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ABSTRACT:

Vehicle detection in remote sensing image has been attracting remarkable attention over past years for its applications in traffic,
security, military, and surveillance fields. Due to the stunning success of deep learning techniques in object detection community,
we consider to utilize CNNs for vehicle detection task in remote sensing image. Specifically, we take advantage of deep residual
network, multi-scale feature fusion, hard example mining and homography augmentation to realize vehicle detection, which almost
integrates all the advanced techniques in deep learning community. Furthermore, we simultaneously address super-resolution (SR)
and detection problems of low-resolution (LR) image in an end-to-end manner. In consideration of the absence of paired low-/high-
resolution data which are generally time-consuming and cumbersome to collect, we leverage generative adversarial network (GAN)
for unsupervised SR. Detection loss is back-propagated to SR generator to boost detection performance. We conduct experiments
on representative benchmark datasets and demonstrate that our model yields significant improvements over state-of-the-art methods

in deep learning and remote sensing areas.

1. INTRODUCTION

Vehicle detection in remote sensing images has been widely ap-
plied in many fields and thus received much attention over past
years. In spite of the tremendous efforts devoted to this task, the
existing methods still require substantial improvement to ad-
dress several challenges in this area. First, scale and direction
variability make it more difficult to accurately locate the vehicle
object. Second, complex background increases intraclass vari-
ability and interclass similarity. Third, some remote sensing
images are captured in low resolution, which would definitely
result in lacking sufficient detailed appearance to distinguish
vehicle from similar objects. As shown in Figure 1, compared
with the everyday images of vehicles, the remote sensing image
captured from a perpendicular (or slightly oblique) viewpoint
loses the ’face’ of vehicle, and the vehicles typically display
rectilinear structures. Thus, the presence of nonvehicle rectilin-
ear objects such as trash bins, electrical units, air conditioning
units on the tops of buildings, can complicate the task, causing
many false alarms. Therefore, researchers are trying to exploit
the state-of-the-art deep learning based object detection tech-
niques to push the boundaries of the achievement in this regard.

Object detection can be split into two sub-tasks, localization
and classification. Conventional methods addressing this prob-
lem are usually via three phases, image segmentation, feature
extraction and training classifier. Particularly, saliency detec-
tion is utilized to generate region of interest (Rol) as posit-
ive samples. Then, low-level, handcrafted visual features (e.g.,
color histogram, texture, local pattern) are constructed on these
samples to train classifiers (e.g., SVM, AdaBoost). However,
due to complicate texture architecture and lacking pixel-level
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Figure 1. Examples of everyday images of vehicles (a) and
remote sensing image of vehicles (b). In remote sensing image,
red boxes indicate the correctly detected vehicles and the false

alarms are marked with yellow boxes.

annotation, positive training data could be noisy and thus de-
generates the subsequent classifier. Furthermore, predefined
manual features are usually computationally expensive and can’t
access to high-level semantic representation of objects, render-
ing the detection performance has much room for improvement.

Recently, convolutional neural networks (CNNss) exhibits strong
feature learning capability and obtains state-of-the-art perform-
ance in a variety of classification and recognition tasks on bench-
mark datasets. Specific to the problem of object detection, great
achievements have been made, which are usually driven by the
success of region proposal methods and region-based CNNss,
such as R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick,
2015). On the basis of above networks, other advanced techno-
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Figure 2. [llustration of our CycleGAN-based vehicle detection module(CVDM). I r is the input LR image, Isr is the
super-resolved image from I g, I7 5 is of LR generated from Isr. T r is the HR image provided as reference from other
high-quality dataset. T r is down-sampled version of T r. Tsr is the super-resolved HR image from 77 r. Colored arrows
represent different parts in the whole framework.
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Figure 3. [llustration of our vehicle detection module(VDM).
Bottom-up feature extraction and top-down multiscale feature
fusion for region proposal generation. M5, M4, M3, M2 indicate
the middle levels of intermediate operation. P4, P3, P2 indicate
the pyramid levels. 1x 1 and 33 represent the convolution
layer with kernel size 1 and 3 respectively.

logies are employed to boost the detection performance. Fea-
ture pyramid network (FPN)(Lin et al., 2017) and Top-down
module (TDM) (Shrivastava et al., 2016b) integrate multilayer
features to cover objects with different scales. Deep residual
networks are used as backbone ConvNet for better represent-
ations. Moreover, sample mining technique is applied to dig
training data which makes more contributions to the optimiz-
ation of networks. In remote sensing community, researchers
have figured out many CNN-based methods for vehicle detec-
tion task. But few works make full use of all above advances
in an unified framework, let alone any specific vehicle-oriented
design that could be incorporated in CNNs to facilitate detec-
tion in remote sensing image.

Based on above observations, we focus on vehicle detection
problem in remote sensing images. First, we take advantage
of several advanced technologies in DNNs area to bridge the
gap between deep learning and remote sensing vehicle detection
communities. Particularly, we incorporate deep residual net-
work ResNet50 (He et al., 2016) for feature extraction, multiscale

feature architecture to make accurate predictions and hard ex-
ample mining to facilitate network optimization. Plus, we ex-
ploit homograph-based augmentation method to boost overall
detection performance. Second, in order to alleviate the prob-
lem of low-quality image detection task, which refers to LR im-
age in this work, we leverage on CycleGAN model and multi-
task learning, in which SR network is a generator and object
detector is treated as a discriminator. Note that, due to lack-
ing paired low-/high-resolution images, we investigate unsuper-
vised learning regime for SR task. Our proposed framework
is evaluated on several representative datasets and the results
demonstrate that ours outperform state-of-the-art object detec-
tion approach Faster R-CNN++ in deep learning community,
and other CNN-based methods in remote sensing area.

2. RELATED WORK

In this section, we are going to introduce several representative
works in object detection and vehicle detection fields.

2.1 General object detection

Early works in object detection community mainly rely on hand-
crafted features (Dalal, Triggs, 2005),(Lowe et al., 1999) and
then train classifiers (Felzenszwalb et al., 2009). Since AlexNet
(Krizhevsky et al., 2012) got champion in ILSVRC-2012 com-
petition (Deng et al., 2012), plenty of neural network architec-
tures have been proposed and showed powerful learning capab-
ility in image classification task (Szegedy et al., 2015),(Szegedy
et al., 2016),(He et al., 2016). On the basis of these works, R-
CNN (Girshick et al., 2014) takes wrapped potential regions
that are provided by region proposal methods (Uijlings et al.,
2013) as input and extracts CNNs features, which are utilized
to train class-specific liner SVMs. In order to avoid redundant
computational cost in R-CNN, Fast R-CNN (Girshick, 2015)
forwards entire image through network only once, imposing
those seriously overlapped proposals to share computation. Plus,
CNNs itself takes responsibility of classification and location
regression. Thus the whole detection framework is modeled
in an end-to-end manner. Region proposal network (RPN) is
proposed to replace region proposal methods in Faster R-CNN
(Ren et al., 2017), which significantly accelerates image pro-
cessing. Later, FPN (Lin et al., 2017), Mask R-CNN (He et
al., 2017) follow the fashion of Faster R-CNN pipeline, with
improvements in multi-scale training, feature fusion, multi-task
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Methods Feature Size Ratio Number
Original RPN* C5 128,256,512 | 0.5,1,2 9
P2 32 0.5,1,2 3
P3 64 0.5,1,2 3
RPN with FPN* P4 128 05,1,2 3
P5 256 0.5,1,2 3
P6 512 0.5,1,2 3
P2 32,48 0.5,1,2 6
Our RPN P3 64, 96 0.5,1,2 6
P4 128, 192 0.5,1,2 6

* Original RPN and RPN with FPN represent the RPNs of Faster R-CNN and
Faster R-CNN++ respectively.

Table 1. Anchor information of our RPN and the original RPN
at each possible location

learning. Aforementioned CNN-based detection methods are
two-stage, where class-agnostic proposals are provided and then
refined in bounding box coordinates and classified into spe-
cific classes. Another typical solution for object detection is
one-stage method in which proposals are predicted only once.
YOLO (Redmon, Farhadi, 2018) and SSD (Liu et al., 2016a)
are representatives of such trend.

2.2 Vehicle detection in remote sensing image

Traditional methods addressing vehicle detection problem rely
on shallow-learning features. Here we discuss some represent-
atives of them. Early work (Zhao, Nevatia, 2003) chooses the
boundary of the car body, the shadow and the boundary of the
front windshield as the characteristics to consider the change
of view and shadow. The framework in (Liu et al., 2016b)
applies Gauss process (GP) classification and gradient based
segmentation algorithm (GSEG) to realize vehicle probability
estimation of each pixel. Histogram of directional gradient fea-
ture descriptor (HOG) (Dalal, Triggs, 2005) and linear sup-
port vector machine (SVM) are used in (Bougharriou et al.,
2017),(Madhogaria et al., 2015). Work (Kembhavi et al., 2010)
uses color probability maps, pixel pairs and HOG to depict the
color and geometric structure properties. In (Elmikaty, Stath-
aki, 2014), gradients map is computed to filter out non-vehicle
regions. Multiple descriptors, Histogram of Oriented Gradients
(HOG), Fourier and truncated Pyramid Colour Self-Similarity
(tPCSS) of selected regions are combined to train a SVM.

Recently, CNNs become the hottest fashion for vehicle detec-
tion in remote sensing field. CNN-based detection model com-
bining two independent convolutional neural networks was pro-
posed in work (Zhong et al., 2017). In (Uus, Krilavi¢ius, 2019),
a unified framework is proposed on the basis of YOLO to real-
ize airplane detection in aerial images. Similarly, YOLO-like
architecture is used to detect aerial vehicles (Carlet, Abayowa,
2017),(Lu et al., 2018). Moreover, many region-based methods
are conducted to detect smaller aerial vehicles. In (Kyrkou et
al., 2018), sliding-window incorporated with prior knowledge
is utilized to generate vehicle-like proposals. Subsequently,
CNN s is employed to complete classification task. Work (Ji et
al., 2019) investigates improved Faster R-CNN framework for
vehicle detection. For efficiency, in (Chen et al., 2013) parallel
CNN architecture is applied to extract features of ROIs and pro-
duce detection results. Variable sizes of convolutional filter and
max-pooling field are adopted to extract variable-scale features
for vehicle detection in (Chen et al., 2014).

3. THE PROPOSED SYSTEM

In this section, we elaborate the details of our proposed frame-
work. The whole system consists of two modules, vehicle de-
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Figure 4. Instances of both positive (a) and negative (b) hard
example patches in our work.

tection module (VDM) and CycleGAN-based vehicle detec-
tion module (CVDM). VDM follows region-based detection
pipeline, whose architecture is shown in Figure 3. As shown
in Figure 2, CVDM incorporates VDM into an CycleGAN-like
architecture, which aims to address detection problem in LR
image. Architecture of Detector is as VDM.

3.1 Vehicle detection module (VDM)

We model vehicle detection problem by region-based method,
which forwards the entire image through a sequence of con-
volutional layers, extracts a set of feature maps corresponding
to potential region proposals, and then produces detection res-
ults via two sibling branches. To train appropriate networks
that complete these sub-tasks in an end-to-end fashion, our ap-
proach is composed of three main components. First, basic
convolutional network generates feature maps. Second, hier-
archical architecture constructs multilevel representations and
predictions. Third, online hard example mining technique digs
discriminative samples.

3.1.1 ConvNet and multilevel feature architecture Deep
residual networks have proved to be effective for feature learn-
ing and achieved remarkable success in object detection task.
Thus, we utilize ResNet50 for feature extraction. However, we
observe that for remote sensing image, vehicle object may oc-
cupy relatively small area in the whole image. The stride of
ResNet50 is 32, which results in losing vehicle information in
the process of convolution and pooling operations. Commonly
used countermeasure for this case is mutiscale training and test-
ing, which is obviously time consuming and cannot guarantee
the features are interpretable enough for final detection. To alle-
viate this problem, many feature fusion strategies are proposed
to build hierarchical architecture and make predictions in mul-
tiple feature levels. As FPN obtains state-of-the-art results on
canonical benchmark datasets, we adopt FPN-like architecture
to construct appropriate multilevel features for our task.

ResNet50 has 5 blocks (each block consists of several convo-
lutional layers, namely cl, ¢2, ¢3, ¢4, ¢5). For building se-
mantic representation, feature maps of each block are filtered,
upsampled and merged with previous block. Finally, there are
5 stages in proposed multilevel neural network, namely p2, p3,
p4, p5. Original RPN generates region proposal on the last
block of convolutional layers. FPN performs region proposal
operation on each stage as well as another additional stage p6 at
last for covering objects from 322 to 5122, Taking into account
of the size range of vehicle objects, we only utilize p2,p3,p4
for region proposal. Table 1 gives detail comparisons between
naive RPN, FPN and proposed multilevel architecture. At the
phase of subsequent detection network, original RPN projects
Rols on ¢5, while FPN on each stage based on areas of the Rols.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-2-2020-797-2020 | © Authors 2020. CC BY 4.0 License. 799



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020
XXIV ISPRS Congress (2020 edition)

Gs

ILr(IR") — D

sk

GL

Figure 5. Pipeline of the generator of our CycleGAN network.

Due to vehicle objects generally with small size, we extract fea-
ture maps of proposal on the finest stage p2, which provides
discriminative representations for classification and location.

3.1.2 Sub-detection network Feature maps of each proposal
are pooled to 7 x 7 bins, followed by two continuous fully
connected layers. Then the outputs are forwarded to sibling
branches for classification and localization. For classification
task, we apply standard multi-class cross entropy loss which
can be formulated as Equation 1:

L({p:},{t:}) =

cls p’Lv ll

sz Lyeg(ti, t])

Les(pis 1) = —ZOQ(Pﬁ)a
Lyeg(ti, t]) = smoothr1(t; — ti),

0.5
|| — 0.5

if || <1,
otherwise.

smoothr(x) = {
(6]

Here, ¢ is the index of a region in a mini-batch and p; is the
predicted probability of region ¢ being a vehicle. The ground-
truth label I is 1 if the region is positive, and is 0 otherwise.
t; is a vector representing the 4 parameterized coordinates of
the predicted bounding box, and t; is that of the ground-truth
box associated with a positive anchor. For more detailed dis-
cussion of this objective function and the recommended value
of parameters, readers can refer to (Ren et al., 2017).

3.1.3 Online hard example mining Data mining aims to
dig out samples that are not distinguishable enough for training
and thus make the classifier more discriminative progressively.
Especially in remote sensing area, background information is
usually complex, implying high similarity between positive and
negative samples. Randomly selecting training samples would
miss useful information. Consequently, proceeding samples
from simple to complex is proposed for solving this problem.
Specifically, researchers make use of alternative learning strategy,
incorporating influential samples gradually, totally training the
classifier for several rounds. Selection criteria depends on con-
fidence of previous detection model. We call this mining ap-
proach as offline manner. Later, in (Shrivastava et al., 2016a),
researchers consider to complete this task with online man-
ner and successfully embed the algorithm into Faster R-CNN,
namely online hard example mining. In this manner, during
each training forward pass, those proposals with high loss value
are selected as hard examples to back-propagation for estimat-
ing weights. In implementation, backbone ConvNet is followed
by two sub-detection networks, called readonly and standard
modules respectively. The former branch is responsible for
calculating loss value of proposals and the latter branch ac-
counts for standard SGD operation combined with basic Con-
vNet. Readers can access detailed information of this algorithm

in (Shrivastava et al., 2016a). We display some hard examples
obtained of our implementation in Figure. 4.

3.2 CycleGAN-based vehicle detection module (CYDM)

In this section, we focus on detection task in LR image by sim-
ultaneous SR operation and object detection. Commonly solu-
tion for the problem is directly upsampling image by bicubic
kernel, which definitely loses appearance details. Thus, we
exploit SR method to enhance LR image. Existing methods
model this problem with fully convolutional network (FCN)
and pixel-level annotation, paired low-/high-resolution images,
are essential for these models. However, in practise, it’s diffi-
cult to obtain paired training data. To ease the burden of data
collection, unsupervised learning regime is developed for do-
main translation. Our approach is inspired by two representat-
ives, CycleGAN (Zhu et al., 2017) and Cycle-in-Cycle (Yuan
et al., 2018), which realize unsupervised image translation by
GAN. Our framework consists of generator and discriminator,
in which G's super-resolves LR image, G 1, restores obtained SR
image back to LR domain, Detector realizes vehicle detection.

3.2.1 CycleGAN-based image super-resolution As shown
in Figure 5, there are two generators for image SR component,
where I g, I' L r represent original LR image and its restored
counterpart respectively, Isr is corresponding super-resolved
one. Cycle consistency loss is:

Leye =By pnPyora o ([lGL(Gs(ILr)) — ILrll2] - (2)
Where ||.|| means MES loss. I' g = Gs(ILR).

In order to preserve the color and quality of super-resolved im-
age, we add identity loss to train the whole model. Its formu-
lation can be seen in Equation 3, which also uses MSE loss.
As we can’t access to paired images in our target remote sens-
ing data, here we refer to dataset that is for SR purpose and
not related to our target data. 7w r means high-resolution refer-
ence, while T r represents its LR counterpart, which is down-
sampled by bicubic kernel.

Lrit =By, popy,omom)l|Gs(TLr) — Turll2] ()

We utilize adversarial loss for G's and its discriminator D, which
aims to distinguish high-resolution image T’ r from generated
one [sr. We present the objective as:

Loan =Ery gnPyora(rr) 108(D(THR))]

“
HE 1, gp~PuaraILr) [log(1 — D(G(ILr)))]
Now, the objective for SR module is:
[fcycGAN = »CGAN + A1Accyc + )\2£Idt (5)

Where A1 and A2 control the importance of consistency loss and
identity loss in the whole model. The architectures of above two
generators are shown in Table 2 and Table 3. Discriminator D
is displayed in Table 4.

3.2.2 Discriminator network Detector We embed proposed
VDM as a discriminator in our CycleGAN-based framework,
which takes generated Isr as input and outputs detection res-
ult of vehicle object. So our CVDM is modeled in multi-task
learning fashion, including super-resolution and object detec-
tion. Here, taking into account of the relationship between the
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Figure 6. Examples of homography data augmentation. (a) Original image cropped from available dataset. (b) Schematic illustration
of rotation along x or y axis. (¢)(d) Results of rotation along y axis with —15° and 15° respectively. (e)(f) Results of rotation along x
axis with —15° and 15° respectively.

layer conv | residual block X16 | conv | element-wise sum | conv | pixelshuffle | conv | pixelshuffle | conv
kernel size 3 3 3 - 3 - 3 - 3
kernel num 64 64 64 - 256 - 256 - 64
stride 1 1 1 - 1 T 1 T 1
Table 2. Architecture of upsampling Generator G's.
layer conv | convx2 | residual block X6 | convx2 | conv detector loss
kernel size 7 4 3 3 7 ’
S 5 T argmin- >~ |ID(Gur (Tig)) — s+
G* N &
3
Table 3. Architecture of downsampling Generator G'r.. 1 i i
& 2 MG (G (Tir) = Tirllo+
7
layer conv | conv | BN | conv | BN | conv | BN | conv 1 ) )
kernel size 4 4 - 4 - 4 - 4 — Xo||GL(Gs(TL —Thrll2+
kernelnum | 64 | 128 256 | - [ 512 | - 1 N Z 1G2(Gs(Tir)) ol @
stride 2 2 2 - 1 - 1 !

Table 4. Architecture of Discriminator D.

two tasks, we back-propagate detection loss to SR network,
which guides the generator to produce image that is beneficial
for detection purpose. In summary, the overall objective for
CVDM is:

L =Lcan + X Leye + AaLrar + A3Lpet (6)

where Lpe; is detection loss, the same as Equation 1. Its loss
weight is As.

3.3 Implementation details

We first train VDM network, whose backbone is initialized by
ResNet50 trained on ImageNet classification task. The model
is trained by SGD optimizer and totally trained for 60k itera-
tions. Initial learning rate is set to 2.5e-3 and reduced to 2.5e-4
after 40k iterations. Next, we train CycleGAN-based SR model,
namely CycGANSR. G5 is initialized by the model released
from (Lim et al., 2017). G and D are trained from scratch.
All the networks are trained with Adam optimizer apart from
Detector. Moreover, their initial learning rate is set to le-4
and reduced to le-5 after 40k iterations. The batchsize is 2 and
the networks are totally trained for 80k iterations. As it’s diffi-
cult to optimize generator and discriminator simultaneously, we
leverage on alternative learning strategy. When training gener-
ators, the parameters of discriminator are fixed and objective
function is shown as Eq (7), just without the classification loss
(4th term) and localization loss (5th term). Here A1 and A\ are
both set to 1. For training discriminator, we fix the generat-
ors and the objective function is shown as Eq (8), but without

1 i
v Z —Aslog(Detes(Gs(ILr)))+

1 i i i
N Z As[u’ > 1](Detreg(Gs(ILr), ts)

1 i i
arg min Z(”D(GS(ILR))H? +I1D(Tur) —1l2)+

K3

%Z —wlog(Det(Gs(ILr)))+ ®)
& S wlu’ 2 U(Detrey (Gs(Tn). )

After training CycGANSR network and detection network, we

train them jointly. Its training procedure is the same as CycGANSR

and its objective functions are as Eq (7) and Eq (8) respectively.
A3, w are set to 0.01 and 0.1 respectively. For VDM, the scale
of images for training is 800 x 800. For CVDM, input image is
200 x 200. Upsampling factor is 4.

4. EXPERIMENTS

In this section, we first introduce experiment setup, including
data preparation and augmentation. Then we present results
and compare ours with other state-of-the-art methods.

4.1 Experiment setup

4.1.1 Datasets and metrics We conduct elaborate experi-
ments on four datasets. 1) Potsdam (Rottensteiner et al., 2012)
dataset consists of 38 ortho-rectified aerial IR-RGB images,
24 of which are labeled for semantic segmentation, including
vehicle category. Its ground sampling distance (GSD) is S5cm.
2) VEDALI dataset (Razakarivony, Jurie, 2016) is from the Utah
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* This column indicates the resolution of input testing image. HF means the
input includes its horizontal flipping. FASR represents Faster R-CNN++. RVD,
FVD, YVD, DVD represent works (Zhong et al., 2017), (Carlet, Abayowa,
2017), (Lu et al., 2018), (Uus, Krilavi¢ius, 2019) respectively

Table 5. Results on VEDAI dataset

AGRC image collection, with 12.5cm GSD. We choose its half-
resolution version of 512x512. Thus, the vehicle in this set is
smaller than other datasets, and the car is typically about 10x8
pixels. 3) DLR Munich dataset (Liu, Mattyus, 2015) is cap-
tured at about 1000m above the ground over the area of Mu-
nich, Germany, using DLR 3K camera system. There are totally
20 images (of resolution 5616 x 3744 pixels), with approximate
13cm GSD. 4) UCAS-AOD dataset (Zhu et al., 2015) consists
of 510 satellite images with resolution 659x 1280 pixels, in-
cluding 410 training images and 100 testing ones. Due to in-
fluence of environment and equipment, the sizes of vehicles in
this dataset are usually larger than that of the Munich dataset.
However, the quality of this dataset is much poorer.

We apply average precision (AP) and mean recall rate (mRe-
call, which is mean value of the recalls from IoU 0.5 to 0.95,
with 0.05 stride) for comparing ours with other methods in the
deep learning community. Furthermore, F1 score, precision
and recall (with IoU 0.5) are adopted for comparison with method
in remote sensing area. Their definitions are:

TP
recall = m (9)
. TP
precision = TP+ FP (10)
F1 2P (11

T 2TP+FP+FN
where TP, F'P,F N represent true positive, false positive and
false negative respectively.

4.1.2 Homography-based data augmentation We define
the ground as a plane, which is usually not perpendicular to
the main optical axis of camera. Thus, it makes deformation
of vehicle targets and difficulty for detection task. To alleviate
this problem, we apply homography transformation on training
data to simulate the data captured from a more oblique view-
point. We display some examples in Figure 6. Each image
is rotated along X, y axis, with rotation angle —15° and 15°
respectively. Given the rotation angle, the homography mat-
rix can be estimated to calculate the coordinates of transformed
bounding box. As shown in Figure 6(c)(d)(e)(f), we obtain the
transformed vehicles with remarkable appearance variances, to-
gether with their bounding boxes.

4.2 Results and comparisons

4.2.1 Results of VDM In computer vision field, we com-
pare our results with Faster R-CNN++ (we improve naive Faster

Methods Input info* AP AP@0.5 | AP@0.75 | mRecall Methods Input info* AP AP@0.5 | AP@0.75 | mRecall
YOLOV3 6007600 0309 | 069 0.189 0382 YOLOV3 6007600 0624 | 0.903 0.779 0671
YOLOV3 800800 0259 | 0624 0.141 0.330 YOLOV3 800%800 0.627 | 0.904 0.758 0.682
FASR 800800 0409 | 0764 0372 0.529 FASR 800%800 0630 | 0.888 0.764 0.721
FASR 800%800, HE | 0424 | 0823 0369 0.541 FASR 800%800, HE | 0.634 | 0.884 0.756 0.725
FASR 120041200 | 0241 | 0.627 0.100 0.349 FASR 120041200 | 0.541 | 0.791 0.651 0.642
FASR 120041200, HF | 0.247 | 0.669 0.144 0.361 FASR 120041200, HF | 0.547 | 0.862 0.640 0.660
RVD - B 0.502 - ; VDM 800%800 0.662 | 0.902 0.793 0.735
FVD ; - 0.66 - ; VDM 800%800, HE | 0.668 | 0.902 0.791 0.740
YVD } . 0.767 - ; VDM 120041200 | 0.657 | 0.897 0.782 0.724
DVD ; . 0817 . } VDM 120041200, HF | 0.655 | 0.897 0.781 0.731
VDM 800800 0438 | 0794 0.403 0.529

VDM 800%800, HE | 0449 | 0.856 0.402 0.548

VDM 120041200 | 0.449 | 0.848 0.427 0.523 Table 6. Results on Potsdam dataset

VDM 120041200, HE | 0.458 | 0.835 0.457 0.573

Figure 7. Examples of the remote sensing images from VEDAI
Munich (1st row), Potsdam (2nd row), DLR (3rd row),
UCAS-AOD (4th row) datasets respectively. The vehicle
detection results of our method are marked with green boxes.
Blue and red boxes indicate missing and false alarm respectively.

R-CNN by replacing VGG16 ConvNet with ResNet50 and util-
izing FPN architecture for feature fusion) and YOLOV3, which
are representatives in two-stage and one-stage trends respect-
ively. Notice that we use advanced version of Faster R-CNN
for fair comparison. In remote sensing community, we directly
report the results that on such datasets. We clarify that YOLOv3
is trained with multi scales (including 600 x 600), while other
results are trained with 800 x 800.

In Table 5 and 1st row of Figure 7, we report and display the
results on VEDAI dataset. We first discuss results inferred on
training scale level 800 x 800, where ours outperforms YOLOv3
and Faster R-CNN++ by 13 and 3 points in AP, respectively. On
higher IoU threshold 0.75, result of YOLOv3 reduces sharply
to 18.9%, in comparison with proposed VDM 40.3% and Faster
R-CNN++ 37.2%, which implies region-based methods are more
robust to small vehicles. mRecall value also verifies this con-
clusion. As augmented testing can boost overall performance,
we apply horizontal flip augmentation on testing data. It can
be seen that results of VDM and Faster R-CNN++ are both im-
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Methods Input info Recall | Precision | Fl-score
(Audebert et al., 2017) 800*800 0.907 0.841 0.870
VDM 800*800 0.918 0.935 0.926
VDM 800%800, HF | 0.926 0.911 0.918

Table 7. Results on Potsdam vehicle dataset(IoU=0.5),
compared with method in remote sensing.

Methods AP AP@0.5 AP@(.75 mRecall
R-FCN 0.321 0.613 0.303 0.396
SSD 0.249 0.521 0.212 0.258
YOLOvV3 0.262 0.574 0.186 0.273
FASR 0.342 0.691 0.292 0.362
FASR+Bicubic 0.487 0.795 0.571 0.554
FASR+EDSR 0.450 0.784 0.530 0.538
FASR+CycGANSR | 0.541 0.801 0.658 0.628
CYDM 0.599 0.889 0.684 0.648

Table 8. Results on Munich DLR dataset

proved slightly. To demonstrate the effectiveness of our VDM,
we test their ability on other scales. For YOLOv3 and Faster
R-CNN++, their results are much poorer than that on original
scale. Especially the latter dropped more than 15% points for
all metrics when testing on 1200 x 1200 scale. Reversely, our
results are much better than before. mRecall rate of the last row
exceeds that of Faster R-CNN++ by more than 20 points, which
fully explains the robustness and generality of our VDM.

In Table 6, 7 and 2nd row of Figure 7, we report and display
the results on Potsdam dataset. As the GSD of Potsdam is
the smallest, the objects have the best appearance quality com-
pared to other datasets, and all methods report better results.
However, apart from a small drop at AP with 0.5 IoU threshold,
our method achieves best results on other three metrics. For
augment testing, proposed VDM is still robust, when Faster R-
CNN++ behaves badly.

4.2.2 Results of CVDM We conduct experiments on Mu-
nich DLR and UCAS-AOD datasets. To well illustrate pro-
posed CVDM, we downsample the training image to 200 x 200
as input of our model. Here, we also compare ours with R-
FCN (Dai et al., 2016) and SSD (Liu et al., 2016a), which are
both competitive methods in one-stage filed. Table 8 and 9
show results on Munich DLR and UCAS-AOD datasets. First,
we test the detection performance of R-FCN, SSD, YOLOv3,
and Faster R-CNN++ on the input LR images (without any SR
operation), and the results are poor, which demonstrates that
low-quality image limits detection performance, both on one-
stage and two-stage methods. Next, we study the influence
of different upsampling methods, bicubic interpolation, EDSR
(pretrained model), CycleGAN-based SR (which does not in-
corporate detector) and our CVDM. The results of upsampled
image are all better than that of LR image. It’s clear that our
method achieves the best results on all metrics, outperforming
the second best result with about 5%. Although EDSR method
uses neural network for SR, it obtains similar results with bicu-
bic interpolation method because it is trained on dataset that is
quite different with our target data. Some examples of the de-

Methods AP AP@0.5 | AP@0.75 | mRecall
R-FCN 0.316 0.605 0.297 0.391
SSD 0.264 0.566 0.188 0.286
YOLOvV3 0.281 0.593 0.196 0.311
FASR 0.337 0.682 0.288 0.362
FASR+Bicubic 0.481 0.805 0.526 0.569
FASR+EDSR 0.486 0.804 0.526 0.559
FASR+CycGANSR | 0.516 0.804 0.611 0.594
CVDM 0.572 0.885 0.637 0.653

Table 9. Results on UCAS-AOD dataset

tection results on these two datasets are shown in row 3 and 4
of Figure 7.

In this work, we implement our experiments on PyTorch and
NVIDIA GeForce GTX1080Ti with 12 GB on-board memory.

5. CONCLUSION

In this paper, we have investigated advanced deep learning tech-
niques, which include better backbone ConvNet, multilevel fea-
ture fusion and sample mining, to realize vehicle detection in
remote sensing image. Homography data augmentation is pro-
posed to address multi-angle problem in data collection stage.
Furthermore, we leverage on CycleGAN-like architecture to
realize simultaneous SR and object detection for LR image,
where SR task relies on unsupervised learning regime and is
guided by detection task. Our experiments show that our system
surpasses state-of-the-art methods. In future, we plan on realiz-
ing instance segmentation of vehicle in remote sensing image.
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