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ABSTRACT:

The observation of waves that propagate along density interfaces inside the ocean poses a significant challenge, as their visible
surface signatures are much lower compared to their internal amplitudes. However, monitoring internal waves is important as they
redistribute large amounts of energy, play a role in mixing and vertical heat transfer, and modify water and nutrient transports. Al-
though satellite observations would allow global monitoring of internal waves at constant time intervals, their automatic detection is
challenging: In optical images, internal waves are hardly visible and can be obscured by clouds, whereas radar data have limitations
in coastal regions and their spatial coverage is not perfect. Furthermore, the occurrence of internal waves can be confused with
other ocean phenomena. In this work, we present an automated detection framework for internal waves based on multiple data
sources in order to compensate for the shortcoming of single data sources. In our application, we use Ocean and Land Color Imager
and Synthetic Aperture Radar Altimeter data. Our contributions are (1) we develop a multi-modal deep neural network SONet with
multi-streams and late fusion, which performs a classification on the basis of training with both modalities, and (2) we establish
a method to deal with missing modalities. Experiments in the Amazon Shelf region show SONet achieves adequate results when
both modalities are available, but also when only a single modality is available. By exploiting correlations between the modalities,
SONet classifies OLCI images off the SRAL ground track better than uni-modal network ONet, which describes a great advantage
of our multi-modal network.

Sentinel-3

1. MOTIVATION
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We witness a growth in the number of satellites with integrated
sensors characterized by various spatial, spectral and temporal 2

resolutions. It is therefore common in remote sensing that the —
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same scene is observed simultaneously with different sensors Y/ Wave

and therefore multi-modal data is available for a joint analysis. ‘ave
Compared to data from individual sensors, the different mod- '\
alities usually have certain properties and characteristics that
can be exploited for a better understanding of the scene. Es-
pecially for satellite missions, where many research questions
from different scientific fields are addressed simultaneously,
multi-modal data is common. For the Sentinel-3 mission, for
example, Ocean and Land Color Imager (OLCI) and Synthetic
Aperture Radar Altimeter (SRAL) are mounted on the same
satellite such that radar signals and optical images are acquired
simultaneously in intersecting observation areas. We present a
framework which combines SRAL and OLCI observations for
an automatic detection of oceanic internal waves (IWs), as il-
lustrated in Figure 1. Oceanic IWs are gravity waves at internal
density layers of the water. Compared to surface waves, they are
significantly larger, both in amplitude (up to 200 meters) and in
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Figure 1. Overview of the approach: Multi-modal data SRAL

wavelength (up to multiple kilometers). For example, IWs play
a key role in understanding the interaction of large-scale tides
and smaller scale turbulences (Jackson et al., 2012). However,
the detection of IWs is a challenge because they are hardly vis-
ible optically on the sea surface and active sensors like SRAL
with a better detection rate do not observe the whole area. With
this work we show that it is worthwhile to combine both mod-
alities SRAL and OLCI in one model for the detection of IWs.
Although the data set we have created is currently still specific
to our study site, our experiments can already show that the use
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and OLCI simultaneously acquired by Sentinel-3 are classified
by the multi-modal neural network SONet.

of both modalities leads to an increase in accuracy compared to
uni-modal OLCI-based methods.

The paper is structured as follows: In Sec. 2 we present current
research on multi-modal learning in earth sciences and explain
the connections to this work. Besides a brief insight into the in-
vestigation of IWs is given. Sec. 3 introduces the study site and
our used multi-modal data set. The multi-modal deep learn-
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ing framework and how it process the data set is presented in
Sec. 4. In Sec. 5 we show a concrete implementation of the
multi-stream procedure with late fusion and discuss the results
afterwards.

2. STATE OF THE ART

In this section we first discuss multi-modal approaches using
earth observation data. Afterwards we present the current state
of research on IWs.

2.1 Multi-modal deep learning in earth sciences

In general, the potential of machine learning methods and es-
pecially of approaches of deep learning in remote sensing is
large and includes classification and regression tasks as well as
state prediction tasks such as now-casting of precipitation, sea-
sonal forecasts and modelling of global mass transport (Reich-
stein et al., 2019, Ma et al., 2019). Related to this is the
promising research area of multi-modal learning. Apart from
conventional data fusion methods (Lahat et al., 2015, Gupta,
Cheng, 2006) in the field of Earth sciences, so far, only a few
multi-modal deep learning approaches exist. One multi-modal
multi-source approach is used for underwater mapping of the
seabed. In order to analyze habitats for marine ecology, few
visual images of autonomous underwater vehicles and a multi-
tude of bathymetric data from ships are used to perform clas-
sification tasks (Rao et al., 2014). Another related approach is
the multi-source classification of cloud, shadow and land cover
scenes with data from different satellite missions (Shendryk et
al., 2019). But in contrast to our method, all input data (Plan-
etScope and Sentinel-2 imagery) are of optical nature. There
are also temporal multi-modal networks with the aim to learn a
common representation of the data, which have both different
modalities and are variable in time (Yang et al., 2017). Similar
to our architecture is the multi-stream approach for temporal
Sentinel-2 data to generate land cover classes from VHSR im-
ages and time series with high spatial resolution (Benedetti et
al., 2018). Apart from Earth Sciences, multi-modal deep learn-
ing is already more widespread, including audio-visual speech
recognition (Mroueh et al., 2015), scene alignment (Aytar et
al., 2017b, Aytar et al., 2017a), image captioning (Srivastava,
Salakhutdinov, 2012) and video hyperlinking (Vukoti¢ et al.,
2016).

2.2 Investigation of internal waves

For many years, it has been an effort to detect oceanic IWs us-
ing remote sensing methods in order to determine their para-
meters and energy, to get information about the stratification of
the water and the mixed layer depth, or to investigate their influ-
ence on tidal (or baroclinic) currents (Klemas, 2012). IWs are
caused by external forces acting on stratified water levels, e.g.
wind stress or tides over a region of bottom topography (Alpers
et al., 2008, Robinson, 2010, Magalhaes et al., 2016, Zhao et
al., 2004). Although there are maps showing IWs hotspots in
all areas of the oceans (Jackson et al., 2012), a global automatic
detection procedure does not exist yet. This would be beneficial
also for other satellite missions, like SWOT, which are inter-
ested in mesoscale processes like geostrophic velocities. These
have an even greater amplitude than IWs, but since the phenom-
ena overlap, it will be difficult to determine geostrophic velo-
cities at scales smaller than about 70 km without knowledge of
IWs locations (Qiu et al., 2017). In many cases, the sea sur-
face elevations of IWs are too small to be visible, but rather
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Figure 2. Map of the study region off the Amazon Shelf taken
from (Santos-Ferreira et al., 2019) with ground tracks of 15 RO
of Sentinel-3A (green dashed lines). Black bold curves indicate
location of IWs crest observations by (Magalhaes et al., 2016).
The presumed IWs-origins are marked by labels A and B.

the currents on the surface. In Synthetic Aperture Radar (SAR)
images as well as in optical images like OLCI and Moderate-
resolution Imaging Spectroradiometer (MODIS), IWs can be
recognized as alternating stripes on the water surface (Fig. 5a).
These stripes go back to a sharp change from rough to smooth
sea surface. They appear as wave packets or solitary events
with large amplitude - then called internal solitary wave (ISW)
or internal soliton (Jackson, 2007, Alpers et al., 2008, Ikeda,
1995). IWs are also observable in altimeter signals (Fig. 5b).
SRAL of Sentinel-3 provides parameters in which a certain
pattern of peaks indicates IWs. While the change of signific-
ant wave height (SWH) and sea level anomaly (SLA) is often
low, peaks in the radar backscatter coefficient (o*) as well
as in the differenced-mean-square slope (§52) is crucial, since
radar backscatter allows a good estimate in sea surface rough-
ness (Santos-Ferreira et al., 2018).

3. DATA

3.1 Study site

We focus on an area in the Atlantic Ocean off the Amazon
Shelf, which is known for large amplitude ISW (Magalhies et
al., 2016, Santos-Ferreira et al., 2019). Spatially, we concen-
trate on certain relative orbits (RO) of the Sentinel-3 mission,
namely RO 38, 95, 152 and 209 in the western part and RO 380,
52, 109 and 166 in the eastern part (Fig. 2). In the period from
April 2017 to August 2019 we collected and annotated a total
amount of 2373 data samples on these orbits. Also Sentinel-3B,
which is equipped with the same sensors, has been contributing
data since January 2019. However, Sentinel-3B flies 140 degree
out of phase compared to Sentinel-3A, so the ground tracks are
offset in such a way that the spatial coverage is approximately
doubled.

3.2 Multi-modal dataset with lack of modalities

We use OLCI Level-1b-EFR top-of-atmosphere (TOA) ra-
diometric full resolution image data with 21 bands, which
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Figure 3. The dataset consists of three subsets. One sample from
each subset is illustrated. The sample of subset "2 contains both
modalities. There is a lack of modality in subsets ®? and 5P
because SRAL resp. OLCI data is missing. They are replaced by
zero matrices.

stem from the ESA-Copernicus Open Access Hub (ht-
tps://scihub.copernicus.eu/dhus/#/home). As complementary
modality, we use the Level 2 Sentinel-3 SRAL Water data
product "SRAL Altimetry Global in NTC", which is provided
by EUMETSAT (https://archive.eumetsat.int/usc/). An original
OLCI image has a size of 4091 px (along-track) and 4865 px
(cross-track; corresponds to a swath width of 1270 km), the ori-
ginal SRAL track includes the entire RO.

Since the originally provided data are too large to be pro-
cessed by our multi-modal network, we extract image patches
O = [351 x 351 x 21] as well as SRAL tracks S = [313 x 4]
(due to 313 observations per parameter SWH, SLA, ok, 532)
which are still georeferenced (Fig. 4). Thus, our dataset con-
sists of three subsets %7, 52, and P2, Subset °P consists only
of optical data, subset 5P only of radar signals, and "2 contains
both, that means multi-modal data (Fig. 3). In case that not
both modalities are available for a sample we call this "lack of
modality". Therefore the subsets 57 and %2 suffer from a lack
of modality because the OLCI resp. SRAL modality is missing
there. Just subset P is a multi-modal data set without lack of
modalities. All samples of the subsets are referenced in classes
IW and NoIW.

3.2.1 Subset %2 It consists of °N OLCI samples °0O =
[90;.,...,%00y] with labels % = [%y,....,%0y]". Images in
this subset are mostly taken off the SRAL ground track. Multi-
modal recorded data, where the SRAL signal is disturbed by
land influences and therefore unusable, are also in this subset.
The same applies to images where waves appear at the lateral
edge of the image and are therefore not in the field of view of
the SRAL sensor. The images show considerable variation in
wave forms and sizes, brightness and cloud cover, which makes
classification challenging.

3.2.2 SubsetSP Radar data lies in this subset if the underly-
ing OLCI image is covered by clouds and therefore not applic-
able. A total number of SN SRAL samples °S = [°Sy,...,Ssy]
with reference vector Sy = [Yy,,...,Sysy]" is available. We fo-
cus on the parameters SWH, SLA and O'é( “ from Ku-band in
20 Hz resolution and use them in their original state. Addition-
ally we compute the 652 from the o<* and o§ as presented in
(Santos-Ferreira et al., 2019).

3.2.3 Subset "2 This subset contains both modalities SRAL
FS = [FS;.... FSwy] and OLCI FO = [FO,,... FOry] with com-
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Figure 4. Schematics of data extraction from original OLCI
image (black frame) and SRAL ground track (violet track)
illustrate the different ground coverage of the modalities. Green
patches indicate *7 (dark green: NoIW, light green: IW), blue
patches %P (dark blue: NoIW, light blue: IW), and in the case of
red ones OLCI is not usable, so they belong to %P (dark red:
NoIW, light red: IW). Bright violet on the track indicates that the
SRAL modality is used. For gray patches, both modalities are
discarded. Stars A and B show the presumed ISW origins off the
Amazon Shelf.

mon label vector Fy = [Fy,,.... yey]", where PN is the total
number of samples in this subset. It concerns image patches
where the SRAL signal is not corrupted by coastal topography
and the OLCI image is covered by less than 25 % of clouds. In
any case, the point where SRAL indicates an IW must be vis-
ible in the OLCI image. Spatial and temporal synchronization
of the modalities is achieved by ensuring SRAL ground track is
in all samples exactly centered over the OLCI patch and ends
at the boundaries of the image. This ensures a strong alignment
between the data.

4. MULTI-MODAL DEEP LEARNING NETWORK

In our work, we design a multi-modal neural network called
SONet, which is jointly trained on both modalities OLCI and
SRAL. This is useful when a sensor fails, the image is obscured
by clouds, or the radar signal is corrupted by coastal topo-
graphy, as illustrated in Fig. 5. For instance, radar signals may
indicate an IW, but in the OLCI image it is clearly visible that it
is actually a rainstorm. Furthermore, correlations between the
modalities can be utilized to control, discard or support results
obtained from the other sensor. Besides, the spatial coverage
of the OLCI image (swath width of 1270 km) is much larger
than that of the SRAL signal (no swath, across width footprint
diameter about 2km) on the ground.

Generally, processing of multi-modal data in machine learn-
ing is not trivial due to different characteristics, dimensions,
units, scales and resolutions of input modalities. (Baltrusaitis
et al., 2018) summarizes the core challenges of multi-modal
learning as representation learning, alignment, fusion, transla-
tion and co-learning. In this work, the first three play an im-
portant role, while translation and co-learning are not required.
Representation learning is about generalizing the data to ex-
ploit complementary and redundancy, for which we use multi-
streams in SONet. The multi-stream technology is widely used
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Figure 5. (a) True color OLCI image (visualized with the bands R=11, G=6, B=3) from the Amazon Shelf region from 25.05.2017
(Relative Orbit: 95, Cycle: 18, Frame Along Track: 2880). Several ISWs are visible crossing vertically the red ground track of the
satellite on which SRAL measures. The flight direction is north to south. (b) 20 Hz SRAL records from inside the black box in
Fig. 5a. From top to bottom: Radar backscatter (o4 *), Differenced-Mean-Square Slope (§52), Significant Wave Height (SWH), Sea
Level Anomaly (SLA).

in multi-modal deep learning because the modalities have dif-
ferent properties, and therefore require different operations for
feature extraction (Wu et al., 2016, Huang, Kingsbury, 2013).
Alignment describes the task to extract the connection between
the modalities. In our dataset it is helpful that a spatial and
temporal correlation already exist. Via fusion, both modalities
are merged in the network to obtain a joint feature represent-
ation (Ngiam et al., 2011). At SONet, we opt for late fusion
in terms of the depth of the network in which we are fusing.
Although the interconnections in a late fusion are significantly
weaker than in an early one, it is more suitable for modalities
that have very different semantics. Furthermore it is easier to
compensate a lack of modality (Liu et al., 2018). Other possib-
ilities are early fusion, which requires similar semantics, much
preprocessing and a high level of knowledge about the modal-
ity alignment, or to fuse multiple times and compute a weighted
sum each (Vielzeuf et al., 2018).

4.1 Our multi-modal architecture

We have developed the neural network SONet, which handles
the challenge of two-modality samples (Fig. 6). In the following
we describe the complete structure starting with the required
input form, the streams for each modality, the fusion of these
streams and ending with the classification head.

For the input all OLCI data of the subsets form a matrix %X
and all SRAL data form a matrix SX. ©X has the dimension
[N x M x M x B], where N is the number of samples, M
the side length of the OLCI patch and B the number of used
bands. SX has the dimension [N x L x T], where L is the
number of SRAL observations that fall into a patch and 7 is
the number of actually used parameter. So °X represents the
input for 0-Stream and 3X for S-Stream. Note that both input
matrices have the same number of samples N and correspond
to the same reference label vector y.

The modalite-specific streams consist of recurring sequences
of convolutional blocks. Each convolution block contain (in
the order given) CONV;,p or CONV p, ReLU (activation), BN
(batch normalization), Poolyax and DO (dropout), whereas reg-
ularization techniques BN and DO are optional. The output of
the streams are flat layers, which can be considered as compact
representation of the input modalities.

One key element of multi-modal learning is the fusion of the
modalities. We decide for late fusion and merge both com-
pact modality-specific representations at the end of the streams.
There are several methods to fuse layers, like the operators ad-
dition, multiply, average, maximum, minimum and concatena-
tion. Please note, that depending on the concrete fuse option
the layers must have an identical size in at least one dimension.
As result a joint representation of both modalities is obtained.

In deeper layers, the joint representation is subsequently com-
pressed with fully-connected (FC) layers, until an output layer
returns the classification result (classification head). The classi-
fication head consists of FC layers with ReLU activation. While
in all hidden layers including the streams, ReLU is used as ac-
tivation function, the output layer consisting of two neurons
uses Softmax activation. Therefore, the value of the last two
neurons can be interpreted as probability for the class assign-
ment of the samples. One neuron stores the probability that the
sample maps NoIW, the other neuron that it maps IW. We store
the probability of being class IW in g.

4.2 Loss functions

In order to train the network, two loss functions are introduced.
The first CE(y, §)includes the measure of binary cross entropy

CEly,§)= —ly log(g) + (1 —y) - log(1 —g)] (1)
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Figure 6. Architecture of SONet. Data is divided at the
beginning in such a way that each modality first passes its own
stream. As output the streams deliver flat layers, which are
compact representations of the respective input modalities. Late
fusion of these modality specific representations results in a joint
representation layer. A classification head, which connects to
this, compresses this representation further up to the
classification output layer, which consists of two neurons
representing probabilities of a sample being NoIW or IW.

where y represent the reference label and ¢ describes the prob-
ability of being class IW. Further the focal loss FL(p¢)is used
which is suitable to compensate for an imbalance in the data set
(Lin et al., 2017).

FLp,)= —ar- (1 —p,)" - log(p,) ©)

Here ~ is a previously defined integer scalar, o+ the weighting
factor

«a ify=1
o = v 3)
1 —a otherwise
where « is a predefined value between 0 and 1 and
ify=1
po=gY V= 4)
1 — g otherwise

5. EXPERIMENTAL SETUP

First, information on data preprocessing, including brightness
enhancement, normalization and data augmentation is given.
This is followed by details on network architecture from in-
put, streams and fusion to modifications for uni-modal baseline
models. Finally the training procedure is explained with cross
validation, hyperparameter settings and evaluation.

5.1 Data preprocessing

5.1.1 Brightness correction and normalization Since the
brightness of OLCI images is very different from each other,
it has also proved to be useful to correct each image individu-
ally. The 75% quantile values are calculated for all pixels of a
band. The bands are then divided by their respective quantiles.
After this operation all pixels that are larger than 1 are set to
1. Subsequently, a normalization is performed over each subset
by calculating a z-transform over all samples of the subset. We
also reduce the input image size to [128 x 128] for reasons of
runtime. For SRAL only z-transform is performed.
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Figure 7. Exemplary illustration of an augmentation by rotation
and flipping of the different subsets. The number of possible
augmentations for Set "Pis considerably limited in order to keep
the alignments between modalities.

5.1.2 Augmentation of aligned modalities While com-
monly used data augmentation techniques such as flipping and
rotating can be applied to the subsets %P and 52, the opera-
tions are restricted for subset "P. With each augmentation of
the OLCI input, without an appropriate augmentation of the
corresponding SRAL input, the alignment between the mod-
alities would be lost, which would no longer be beneficial for
multi-modal training. Fig. 7 shows which augmentations are
performed in this work. %Pis augmented 7 times with rotations
and flippings. For ™ the upper 4 augmentations are not suit-
able, so only 3 are left. 5P also reaches 3 more augmentations
with noise of the signal. After the augmentations, it is ensured
that there are the same number of samples from each class by
adding additional noise.

5.2 Detailed network structure

5.2.1 Stream-Input As already mentioned in Sec. 4.1, the
input to 0-Stream is °X = [PO, %0, SO] and the input to
S-Stream is X = [PS, 9s, SS]. Since the matrices 30 and
SS do not exist in their respective subsets, they are zeroed
placeholder in the appropriate size so that the matrices can be
concatenated together. So 50 is a zero matrix with the size
BN x M x M x B] and °S with dimension °N x L x TJ.
Both streams have a common reference vector y = [Py, %, Sy]
with length N = [PN+°N+5N], which is the total number of all
samples in all subsets.

It has been evaluated in advance that accuracy cannot be in-
creased by combining various OLCI bands. In preliminary ex-
periments, we observed that with band 16 the IWs are most
visible. Therefore this band is used as the single input. Com-
pared to the use of all bands, this offers a considerable reduc-
tion of runtime. For SRAL, we use information from several
parameters, namely radar backscatter o, differenced-mean
square slope 652, SWH, and SLA. After preprocessing, we first
perform data augmentations for all subsets, resulting in °N —
P On — ON* | and SN — SV*, with N* indicating the size
after augmentation. After band selection, the 0-Stream input
OX has a size of [N* x 128 x 128 x 1], and the S-Stream input
SX has a size of [N* x 313 x 4].

5.2.2 0-Stream Each of four convolutional block consists
of three different layers in the order of CONV,p, ReLU and
Poolmax. The kernel size in all CONV,p of all convolutional
blocks is (3 x 3) at a stride of (1) in each direction. Besides, in
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CONV;p layers of the O stream, L2 kernel regularization with
the parameter 0.01 is also applied to reduce overfitting. The
number of filters increases continuously from 16 in the first con-
volutional block over 32 and 64 to 128 in the last one. Poolmax
uses a kernel of size (2 x 2) and a stride of (2) in each direction.
So the layer size is exactly halved by each pooling operation.

5.2.3 S-Stream 3 convolutional blocks consisting of
CONV p, ReLU and Poolmax are used in this stream. However,
the main difference in the convolutional blocks, is the layer
CONV p, so the parameters are folded in the direction of L
only. The number of filters is 16 in the first convolution block
and 32 in the second and 64 in the last one. The kernel size of
CONVp is (3) with stride (1). Accordingly, the POOLpax is
one-dimensional with a pooling kernel of size (2) and stride of

2).

5.2.4 Fusion After flattening both streams, we use a fusion
of width FCi2s and fusion type addition to merge the streams
outputs. Therefore, we need both flat layers to have the same
size. To get both flattened stream outputs to the size of 128
neurons, a dense layer is used (Flat — FCj2g). The joint rep-
resentation also has the size of 128 neurons. Subsequently, the
classification head is connected to the joint representation. The
number of neurons in the classification head is slowly reduced
by connecting two fully connected layers with ReLU activation
of width 32 and 8. The softmax output layer with 2 neurons is
the last layer.

5.2.5 Uni-modal baseline networks For comparison, uni-
modal networks SNet and ONet are created, in which the clas-
sification head is directly attached to the respective stream. So
the fusion is omitted, but stream and classification head are
identical to SONet. The input matrices are slightly modified
for the training of uni-modal networks, since it is not efficient
to use the zero placeholder matrices for training. Therefore °X
is reduced for ONet to ON°X = [PO, OO] with shortened refer-
ence label OV = [Py, %], and 5X is reduced for SNet to SNX
= [1S, ] with >Ny = [y, %y].

5.3 Training procedure

5.3.1 Cross Validation For the purpose of cross-validation,
the data set (see Fig. 1) is quartered by combining the data
from two RO in each case (1: 38+152, 2: 95+209, 3: 380+109,
4: 52+166). The split of the total 2973 sample is done in this
way to find a similar amount of data in each quarter (1: 663,
2: 653, 3: 456, 4: 601). Moreover this ensures the samples in the
different quarters are geographically separated from each other.
Consciously we decided against a temporal split, because IWs
at the same location at different times can look very similar,
which would falsify the cross validation. In the experiments,
training is performed sequentially on three quarters and testing
is performed on the fourth one. This results in a total of 4 cross
validation runs.

5.3.2 Pre-training and fine-tuning As a baseline, we first
train models from the uni-modal networks. For SNet we use
50 epochs, with a learning rate of le — 4, linear decay and a
batchsize of 64. CE with Adam Optimizer has proven to be the
most suitable loss-function. ONet is trained for a longer period
of 200 epochs, but with a lower learning rate of 1le — 5. Decay
and batchsize are identical to SNet. However, the loss function
is 7L (a = 0.5, v = 3) with Adam Optimizer.

Since uni-modal networks and SONet have the same streams,
it has been proven useful for training SONet to use as initial

Tp Op Sp

RO NoIW IW NoIW IW NoIW IW
38 35 15 15 6 30 5

95 126 60 106 48 29 24
152 127 30 173 96 61 70
209 94 6 6 7 121 26
380 46 17 51 45 20 12
52 80 6 132 44 141 15
109 40 2 126 14 63 20
166 45 4 71 1 39 23

Table 1. Total amount of 2973 referenced samples in the
Amazon shelf area divided into RO (sorted from west to east),
subset and class.

IW from %Pincorrectly classified by SONet.

Figure 8. Examples of predictions with SONet from subset %P of
positive (IW) referenced data. The upper row shows predicted IW
(true positives), the lower row predictions for NoIW (false
negatives). Visualized is band 16, since this band is used for
training and testing.

stream-weights those from uni-modal networks. Thus the es-
sential feature extraction is already given, so that only the con-
nection between the modalities has to be learned. For this,
SONet is trained with 100 epochs with a learning rate of le—5, a
batch size of 64 and a linear decay. As with ONet, 7L (o = 0.5,
~v = 3) is used with Adam optimizer.

5.3.3 Evaluation metrics To evaluate the classifiers, a con-
fusion matrix is calculated from the reference class labels y and
the predicted class labels g (g rounded to O and 1). The eval-
uation metrics overall accuracy (OA), average accuracy (AA)
and Fi-Score are derived from this. As a further metric the
MSE is introduced. This is calculated from the probabilities ¢
the network returns in the output layer and the referenced labels

Y.

N
1 .
MSE = - ;(yn —9,)° Q)

It can be understood as a measure of how reliably the classifier
can decide in the prediction for one of the classes. The smaller
MSE, the higher the reliability of the prediction.

6. RESULTS

We intend to investigate which classification result is achievable
on the specific subsets. For this, we compare the performance
of the uni-modal networks ONet and SNet with the multi-modal
network SONet. The results are summarized in Tab. 2.

For subset 52, it is noticeable that SNet and SONet perform
about equally well. Both networks achieve an OA of approxim-
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Tp Op Sp
OA [%] AA [%] Fy MSE OA [%] AA [%] F MSE OA [%] AA [%] Fy MSE

SONet 91.86 84.60 0.75 0.06 77.96 71.02 0.54 0.18 88.14 86.28 0.79 0.09

+1.00 +3.13 +0.04 +0.01 +3.41 +3.13 +0.07 +0.01 +1.38 +1.08 +0.02 +0.01
ONet T1.47 52.52 0.21 0.21 70.31 63.88 0.44 0.20

+5.72 +3.79 +0.06 +0.02 +5.58 +4.58 +0.05 +0.02
SNet 92.19 87.50 0.76 0.06 87.79 86.02 0.79 0.10

+1.06 +1.94 +0.03 +0.01 +0.88 +1.07 +0.02 +0.01

Table 2. Results achieved with SONet compared with ONet and SNet after cross validation. The mean values of the cross validation
runs and the standard deviations (indicated by ) are given. The results are divided into tests with multi-modal data (subset ") and
tests with uni-modal data (°2 OLCI, 52 SRAL).

ately 88%, an AA of 86%, and perform equally well consider-
ing F and MSE. No results are given for ONet as it is designed
for OLCI data as input only. Overall, this subset shows that
IWs can be detected well with SRAL data, as already shown
by (Santos-Ferreira et al., 2019), and that our deep learning
framework is a suitable method to detect them. Besides SONet
and SNet have the ability to use all four parameters ok, 652,
SWH, and SLA as joint input and to weight them according to
their information content. Furthermore, apart from normaliza-
tion, no preprocessing of the SRAL data is necessary.

Focusing on subset O7, it is evident for all parameters that
SONet performs significantly better than ONet. OA increases
from 70.31% to 77.96%, AA from 63.88% to 71.02%, and also
F1 (0.54 instead of 0.44) and MSE (0.18 instead of 0.20) are
significantly improved. While ONet is trained just on OLCI
data, SONet uses multi-modal training to increase the accuracy.
Thus, SONet succeeds in exploiting correlations and alignments
between the modalities. The direct comparison between 7 and
9 shows that the classification based on the optical data does
not achieve comparable high accuracies as the ones obtained by
radar data. This is caused by the diversity of OLCI images due
to different brightness, wave characteristics, and cloud loading
(Fig. 8). The radar signal is less sensitive to these influences -
in addition, the amount of training data in our data set for Spis
larger.

We would like to point out that when testing uni-modal data
with SONet the other modality is set to O due to the lack of
modality. The approach of zeroing to fix the lack of modality
works well for training and testing SONet, which is underlined
by a similar or higher accuracy of the network in comparison to
the uni-modal networks.

Fp is the multi-modal subset, which is directly used as input
in SONet. However, in ONet and SNet, only those modalities
can be included that are designed for the corresponding net-
work. Thus, although both modalities are available, tests with
ONet discard the SRAL modality and tests with SNet discard
the OLCI modality. SNet reaches the highest values for all
parameters OA (92.16%), AA (87.50%), F1(0.76%), and MSE
(0.06). SONet is either as good (MSE) or slightly worse (OA:
91.86%, AA: 84.60%, F1:0.75%) but with standard deviation
similar to SNet. ONet has a significantly lower accuracy in all
categories, where OA is about 21% and AA about 35% below
best performance. As already seen in set %P, the classification
based just on OLCI images is much more difficult, which means
that ONet performs worse than SNet. We observe that SONet is
able to utilize the strongest modality with SRAL and suppress
the weaker one, which is a strength of a multi-modal network.
Furthermore, reliability of SONet can be considered higher as it
uses complementary information, and therefore utilizes a more
comprehensive view on the phenomenon.

We have conducted additional experiments with a Random
Forest (RF) (Breiman, 2001). Unlike SONet, a RF has the weak-
ness that it is poorly suited for multi-modal input that has dif-
ferent dimensions, which requires prior manual embedding or
the application of a dimensionality reduction algorithm. We use
PCA-obtained feature vectors of the same size for each modal-
ity independently, to avoid a potential weighting between both
modalities. With uni-modal input, RF achieves maximum ac-
curacies of ONet and SNet. Nevertheless, the accuracy with
multi-modal input does not increase over uni-modal input.

7. CONCLUSION

In this work, we demonstrated that our multi-modal deep learn-
ing framework is able to detect oceanic internal waves. We thus
feel confident to suggest that such networks are a promising
research direction in the earth sciences. Overall, the multi-
stream technique with late fusion is well suited to exploit cor-
relations and alignments between modalities. If both modal-
ities are available, strong results (overall accuracy: 92%) are
already achieved based just on Sentinel-3 SRAL data. How-
ever, the ground coverage of Sentinel-3 OLCI is much larger,
which is essential for a continuous global observation of in-
ternal waves. Hence, areas which are not covered by SRAL
tracks, a multi-modal network significantly increases the over-
all accuracy (78% instead of 70%) and the average accuracy
(71% instead of 64%), when compared to an uni-modal ONet
network. Meanwhile, SONet also performs as well as SNet
in areas where SRAL is present. Due to the higher reliabil-
ity through different input data types, we recommended to use
SONet for classification for all subsets. We have also shown
that zeroing the missing modality does not negatively affect the
training of a multi-modal network. This allows a multi-modal
data set to be extended very easily by uni-modal data. Future
work will concern applications from satellite remote sensing
and the integration of further modalities, but also the joint use
of close-range data from multi-sensor systems, as is the case in
the field of precision agriculture.
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