponding L-junctions under 

epipolar-geometry and constraints of two vanishing-points. 

 
Figure 4. The vanishing line and the image-space nadir point. 

 

Constraints for L-junction Matching: 

1. The junction-centre c  and c  should follow the principle 

of epipolar-geometry.  

2. The straight-lines on which the corresponding junction-

branches lies should pass the corresponding vanishing 

points.  

 

As a result, the epipolar-geometry and the constraints of two 

vanishing points can be used to aid the matching of L-junctions. 

Since the orientation model of the aerial images can be treated 

as an apriori in the proposed approach, the epipolar-geometric 

relationship of any image-pairs can be easily deduced. Denote 

the fundamental matrix between image I and I  as F, the 

epipolar-geometric-based constraint is: 

 

 ( ) 1,dist  c Fc  (2) 

 

where dist(.) means the distance between the point c  and the 

epipolar-line Fc ; 
1  is the threshold of the distance. 

 

In order to match the L-junctions with the branch-direction 

constrained, we need to firstly locate the vanishing points for 

the branches of the artificially collected L-junctions, and then 

find the correspondences of the vanishing points from the other 

views. Vanishing point is the projection of a 3D infinite point. 

According to the Rules of Artificial L-junction Collection in 

Section 2.1, the branch of an L-junction is either horizontal or 

vertical. Thus, the vanishing point of a branch should be either 

the image-space nadir point or the intersection of the branch 

(the straight line that contains the branch) and the vanishing line 

(see Figure 4). Denote ( )l p  as the straight-line that contains the 

branch p and  ( )v p  as the vanishing point corresponding to 

( )l p . Denote the ground correspondence of ( )v p  as ( )p . If 

( )v p  is the nadir point, then the homogeneous coordinate of 

( )p  is ( )
T

0 0 -1 0 .  If ( )v p  is not the nadir point, then 

the homogeneous coordinate of ( )p is ( )
T

cos sin 0 0  , 

which has only one degree of freedom and can be easily solved 

with the colinear equation: 

 

 ( )   ( )|v = p R T p  (3) 
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Figure 5. The forward intersection of L-junctions. 

 

Using similar steps, we can get ( )v q  and  ( )q . Finally, the 

image-space correspondences of ( )v p  and ( )v q  can be 

obtained by projecting ( )p  and ( )q  onto the other images: 

 

 
( )   ( )

( )   ( )

|

|

v

v

  = 

  = 

p R T p

q R T q
 (4) 

With the vanishing point ( )v p  and ( )v q , the vanishing-point 

constraints are: 

 

 ( )( ) ( )( )2 2, ,angle v and angle v       c p p c q q  (5) 

 

where angle(.) means the angle between two lines; 
2  is the 

angular threshold.   

 

The proposed automatic matching method has three steps: 

1. Locate the vanishing points ( )v p  and ( )v q on the image 

I, and deduce the vanishing points ( )v p  and ( )v q  on 

the image I . 

2. Automatically detect line-segments on image I ; 

3. Form the L-junctions with the line-segments on image I  

and select the one that satisfies all the constraints in (2) 

and (5).  

If more than one L-junctions satisfy the constraints, manually 

check is needed to find the correct one.  

 

2.3 Forward Intersection and Plane Extraction 

An object-space 3D L-junction is composed by a 3D point and 

two associating directions. Thus, at least seven parameters are 

needed to express an 3D L-junction, which is denoted as: 

 

  , , , , , ,X Y Z    = p p q q  (6) 

 

where X, Y, and Z are the coordinates of the centre point; p  

and p  express the direction of the branch P ; q  and q  

express the direction of the branch Q . The forward intersection 

of L-junctions has two steps, i.e., obtaining the initial value 
0

 

and then optimize it through least-square-based multi-view 

forward intersection. The initial coordinate of the junction-

centre can be obtained by direct forward intersection with any 

two of the image-space junction-centres, while the initial 

branch-direction can be obtained from the 3D infinite point  

( )p  and ( )q  used in L-junction matching.   

 

The projection of the 3D L-junction  is in the following steps. 

First, project the junction-centre (X, Y, Z) onto the image-space. 

Then, project an arbitrary 3D point on each of the 3D-branch 

onto the image-space and thus we can get the 2D branches. 

Denote the projected junction-centre on the j-th image as ( )proj

jc , 

and the two projected junction-branch as 
( )proj

jp  and 
( )proj

jq .  

The problem of optimizing the 3D L-junction  is denoted as: 

 

 
( )

( )( )
( )( )

T

T

, , ,

,

,

,

arg min

( , )

,

,

j j j

proj

j j j

proj

j jj

proj

j jj

dist

dist

dist

  









 =
 

=

=

=

c p q

c

p

q

ε ε

ε

c c

p p

q q

 (7) 

 

In the optimization problems,  , ,j j j jJ = c p q  is an artificially 

collected or an automatically matched 2D junction on the j-th 

image. The cost value , jc  is a point-to-point distance, while 

, j


p
 and 

, j


q
 are point-to-line distances (see Figure 5).  With 

the optimized 3D junction parameters, the 3D plane can be 

easily obtained by the junction centre and two junction-

branches. Denote the homogeneous coordinate of the 3D plane 

yielded by  as ( )P . The 3D alignment between the aerial 

images and the LiDAR points will be operated by forcing the 

LiDAR points near ( )P  to be on it. 

 

3. PLANE CONSTRAINED REGISTRATION 

There are three steps to operate the plane-constrained 3D 

registration. First, the LiDAR points near the 3D junction-plane 

are searched to form the planar constraints. Second, a bundle 

block adjustment model with additional point-to-plane cost 

functions is formed and solved to refine the orientation model 

of the aerial images, so as to achieve the accurate registration. 

Finally, the registration accuracy is assessed by the independent 

check junctions (ICJs). 

 

3.1 Point-to-Plane Cost Functions 

The parameters of the 3D junction  do not involve the length 

of the branches because they will not be used in the forward 

intersection process and the following block adjustment. 

However, estimating the branch-length can help us find the 

related LiDAR points. With the junction  and two branch-

lengths ( )L p  and ( )L q , the LiDAR points within the 3D cube 

formed by the junction-plane and a thickness threshold 
H  are 

related with the junction   to build the point-to-plane 

constraint (see Figure 6). 
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Figure 6. The points (green) within the buffer of the junction-

plane will be constrained to the L-junction. 

 

The point-to-plane constraint can be denoted as the following 

cost function with the t-th LiDAR point 
t
 and the i-th 3D L-

junction 
i
, 

 

 ( )( ), ,,
i t t i i tdist with weight W = P ，  (8) 

 

where ( )( ),t idist P  is the point-to-plane distance; the weight 

value ,i tW  will be fixed as the one at the first iteration of the 

block adjustment, and in the latter iterations will be modified 

according to the point-to-plane distance calculated with the 

updated image orientation model: 

 

 
( )( )

( )( ) ( )( )

*

,
2 2 * *

1 ,

, , ,

t i p

i t

p t i t i p

if dist
W

dist if dist



 

 
 



P

P P

，
 (9) 

 

where ( )*

iP  is the junction-plane of 
i

 calculated by the 

orientation parameters updated in the last iteration.   

 

3.2 Plane-constrained Bundle Block Adjustment 

Combining the cost function of L-junction projection, tie-point 

projection, and the point-to-plane constraints, a mixed bundle 

block adjustment model is denoted as: 

 

 

T

T T T

,

T

arg min

i i t i

j i i





 =  

 =  

x ε Pε

ε ε ε

x t

 (10) 

 

where ε  denotes the cost functions; x  denotes the variables to 

be optimized; jt  denotes the exterior orientation parameters of 

the j-th image; 
i

 is the coordinate of the i-th tie-point; 
i
 

denotes the parameters of the i-th L-junction;  denotes the 

interior orientation parameters and the distortion parameters of 

the aerial camera; T

i
ε  denotes the projection-cost of the i-th L-

junction as in (7); ,i t
  denotes the point-to-plane costs as in 

(8); T

i
ε  denotes the projection-cost of the i-th tie-point. 

Compared with the conventional bundle adjustment, the model 

in (10) does not involve the cost functions for ground control 

points and POS data, but involves the cost function for L-

junction projection and for plane constraints.  

 

Since the aerial images have been pre-bundle-adjusted before 

their 3D registration with the LiDAR points, the pre-adjustment 

results (tie-point locations and image orientation parameters) 

can be used as initials. The L-junctions can be treated as control 

points that however can only control one direction (the normal 

direction of the junction-plane) of the 3D space. Thus, the block 

adjustment problem (10) can be solved by iterative linearization 

and variable update as we do for conventional bundle 

adjustment. During the iteration, the weight values of the 

(junction- and tie-point-) projection costs are fixed, while the 

weight values of the point-plane-constraining costs are updated 

according to (9). With the L-junctions carefully selected 

according to the Rules of Artificial L-junction Collection, the 

solving process can converge with several iterations. 

 

3.3 Plane-based Accuracy Assessment 

The L-junctions not used as control junctions (CJs) can be used 

as ICJs. In the accuracy assessment, the RMS of the distances 

between a (horizontal or vertical) junction-plane and the 

associated LiDAR points can be used to evaluate the (horizontal 

or vertical) registration error near this L-junction.  

 

4. EXPERIMENTS AND ANALYSIS 

In this section, the proposed approach was tested with two 

datasets acquired over Guangzhou and Ningbo of China (see 

Figure 7). The detailed information of the aerial images and the 

LiDAR data is given in Table 1. Both the LiDAR point-clouds 

have been geometrically rectified before the test and had better 

than 10cm RMSE. The accuracy of the Ningbo LiDAR data has 

been evaluated with the standard 1:500 topographic maps. The 

results showed that the horizontal RMSE was about 6.9cm and 

the vertical RMS was about 7.9cm. The ranging error of the 

LiDAR sensor was about 3cm. The images and the LiDAR data 

were acquired at different time.   

 

Location Guangzhou Ningbo 

Aerial 

Images 

Flying Height  500m 900m 

Spatial Res.  3.2cm 4.8cm 

Image Size  10336×7788 10608×8708 

#Cameras  5 5 

#Images 2415 1541 

LiDAR 

Points 

Mean Point Dist. 
25cm (hor.) 

50cm (ver.) 

30cm (hor.) 

90cm (ver.) 

RMS of Point 

accuracy 
<10cm 

6.9cm (hor.) 

7.8cm (ver.) 

#Points 43,971,092 45,154,384 

Table 1. Detailed information of the test data 

 

4.1 L-Junction Collecting and Matching 

When matching the junctions on the aerial images of the two 

datasets, 
1  (the threshold for junction-centre, see condition (2)) 

were set 3 pixels and 
2  (the threshold for junction-branch, see 

condition (5)) were set 5 degrees. In the Guangzhou dataset, 42 

L-junctions were manually collected and automatically matched. 

The screenshots of six L-junctions collected and matched in 

Guangzhou dataset are shown in Figure 8. The matching 

accuracies of the six illustrated junctions (Figure 8) are given in 

Table 2. In Ningbo dataset, 28 L-junctions were manually 

collected and automatically matched.  
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No. of 

Junction 

RMS (pixel) of  Maximum (pixel) of 

, jc  
, j


p

 
, j


q

 
, jc  

, j


p
 

, j


q
 

1 0.86 0.43 0.55 1.61 0.95 1.10 

2 1.09 0.90 0.64 1.63 2.02 1.35 

3 0.96 0.62 0.40 1.91 1.62 1.14 

4 0.89 0.66 0.51 1.69 1.30 1.36 

5 0.88 0.92 0.32 1.95 2.03 0.87 

6 0.67 0.58 0.27 1.66 1.28 0.58 

Table 2. The matching accuracy of the junctions in Figure 8. 

 

As is shown in Table 2, five out of six L-junctions had subpixel 

reprojection errors. All the L-junctions used in the two datasets 

had less-than-1.5-pixel RMS, among which 35 in Guangzhou, 

and 22 in Ningbo had subpixel RMS. Furthermore, the L-

junction can even be accurately matched on the views where the 

junction-planes were invisible (see the images in row-1/column-

5, row-2/column-2, row3/column-2, row-4/column-3, and row-

4/column-5 in Figure 8). This is because the proposed matching 

strategy did not utilize the texture information of the images.   

 

4.2 3D Registration Accuracy 

When searching the LiDAR points associated with an L-

junction, the threshold 
H  was set 3m. During the bundle block 

adjustment of the proposed approach, the threshold p  was 

0.15m. The method based on the closest-point principle and the 

collinearity equations (Huang, et al., 2018) was used for 

comparison. The tie-points used in the pre-process (POS-aided 

bundle adjustment) were also used in the 3D registration, so we 

did not need to obtain them again. 

 

Figure 7 also illustrates the distributions of HCJs (Horizontal 

CJs), VCJs (Vertical CJs), HICJs (Horizontal ICJs), and VICJs 

(vertical ICJs) of both Guangzhou and Ningbo datasets. The 

number of each type of L-junctions is given in Table 3. The 

horizontal registration accuracy was evaluated with the VICJs 

(because they had vertical junction-planes with horizontal 

normal vectors) and similarly, the vertical registration accuracy 

was evaluated with the HICJs. 

 

Location #HCJs #VCJs #HICJs #VICJs 

Guangzhou 12 18 6 6 

Ningbo 9 8 6 5 

Table 3. The number of HCJs, VCJs, HICJs, and VICJs. 

 

The registration accuracy is given in Table 4. As is shown, the 

L-junction based approach had better accuracy than Huang’s 

method by the registration RMS of both the HICJs and the 

VICJs in both Guangzhou and Ningbo dataset. In Guangzhou 

dataset, Huang’s method had lower maximum vertical accuracy 

(by HICJs) but higher maximum horizontal accuracy (by 

VICJs). In Ningbo dataset, the L-junction based approach 

achieved much better horizontal registration accuracy (by 

VICJs). The reason is that most of the LiDAR points in Ningbo 

dataset were on horizontal planes, thus the horizontal constraint 

was too weak for Huang’s method. The L-junction based 

approach, on the other hand, can balance the constraints by 

controlling the numbers of HCJs and VCJs. 

   
(a) 

 

   

(b) 

Figure 7.  The ortho-maps, the LiDAR pointclouds, and the L-junction distributions ( : HCJ, : HICJ, : VCJ, : VICJ) 

of (a) Guangzhou dataset and (b) Ningbo dataset.  
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Registration 

Accuracy (cm) 

Huang’s 

Method 

L-junction 

Method 

VICJs HICJs VICJs HICJs 

Guangzhou 
RMS 4.83 6.02 4.21 5.72 

max 9.01 10.44 11.53 9.92 

Ningbo 
RMS 8.80 5.58 4.46 4.34 

max 17.90 14.81 9.90 9.73 

Table 4. The registration accuracy. 

 

4.3 Discussion 

With either Guangzhou dataset or Ningbo dataset, the whole 

process of the proposed approach took about half-an-hour 

manual works in searching the appropriate L-junctions for 

match, while other tasks (junction matching, LiDAR point 

searching, plane-constrained block adjustment, accuracy 

assessment) were fully automatic.  

 

The junction matching accuracy was very high, the reprojection 

RMS of the junction-centre and the junction-branches can reach 

subpixel level for most L-junctions, which is very hard even for 

experienced workers. The experiment results of Guangzhou and 

Artificially Collected  Automatically Matched 

 

 

    

 

 

    

 

 

    

 

 

    

 

 

    

 

 

    

Figure 8. The screen-shots of the artificially collected L-junctions (the first column) and the automatically matched L-junctions. 
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Ningbo datasets demonstrated that our L-junction based 

approach can reach very high accuracy in aligning the aerial 

images and LiDAR pointclouds. 

 

5. CONCLUSION 

In this paper, a novel L-junction based approach for semi-

automatic accurate registration of the aerial images and the 

LiDAR pointclouds is proposed. The approach uses multi-view 

corresponding L-junctions to extract local planes and thus, form 

the planar constraint. The method of L-junction matching, using 

epipolar-geometry and vanishing-point constraints, achieves 

very high matching accuracy. The registration model is formed 

by adding the junction-projection costs and the plane-constraint 

costs to the conventional bundle block adjustment model. The 

registration accuracy in both horizontal and vertical directions is 

very high, being very close to the ranging accuracy of the 

LiDAR sensor and the image GSD. The proposed approach is 

demonstrated to be able to reach very high registration accuracy 

with very sparse plane-constraints (30 L-junctions for the 2415 

images in Guangzhou and 17 L-junctions for the 1541 images in 

Ningbo), which means that users do not need to collect too 

many L-junctions manually.  

 

The junction-based planar constraint is very suitable for 

aligning the very-high-resolution images to the sparse but 

accurate LiDAR data in urban areas, which is mostly the case of 

low-attitude (UAV/oblique) aerial photography and airborne 

LiDAR data.  Because it is easy to find appropriate L-junctions 

in the urban area, and the junction-plane can be accurately 

extracted from the high-resolution images. For the rural areas, 

this approach is less suitable because selecting appropriate L-

junctions will be very difficult. When aligning the aerial images 

with the terrestrial laser scanning data, the full-automatic 

iterative-closest-point (ICP) based method is a better choice 

because the point density will be very high and will not 

influence the accuracy.  

 

The proposed approach treats the LiDAR points as reference 

data and adjust the image orientation parameters. However, with 

the junction-based planar constraints, one can also adjust the 

LiDAR orientation parameters when the aerial images are 

accurate enough to be used as reference data or adjust the 

orientation parameters for both the data sources concurrently 

when accurate ground control points are available. Besides, 

there are also many works to do to improve the proposed 

approach. Future works include: 

1. Testing the different adjustment model with the junction-

based planar constraints 

2. Theoretically analysing the relationship between the 

junction-matching thresholds (
1   and 

2 ) and the 

orientation accuracy of the aerial images; 

3. Robust plane detection method that can eliminate the 

LiDAR points which do not belong to the junction-plane.  

4. Automatically collecting the appropriate L-junctions lying 

on the real-existed flat object surfaces. 
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