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ABSTRACT:

We propose a method for decomposing images into triangles. Contrary to superpixel methods, our output representation both preserves
the geometric information disseminated in input images, and has an attractive storage capacity. Our method relies on the flexibility
and efficiency of Delaunay point processes to address the problem. These stochastic models distribute points interacting between each
other through Delaunay triangulations. The mechanism for distributing points combines several complementary ingredients including
image discontinuity preservation, radiometric homogeneity inside atomic regions as well as priors on the shape of these regions. Said
differently, sampled points and induced shapes work in tandem. The potential of our approach is shown through comparisons with
existing oversegmentation methods and applications to vision problems.

1 INTRODUCTION

While traditional vision problems as image segmentation or ste-
reo matching were mainly addressed at the pixel level in the last
decades, an increasing number of works now proposes methods
at the level of atomic regions. The preliminary decomposition of
images into atomic regions is very successful as it allows for (i) an
efficient way to preserve boundaries, and (ii) a better scalability
than traditional pixel-based methods. The most common repres-
entation of atomic regions is superpixel (Ren and Malik, 2003), ie
a set of connected pixels. If many superpixel methods have been
proposed in the literature, few works have proposed alternative
representations in which the geometric dimension of atomic re-
gions is exploited. In this work, we propose a new representation
for decomposing images into triangles. Despite their apparent
simplicity, this geometric shape allow for highly flexible repres-
entation while insuring interesting geometric guarantees on the
output decomposition.

The proposed representation is an alternative to superpixels that
(i) preserves the geometric information disseminated in input im-
ages, and (ii) has a low storage capacity. More precisely, our
objective is to design a geometric decomposition mechanism of
images that conciliates both efficiency and flexibility.

To be efficient, the creation of keypoints and induced shapes must
be performed simultaneously, and not sequentially. Sequential
methods as (Tuytelaars, 2010) can preserve boundaries correctly,
but they have no control on region homogeneity. This observation
motivates us to adopt a a point sampling strategy in which the
point distribution is guided by both boundary preservation and
region homogeneity.

To be flexible, the geometric decomposition must be general enough
to describe any type of scene. In particular, the point sampling
mechanism must be able to generate configuration of points sup-
porting free-form shapes. This requires (i) exploiting general
shape priors, eg no restriction to line-segments (Duan and La-
farge, 2015), and (ii) having a point density high enough to cap-
ture details, contrary to (Ren et al., 2005) for instance. Triangles
are a natural choice as unit surface elements for high flexibility.
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Figure 1. Image decomposition into trianges. Our Delaunay
point process generates triangulations whose edges and facets

capture the image contours and homogeneous areas respectively.
The flexibility of the process allows for producing triangulations

with low (left) or high (right) isotropy.

1.1 Contributions

Our algorithm takes an image as input and produces a decom-
position into triangles of the image as output in which the image
discontinuities are captured by edges while having homogeneous
radiometry inside triangles as shown in Figure 1.

The key idea of our approach consists in guiding the point sampling
by the induced geometric decomposition itself. For each sampled
configuration of points, a Delaunay triangulation is used to de-
compose the image into triangles. Our algorithm brings three
main contributions:

• Delaunay point process. We formulate our problem as a
Delaunay point process(Bertin et al., 1999). This stochastic
model, unexploited in Vision, is a spatial point process equipped
of a Delaunay triangulation. It is particularly efficient as it
allows points and induced shapes to work in tandem in a
natural way.
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• Atomic decomposition into triangles. We propose a geo-
metric alternative to popular superpixels by decomposing
images into triangles. In spite of its apparent simplicity, a
triangulation offers flexibility as well as low storage capa-
city.

• Shape control. We propose a generic model in which the
user can control the expected shape of regions. In particu-
lar, we develop shape priors for controlling the isotropy of
triangulations as well as for capturing smooth, piecewise-
smooth and linear image discontinuities.

After a brief introduction of related work in Section 2 and Delaunay
point process in Section 3, our model formulation and the sampling
procedure are detailed in Section 4 and Section 5. Experiments
are presented in Section 6, followed by some applications to Vis-
ion problems in Section 7. Finally, we draw conclusions in Sec-
tion 8.

2 RELATED WORK

Three main research directions are of interest in our review of
previous work: image oversegmentation, extraction of keypoints,
and shape reconstruction.

Image oversegmentation. The literature devoted to image par-
titioning into atomic regions is rich, in particular for superpixel
generation. Existing methods, eg (Mori, 2005; Moore et al., 2008;
Achanta et al., 2012; Van den Bergh et al., 2012; Liu et al., 2011;
Veksler et al., 2010; Zhang et al., 2011) differ in terms of (i) meth-
odology, eg region refinement or energy minimization on graph,
(ii) output characteristics, eg boundary adherence, undersegment-
ation error, or region compactness, and (iii) performances, eg run-
ning times and memory consumption. They typically have com-
plementary advantages, eg a high region compactness (Moore et
al., 2008; Achanta et al., 2012) or a high boundary adherence (Liu
et al., 2011; Van den Bergh et al., 2012). Partitioning images into
geometric shapes offers several interesting advantages compared
to superpixel decompositions, in particular a lower representation
complexity and a better interpretation of the geometric informa-
tion disseminated within the scene. Such methods are however
more marginal in the literature. Delaunay triangulations or Voro-
noi diagrams (Aurenhammer et al., 2013) constitutes interesting
geometric tools to partition images. In (Duan and Lafarge, 2015)
for instance, images are partitioned into convex polygons. Al-
though this method provides good results for man-made scenes
composed of linear structures, it lacks of flexibility for more gen-
eral scenes in which boundaries cannot be well approximated by
line-segments.

Keypoint extraction. Partitioning into geometric regions usu-
ally relies on the placement of specific points that control the
shape of regions. These points can either be detected through
local descriptors (Mikolajczyk and Schmid, 2005) or sampled
using stochastic processes (Descombes, 2011). The former op-
tion requires a sequential mechanism: keypoints are first detec-
ted, and then associated into shapes, eg 3D meshes (Labatut et
al., 2007), and triangulation/quadrangulation (Tuytelaars, 2010).
Outputs produced by these methods are strongly dependent of
the keypoint detection. The later option combines simultaneously
point positioning and shape coherence with respect to input im-
ages. Although this solution is more natural and mathematically
elegant, extracted shapes are quite simple, mostly basic paramet-
ric shapes defined by a low number of parameters as circles or

rectangles, or low complexity planar graphs (Chai et al., 2013).

Shape reconstruction. Shape reconstruction methods often con-
stitute a subsequent step to the atomic region partitioning prob-
lem. A natural way to partition the space with a geometric de-
composition is to use Delaunay triangulation. This tool is ex-
ploited for instance for extracting object contours as polyline curves
(de Goes et al., 2011) and for reconstructing object surfaces from
MultiView Stereo (MVS) images as 2-manifold meshes (Labatut
et al., 2007). Delaunay triangulations is also exploited for com-
pleting shapes using a Conditional Random Field formulation
(Ren et al., 2005). Shape reconstruction can also be addressed
by merging geometric entities as line-segments (Levinshtein et
al., 2010; Sun et al., 2014).

3 DELAUNAY POINT PROCESSES

Delaunay point processes are mathematical models relying on
both stochastic geometry and computational geometry. A brief
introduction on these mathematical tools is given in the follow-
ing.

Delaunay triangulation. Delaunay triangulation is a computa-
tional geometry tool for subdividing a planar domain into tri-
angles (Lee and Schachter, 1980). Denoted byDT (P ), the Delaunay
triangulation of a set of points P is defined such that no point in P
is inside the circumcircle of any triangle of DT (P ). This space
partitioning scheme has the interesting property to maximize the
minimum angle in all the generated triangles. Performing atomic
operations on such triangulations, eg removing or adding a point
in P is also easy and computationally efficient.

Spatial point processes. These stochastic models describe an
unordered set of points in a compact set F ⊂ Rk, where Rk is
a k-dimensional space (Baddeley and Lieshout, 1993). For n =
1, 2, . . ., let Ωn be the set of configurations P = {p1, . . . , pn}
that consists of n unordered points pi ∈ F . A spatial point pro-
cess on F is a mapping Ψ from a probability space to the set of
configurations Ω =

⋃∞
n=1 Ωn, such that, for all bounded Borel

sets S ⊂ F , the number of points NΨ(S) falling in S is a finite
random variable. What makes spatial point processes attractive is
the possibility of guiding the distribution of points by a probabil-
ity density h, often expressed by a Gibbs energy U ∝ − log h. In
this paper, we are interested in the point processes in dimension
two, ie k = 2.

Figure 2. Spatial point processes. Spatial interactions between
points (see dashed grey lines) in standard point processes are

typically defined via a tolerance distance ε (left). Instead,
Delaunay point processes (right) define interactions through

Delaunay edges in a parameter-free way.

Delaunay point processes. Delaunay point processes are spatial
point processes introduced by (Bertin et al., 1999) in which the
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probability density h exploits Delaunay triangulations to define
interactions existing between points. Contrary to standard point
processes, Delaunay point processes guarantee that (i) each point
interacts with at least two other points, and (ii) all points are con-
nected within a unique interaction graph given by their Delaunay
triangulation, also called Delaunay graph (see Figure 2). The
Gibbs energyU that specified a Delaunay point process is defined
as the sum of Delaunay-clique potentials:

U(P ) =
∑

ψ∈C(P )

g(ψ) (1)

where C(P ) = C1(P ) ∪ C2(P ) ∪ C3(P ) is the set of cliques
of cardinal one, two and three in the Delaunay graph. ψ is thus
a point p ∈ C1(P ), an edge e ∈ C2(P ) or a triangular facet
f ∈ C3(P ) of the Delaunay triangulation, and g(ψ) is its corres-
ponding interaction potential.

4 MODEL FORMULATION

In this section, we specify the form of the energyU of the Delaunay
point process we use to decompose an input image into triangles.

General form of the energy. Two types of information are ex-
ploited in the energy: the image consistency that measures the
coherence between the triangle decomposition and the input im-
age (ie a data term), and the shape prior that favors certain forms
of triangle decompositions. Considering an energy that conforms
to Equation 1, three types of geometric entities can be used, ie
points, edges and triangular facets, to express image consistency
and shape prior. Our energy is then formulated as

U(P ) =
∑

p∈C1(P )

D1(p) +
∑

e∈C2(P )

D2(e) +
∑

f∈C3(P )

S(f) (2)

where, D1 and D2 compose the image consistency term, and S
corresponds to the shape prior.

Image consistency. To match triangles on the input image, we
check that both points and edges are located on high image gradi-
ents. For efficiency reasons, we do not measure the radiometric
homogeneity inside each triangle. In practice, such an additional
term strongly increases running times for barely better results.
The terms D1 and D2 are given by:

D1(p) = − log ‖ 5 I(p)‖ (3)

D2(e) =
1

|e|

∫
p∈e

D1(p)dp (4)

where5I(p) is the image gradient at point p, and |e| is the length
of edge e. D2(e) equals to D1(p) averaged over all points p on
the edge e. Note that more complex metrics for measuring image
discontinuities, as (Arbelez et al., 2011), can also be used. Such
a choice typically improves accuracy of results while increasing
running times.

Shape prior. This term allows us to bring control on the shape
of the triangles. Given the targeted application, one can expect
different geometric characteristics on the output decomposition
in terms of isotropy and regularity. As illustrated in Section 7,
skinny triangles are more suitable to object polygonalization for
instance as this application requires to distribute points densely

along the object contours and sparsely elsewhere. On the con-
trary, isotropic triangulations give better results for image ab-
straction for which atomic regions must rather be homogeneously
distributed in the image.

As the shape of a triangle can be specified by the length of its
edges, we propose a general shape prior of the form:

S(f) = β

2∑
i=0

min(ε2, (|ei| − µi)2/σ2
i ) (5)

where |e0| ≤ |e1| ≤ |e2| represent the length of the three edges
of facet f , the pairs (µi, σi) are the expected length and length
variances of edge ei to be specified by the user, β weights the im-
portance of the shape prior with respect to the image consistency
term, and ε is a minimum distance insuring points to not overlap.
In our experiments, ε is fixed to 3. Figure 3 shows the behavior
of the shape prior in three different cases.

Figure 3. Shape prior. Three triangulations are simulated using
different triangle shapes from low (left) to high (right) isotropy.
Only the shape prior term S is considered in the energy U for

this experiment.

5 SAMPLING

Monte Carlo sampling is traditionally used to explore the config-
uration space of spatial point processes and reach configurations
close to the global minimum of U .

Algorithm 1 Sampling procedure
1- Distribute n points randomly on the image domain;
2- At iteration t under the current configuration Xt = P ,

• Perturb a point p ∈ P to a new configuration P ′.

• Compute the Metropolis-Hastings ratio

R = exp
U(P )− U(P ′)

Tt
(6)

• Choose Xt+1 = P ′ with probability min(1, R), and
Xt+1 = P otherwise

• Update the temperature by Tt+1 = C · Tt

Metropolis-Hastings. The Metropolis-Hastings algorithm (Green,
1995; Hastings, 1970) is an updating mechanism based on Monte
Carlo. It consists in simulating a discrete Markov Chain (Xt)t∈N
on the configuration space Ω, converging towards an invariant
measure specified by the Gibbs energy U . At each iteration, the
current configuration of points P is perturbed according to pro-
position kernels into a new configuration P ′. The perturbation
is local, which means that P and P ′ are very close, and differ
by only a few points. The configuration P ′ is accepted for the
next iteration according to a probability depending on the energy
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Figure 4. Energy evolution during the sampling procedure.
Starting from a random initialization, the current configuration
of points progressively evolves towards the optimal one with

global minimum of the energy U .

variation between P and P ′,the ratio of proposition kernels with
respect to the reverse perturbation (in our case, this ratio is fixed
to 1 as the proposition kernels are uniform distributions), and a
relaxation parameter T that geometrically decreases at a rate C.

In practice, the sampling procedure is simplified by assuming the
number of points is a constant value fixed by the user. This as-
sumption is commonly exploited in oversegmentation methods
for which the number of atomic regions is a model parameter.
The sampling procedure is detailed in Algorithm 1.

Figure 4 shows the evolution of configurations and the energy de-
crease during the sampling procedure. In the first iterations, the
current configuration of points is of bad quality, represented by a
high energy. As the relaxation parameter decreases, the sampler
progressively becomes selective and moves the current configur-
ation towards the optimal solution.

Implementation. We implemented our algorithm in C++, using
the Computational Geometry Algorithms Library1 for geometric
data structures and the associated operations. The manipulation
of Delaunay triangulations is well adapted to the sampling pro-
cedure because the standard operations are (i) local similarly to
the perturbations in the Metropolis-Hastings algorithm, and (ii)
computationally efficient. In practice, when a point is affected by
a perturbation, we distinguish two cases. If the point translation
is short and does not modify the Delaunay graph, we only update
the new coordinates of the considered point in the data structure.
When the translation is large and affects the Delaunay graph, we
first remove the considered point and then add the point with its
new coordinates in the Delaunay triangulation.

6 EXPERIMENTS

We next describe a series of experiments to evaluate the flexibility
and the efficiency of our algorithm, and to compare its perform-
ance to existing oversegmentation methods.

Model parameters. Our model formulation has several paramet-
ers. The most important parameters are the pairs (µi, σi). These
parameters allow us to specify the targeted shape of triangles, but
also their size, and thus indirectly the expected number of tri-
angles into the partition. We also use these values to estimate

1 www.cgal.org

the number of points n to sample. Figure 5 illustrates the impact
of the pairs (µi, σi) on output partitions. The weight β between
the shape prior and the image consistency term is constant in our
experiments and set to 1.

Figure 5. Impact of the shape prior. Selecting a long narrow
triangle as targeted shape gives a low complexity and anisotropic
triangulation (left). To the contrary, a short equilateral triangle as

target generates a dense isotropic triangulation (right). The
former is more suited to object contouring problems whereas the

later is better for segmentation problems.

Flexibility. Algorithms that exploits geometric representations
for images are usually poorly flexible and work only on specific
types of scenes, eg man-made environments (Duan and Lafarge,
2015). As illustrated on Figure 7, the use of triangles allows us
to capture free-form boundaries with good accuracy, in particu-
lar from natural object images, ie animals, faces or natural land-
scapes. The algorithm also performs well from man-made object
images, eg the indoor scene, even if it does not preserve the lin-
ear structures as well as (Duan and Lafarge, 2015). Beyond the
use of triangles, the possibility offered to the user to define a de-
sired triangular shape allows him to tackle multiple applicative
problems as developed in Section 7, as well as to insert comple-
mentary geometric priors as illustrated on Figure 6.

Figure 6. Point distribution simulated with an alternative
geometric prior. Our shape prior can be completed by an

additional term that favors smooth (left) and piecewise-smooth
(right) angles between successive Delaunay edges. Points are
then distributed regularly along curves. This complementary
prior can be used for extracting free-form object contours.

Efficiency. Decompositions into triangles allow us to discover
and preserve geometric information disseminated in images. In
Figure 5 for instance, the contours of the church is captured by
a subset of Delaunay edges. This provides valuable information
related to the structure of the building as its shape, its orientation
or its level of regularity. One of the main advantages of our rep-
resentation is capacity storage. Contrary to superpixel methods
that require to index each pixel of an image to define the regions,
our representation can be saved in a very compact way as a tri-
angulation graph. Another advantage is the memory consump-
tion which is very low given the fact (i) the output representa-
tion is a low complexity graph, and (ii) the sampling procedure
is memoryless. In terms of running time, our method requires
a few seconds on images from the Berkeley database (Martin et
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al., 2001), ie approximatively 150Kpixel images. This timing is
reasonable for an energy minimization based approach. Note that
our implementation is not optimized. In particular, running times
could be strongly reduced by performing perturbations in parallel
under GPU.

Comparisons with oversegmentation methods. Our algorithm
has been evaluated using the standard quality measures for over-
segmentation methods, ie boundary recall and undersegmenta-
tion error, and compare to two standard superpixel methods, ie
SEEDS (Van den Bergh et al., 2012) and SLIC (Achanta et al.,
2012), and a geometric method based on Voronoi partitioning
(Duan and Lafarge, 2015). Figure 8 shows the comparison res-
ults from the Berkeley database (Martin et al., 2001). Superpixel
methods (Achanta et al., 2012; Van den Bergh et al., 2012) per-
form better on both boundary recall and undersegmentation er-
ror. This result was expected as triangles can hardly compete
with chains of pixels for capturing object boundaries. This is the
price to pay by our method to have a simple and compact geo-
metry representation. Our algorithm is more competitive against
the Voronoi-based method (Duan and Lafarge, 2015), in particu-
lar on boundary recall for which Voronoi partitions are not flex-
ible enough to capture accurately boundaries of natural objects.
Note that region compactness is also usually considered as qual-
ity measure. Such a measure based on the regularity of pixel
distributions with respect to the superpixel centroid is not adap-
ted to triangular shapes and naturally scores low with our method.

Limitations. Our model formulation does not consider radiomet-
ric homogeneity inside each triangle. The quality of our results
could be improved by introducing relevant metrics for which run-
ning times would not be significantly affected. Timings are reas-
onable for an energy minimization based approach, but remain
not very competitive with respect to the fastest superpixel meth-
ods. Another limitation of our approach is its inability to combine
decomposition and segmentation problems jointly.

7 APPLICATIONS

We present in the following a couple of applications showing the
potential of our method for solving image and vision problems.

Polygonal contouring. Our algorithm can be used as a prelimin-
ary step to extract the contours of a specific class of objects. By
assuming object contours correspond to cycles in the Delaunay
graph, one can capture objects as polygons formed by Delaunay
edges.

In Figure 9, building roofs are extracted from aerial images through
polygons. In these examples, we first regroup connected triangles
with similar radiometry by region growing. We then track edges
on the border of the cluster of triangles to define the polygonal
contours of roofs. While this procedure is very simplistic, most
of roofs are correctly detected. In contrast, existing polygonal
contouring methods, eg (Sun et al., 2014), rather exploit complex
geometric primitive merging strategies.

Image abstraction. Our decomposition into triangles can also
be used for instance in non-photorealistic rendering. As triangles
capture homogeneous atomic regions of an image, one can simply
color each triangle by the mean intensity of inside pixels to cre-
ate an artistic representation of this image. As illustrated in Fig.
10, such vectorized representations are extremely compact and
preserve nicely the details contained in original images.

8 CONCLUSION

We presented a method to decompose an image into triangles.
Such a geometric partition contrasts with traditional superpixel
representations whose storage capacity is often a limiting factor.
The main originality of this work lies on the Delaunay point pro-
cess we designed to partition images. Unexploited in Vision, we
demonstrated that such a stochastic model is particularly interest-
ing in terms of flexibility and efficiency, and for addressing some
applications as polygonal contouring of objects or image abstrac-
tion.

In its current state, our algorithm cannot combine decomposition
and segmentation jointly. In future works, we would like to in-
vestigate on the design of Delaunay point processes that can ex-
ceed this limitation. Excluding timing issues, one solution could
be to create a two-layer point process with one extra layer de-
voted to the labeling of triangles. We also plan to extend our for-
mulation in 3D to reconstruct surfaces from MVS images without
being dependent of a preliminary keypoint detection step.
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