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ABSTRACT:

For a reliable and robust moving object detection, the subtraction of a precisely modeled background is crucial in wide-area motion
imagery (WAMI). Even the most successful background subtraction algorithms that are designed to model highly-dynamic environ-
ments cannot cope with rapidly changing scenery, such as moving cloud shadows, which has different characteristics from dynamic
textures. This paper presents a novel method to detect moving objects and to eliminate false alarms under moving cloud shadow
regions in gray-level video sequences. The proposed method uses the relation between reflectance values of the shadowed and
well-illuminated sequences of the regions in the video frame. A modified adaptive region growing approach, which extends from
seed points, is designed to obtain the moving parts of the cloud shadows without presuming the geometric structure of the clouds. In
order to determine the moving border of the cloud shadows, where false alarms typically occur, the cloud shadow motion should be
detected. As the last stage of the proposed method, real moving objects in the scene are tried to be discriminated from false alarms
by exploiting the relation of intensity ratios between the object candidate and its surroundings. The accuracy and computational
efficiency of the proposed approach make it a reliable and feasible approach to be used in real-time surveillance solutions.

1. INTRODUCTION

Moving object detection and tracking are constantly develop-
ing active research areas in remote sensing and computer vis-
ion. WAMI is one of the most common wide-area surveillance
data sources and has drawn attention in the last couple of dec-
ades. With the development in both imaging technology and un-
manned aerial vehicle platforms, the attention to the fully auto-
matic and real-time WAMI tracking systems have increased.
WAMI solutions can be integrated into various platforms such
as unmanned aerial vehicles (Lin, Medioni, 2007), aerostats
(Nagendran et al., 2010), etc. and for numerous civil and milit-
ary applications.

Targets whose resolution is considerably low are tried to be de-
tected and be tracked in very large-scale WAMI videos. Even
there are a few multi-spectral solutions, most of the WAMI
solutions use monochromatic (AFRL, 2009), (Force, n.d.),
(Perera et al., 2006) imaging format depending on the applic-
ation. Without the color information, there is a chance in that
the intensity values of both target object and background can be
quite similar or even the same. Hence detection and tracking of
targets in a monochromatic solution can be challenging even if
the data is captured in favorable weather and illumination con-
ditions. Moreover, due to the negative effects of atmosphere
related distortions, the object boundaries can be seen unclear
or even completely blended to the background. Since a WAMI
solution can monitor around tens of km2 region with hundreds
of mega-pixel frame resolution, reducing the false alarm rate is
quite critical. The reliability and usability of the product dir-
ectly depend on both the detection ability of the targets and the
accuracy of the detection. Hence any major false alarm sources
are needed to be attacked to achieve a more robust and reliable
solution.

Reliable background subtraction is the key operation to obtain
∗ Corresponding author

moving foreground objects in the scene with high precision.
To obtain an initial estimate and extract information of non-
stationary objects numerous background subtraction methods
with different working mechanisms have proposed (Piccardi,
2004), (Bouwmans et al., 2017), (Zivkovic, 2004). The precise
modeling and constant updating of the model of background is
the initial step of robust tracking performance (Sommer et al.,
2016). Not only the discriminating power of moving objects
from the background but also reducing the false alarm rate is
the other requested ability of successful background subtrac-
tion technique. Since WAMI solutions try to monitor a large-
scale area persistently, the preferred background subtraction
technique needs to be work even for a highly dynamic envir-
onment. As waving tree branches (Elgammal et al., 2000),
optical turbulence deformations (Oreifej et al., 2012), stabil-
ization related defects, and illumination changes (Pilet et al.,
2008), fast-moving cast shadows is also one of the major chal-
lenges that background subtraction method needs to deal with
by using its adaptivity property. At the same time, the preferred
background detection algorithm needs to be computationally ef-
ficient to work operationally in real-time solutions.

Even spatially strengthened versions of the Gaussian mixture
model (Sommer et al., 2016), (Reilly et al., 2010) cannot
cope with fast-changing stationary signals, such as moving
cloud shadows. To prevent the generation of false objects (false
alarms) caused by the motion of cloud shadows, we need to
identify the moving section of cloud shadows. During the last
decade, various cloud shadow detection methods (Li et al.,
2017), (Zhu, Woodcock, 2012), (Simpson, Stitt, 1998) have
been designed and implemented to improve the performance of
the different applications, such as feature extraction, segment-
ation, classification (Li et al., 2017). However, nearly all the
current cloud detection algorithms have used either multispec-
tral information (Luo et al., 2008), (Simpson, Stitt, 1998) or
the geometrical properties of the cloud and orientation of ima-
ging system (Braaten et al., 2015), (Huang et al., 2010).
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In our study, the moving part of the cast shadow of the clouds
has tried to be detected by using low fps-rate monochromatic
large scale video sequences without using any prior location
information of camera and cloud regions. The main contribu-
tion of this study is that moving parts of the cloud regions have
been identified using adaptive double thresholding methods and
the false alarms generated by the cast cloud shadow have been
eliminated. Furthermore, the proposed algorithm is quite fast,
efficient and generalized to work in different weather and sea-
sonal conditions with minimal assumptions.

The paper of our study is organized as follows: The first sec-
tion is designed to reveal the motivation and aim of this study.
Section 2 introduces the literature of the cast shadow concept
and the shadow detection algorithms using gray-level video se-
quences. In Section 3 the proposed method with all subsections
is presented. In the first subsection the system overview, in the
second one the assumptions of the proposed algorithm, in the
third subsection the methodology to find the moving parts of
the cloud shadow, and in the last subsection, the elimination
method of false alarms generated by the cloud cast shadow is
clarified. The datasets, experiments and performance results
are described with the evaluation criteria in Section 4. Finally,
in the last section, the study is concluded with discussions.

2. RELATED WORKS

Shadows occur when a light source is occluded by an object
partially or completely. As shadow can be divided into two
categories which are self-shadow and cast shadow (Stander et
al., 1999). Cloud shadow in the outdoor or aerial data can be
described as a cast shadow, which is a terminology used for
the shadows which are generated by an object and projected to
another object at the scene.

2.1 Cast Shadow

If the direct light is blocked by object completely, that section
of the cast shadow is classified as umbra whilst if a light source
is blocked partially, the darkening region of the shadow is called
the penumbra (Stander et al., 1999).

The opacity of the occluding object and both the location and
the geometry between the light source and occluding object de-
termine the penumbra region of the cast shadow. The lumin-
ance transition in the penumbra region of the cast shadow can
be assumed as linear for an opaque and solid occluding object.
(Stander et al., 1999). However, due to having non-uniform
density and random 3D geometry, even if we can assume that
the luminance of the cloud shadows rises from the inside to
the outside, the structure of the penumbra regions of the cloud
shadow cannot be represented mathematically.

The intensity (brightness) value of a point (x, y) which is the
2D projection of the object surface at point q and time instant t,
can be expressed as:

Ct(x, y) = kc,t(x, y) · Et(x, y), (1)

where Ct : intensity value of a pixel at time instant t,
x, y : image coordinate of the object surface point q,
kc,t : camera gain at time instant t,
Et : luminance at time instant t.

By using the reflection model, the luminance at time instant t
can be modeled as:

Et(x, y) = ρt(x, y) · St(x, y), (2)

where ρt : the reflectance of the object at point q and time t,
St : irradiance at time t.

Depending on the illumination conditions, in the (Stander et al.,
1999) the reflectance St has been represented as:

S(x, y) =


cP · cos(θ) + cA , no shadow
cP · cos(θ) · k(x, y) + cA , penumbra
cA , umbra.

(3)

According to Lambert’s cosine law (Basri, Jacobs, 2003), the
angle θ between the direction of the incident light and the sur-
face normal defines the contribution amount of the direct light
source to the irradiance of the surface at point q. Depending on
the light transition of the penumbra region of cast shadow, the
k(x, y) value varies in the range of [0, 1].

2.2 Shadow Detection Methods

According to a taxonomy (Al-Najdawi et al., 2012), the shadow
detection algorithms can be clustered concerning their depend-
encies on objects and the environment. Moreover, the number
of spectral bands used and the implementation domains have
also used to categories the shadow detection algorithms.

Since the proposed algorithm in this study has been designed
without concerning the special geometry of the occluding ob-
ject that forms the cast shadow, the object independent and
monochromatic pixel-based methods from the literature have
been investigated (Stander et al., 1999), (Toth et al., 2004),
(Vargas et al., 2010), (Chien et al., 2002), (Xu et al., 2004),
(Jung, 2009), (Jung, 2009), (Jacques et al., 2005), and (Lin et
al., 2010).

The reflection model presented in (Stander et al., 1999) has
formed the basis of many methods (Toth et al., 2004), (Lu
et al., 2006), (Vargas et al., 2010). The idea is the usage of
the ratio between the pixel intensity values in the current frame
(collected u seconds later than the reference) and that in the
reference frame as shown in (4).

ξt+u,t(x, y) =
Ct+u(x, y)

Ct(x, y)
. (4)

According to (1) and (2), (4) can be expanded as:

ξt+u,t(x, y) =
kc,t+u(x, y) · ρt+u(x, y) · St+u(x, y)

kc,t(x, y) · ρt(x, y) · St(x, y)
. (5)

Since the reflectance value of the background region does not
change in time (ρt+u(x, y) = ρt(x, y)) and one can control the
gain value, kc, of the camera we can simplify (5) as:
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ξt+u,t(x, y) =
St+u(x, y)

St(x, y)
. (6)

Since the umbra and penumbra regions of the shadow have
different illumination characteristics, when shadow-free back-
ground region in the background frame is covered by mov-
ing cloud regions in the current frame the ratio of irradiances
(ξ′t+u,t) should be calculated as follows (Al-Najdawi et al.,
2012):

ξ′t+u,t(x, y) =

{
cA

cP ·cos(θ)+cA
, no shadow to umbra

cP ·cos(θ)·k(x,y)+cA
cP ·cos(θ)+cA

, no shadow to penumbra.
(7)

In (Stander et al., 1999) the ratio (6) is used to detect the
shadow regions. However, the study assumes that the intens-
ity values of the background in a defined neighborhood remain
constant. This assumption cannot hold for the very complex
background environment visualized in wide area surveillance.
In fact, even in indoor environments, it is quite hard to rely
on this assumption. Furthermore, this study also assumes that
the object occludes the direct light source is opaque and hence,
the intensity change in the penumbra field of the object shadow
is approximately linear. However, due to the unique random
structural density of each cloud bank, the penumbra region of
the shadows might show a unique transition property.

In one of the studies, the author (Toth et al., 2004) calculates the
ξt+u,t values for foreground objects by taking the average of the
ratio (6) over sliding window pixels. Then Gaussian white noise
is added to the ξt+u,t values to test the stability of the designed
method. By using the shadow-free background and calculated
ξt+u,t value the foreground image is tried to be estimated. The
major contribution of the study (Toth et al., 2004) is that a
significance test is derived to extract the shadow regions. How-
ever, the algorithm ignores the penumbra region of the shadow
by stating that the penumbra region is very small and sometimes
not recognizable. According to (Stander et al., 1999), the state-
ment cannot be valid unless the distance between the occluding
object and background is negligible compared to the distance
between the light source and occluding object. Moreover, the
occluding object must be opaque to confirm the statement of
(Toth et al., 2004). Since cloud regions do not comply with
these two assumptions, the developed approach cannot be used
as a moving cloud shadow detector.

In a different approach, the author (Jacques et al., 2005) uses
the normalized cross-correlation (NCC) statistic between the
background pixels and the foreground pixels in a close neigh-
borhood. The NCC metric can produce reliable scores for the
umbra regions, since the NCC score is not affected by the multi-
plication of each pixel with a positive constant value. However,
the intensity change ratio is not the same for every pixel in a
neighborhood of a penumbra region due to the variable k(x, y)
value as shown in (7). Hence, the performance of the shadow
detection algorithm is quite poor for the penumbra regions as
stated in (Al-Najdawi et al., 2012).

According to (Al-Najdawi et al., 2012), the algorithms de-
veloped by (Xu et al., 2004), and (Chien et al., 2002) are
applicable for just specific indoor environments. The algorithm
of (Jung, 2009) is too complicated to work in real-time applic-
ations and highly parameter-dependent.

As mentioned earlier, since it is not known whether the ran-
domly selected reference frame has cloud shadow regions or
not, the irradiance ratio calculation for newly-illuminated areas
should also be one of the main concerns of the proposed study.
The irradiance ratio calculation for the first-shadowed-then-
well-illuminated areas (FSTI) should be calculated as demon-
strated in (8).

ξ′′t+u,t(x, y) =

{
cP ·cos(θ)+cA

cA
, umbra to no shadow

cP ·cos(θ)+cA
cP ·cos(θ)·k(x,y)+cA

, penumbra to no shadow
(8)

3. PROPOSED METHOD

3.1 System Overview

A moving object detection under moving cloud shadow al-
gorithm is proposed as two main sub-procedures being linked
to each other. The functionality of the first main block is de-
tecting moving cloud shadow regions and its moving border re-
gions. Next, the moving border masks is used to filter out the
foreground objects located under the moving border regions.
The filtered foreground includes both real target objects and
the false alarms generated by abrupt intensity change caused
by fast-moving cast cloud shadows. The decision for the elim-
ination of possible false alarms is performed in the latter main
block. The overall system is shown in Figure 1 and the details
of system sub-blocks can be viewed in Figure 6 and Figure 7.

Figure 1. Proposed Method Overall Chart

3.2 Assumptions

In the proposed method, two major assumptions are made to
detect moving parts of the cloud shadows. As in (Sexton,
Zhang, 1993) and most of the reflectance ratio related studies,
the intensity of the direct light source, cP , is assumed to be high
compared to the ambient light source, cA. If it is not the case,
the shadow regions cannot be differentiated properly, but since
the background subtraction algorithm can suppress the small
intensity changes, the object detection, and tracking algorithm
will not be affected. The second assumption is that the camera
is static and the WAMI video frames can be registered to the ref-
erence (background) frame with negligible error. Without this
latter assumption, pixel-wise or region-wise temporal informa-
tion cannot be exploited.

In a video sequence, the changes due to a shadow can be ana-
lyzed by computing the ratio of intensity values in the cur-
rent frame with the intensity values in the reference frame. If
the reference frame could be selected among cloud shadow-
free frames, the proposed algorithm would work as a cloud
shadow detection algorithm instead of a detection algorithm
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for the moving part of the cloud shadow. Since the reference
frame can have cloud shadows, one can analyze the first-well-
illuminated-then-shadowed (FITS) and FSTI regions only to
find the moving parts of the cloud shadows. In other words,
there is no chance to detect the stationary parts of the cloud
shadows without having the prior information of the shadow
map of the reference frame.

3.3 Moving Cloud Detection Algorithm

Since in addition to the stable background regions, moving ob-
jects also can be covered by the cloud shadows either on the
reference or current image, the reflectance ratio calculated us-
ing (7) or (8) might yield discontinuities even for the umbra
regions of cloud shadows. To get rid of the discontinuities, a
smoothing operation should be performed. Since the WAMI
solutions are designed to work as a real-time application, the
complexity reduction is always one of the key criteria at each
stage of the algorithm. Hence in the proposed method, a down-
scaling operation has been applied for both the reference and
the current images to reduce computational complexity and to
get rid of the discontinuities caused by moving objects under
the shadow region. In this presented approach, 10 times down-
scaling operation was applied for each dimension of the video
sequences.

In this study, we have exploited a few general properties of the
cloud shadows. One of the major advantages of dealing with the
cloud shadows is that the cloud shadows usually cover reason-
able large areas and cannot be vanished by downscaling opera-
tion. Experimentally it is observed that tiny cloud banks create
a slight intensity change in their shadow regions, sometimes
they cannot create even any change. Hence in the proposed al-
gorithm after obtaining the quotient (reflectance ratio) image by
dividing the current downscaled image to the reference down-
scaled image large spatially connected regions are searched
which satisfy the desired reflectance ratio. To form masks for
FSTI and the FITS regions similar adaptive-thresholding oper-
ations are applied for both such regions independently as ex-
plained in subsection 3.3.1.

3.3.1 Adaptive Thresholding on Quotient Image: In this
step, it is desired to build a time-efficient and generalized
method for the detection of the moving cloud shadow. Although
there are many different ideas to detect moving cloud shadow
regions using the reflection ratios, either due to the complexit-
ies of them or their assumptions made them inapplicable to our
problem. Hence a modified adaptive thresholding approach has
been designed. The double-thresholding approach explained
in (Lyons, 2004) and the region growing method introduced
in (Matas et al., 2004) are linked to each other to form this
approach.

As mentioned earlier, since large spatially connected moving
shadow regions are detected to be found, in the first stage of
the proposed thresholding method it is focused to find out core
regions within the large moving cloud shadow areas. To ac-
quire those core areas, an initial thresholding operation with
predefined values is applied for both of the FSTI and the FITS
regions. Since it was assumed that the intensity of the direct
light source, cP , is high to be compared to the ambient light
source, cA, the pixel intensity ratios demonstrated in both (7)
and (8) give a clue to determine the initial thresholds.

For the FITS regions, (7) can be arranged as:

cA
cP · cos(θ) + cA

≤ cP · cos(θ) · k(x, y) + cA
cP · cos(θ) + cA

≤ 1 (9)

For the FSTI regions, (8) can be arranged as:

1 ≤ cP · cos(θ) + cA
cP · cos(θ) · k(x, y) + cA

≤ cP · cos(θ) + cA
cA

(10)

In (Toth et al., 2004), it is stated that the intensity value ratio
for the umbra part of FITS regions varies between 0.77 and
0.97. After extensive studies, empirically it is found that unless
cos(θ) term of both (9) and (10) takes very small values (e.g
in dusk), we can specify the predefined thresholds. Hence it is
decided that 0.85 is a slack enough to be safe starting threshold
to find core areas of the FITS regions. As (8) is the inverse of
the (7), for the FSTI regions the initial threshold was defined as
1/0.85 (1.176).

The regions with a lower reflectance value than the initial
threshold constitute the core areas of the FITS region. Small
regions that were not spatially connected are discarded from the
mask of the core regions using basic morphological operations.
After obtaining the mask of the core regions, they are tried to
be grown using the following process after utilizing multiple
thresholds as follows:

Algorithm 1: Moving Cloud Shadow Region Growing
Input: Quotient Image, Initial Threshold, Maps of Core

Region
Output: The Final Threshold , Grown Cloud Regions

1 Start with the predefined initial thresholds
2 Measure the ratio of,

(I) the number of connected component regions with
cores to the number of connected component regions.
(II) newly added pixels to connected components with the
already available pixels.

3 If either (I) or (II) of the Step 2 exceed the predefined ratio
levels, Stop.
Otherwise, increase the threshold with a small step size
and repeat procedure starting from the Step 2.

4 Get the enlarged regions including core regions as the
moving section of the cloud shadow regions.

The same procedure explained in Algorithm 1 was repeated for
FSTI regions by decreasing the second threshold value. The
illustrative results of the frames can be examined in Figure 5.(e)
for one of the datasets.

3.3.2 Moving Shadow Border Detection: The absolute
difference between the FITS masks of the current (t) and earlier
(t− v) frame gives the moving border mask of FITS regions as
presented below:

BM(x, y) = |SMt(x, y)− SMt−v(x, y)|, ∀(x, y) (11)

where w : width of the video frame,
h : height of the video frame,
x, y : image pixel coordinate,
BM : moving border mask,
SM : moving cloud shadow mask.
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The moving border mask for the FSTI regions can also be detec-
ted with the same operation. In other words, the final changed
parts of the cloud shadow regions are marked as the border re-
gions. The moving border regions of the moving cloud shadows
are marked with red color in Figure 2.

The v value in (11) needs to be determined by concerning the
behavior of the background subtraction algorithm used to get
foreground object candidates. In the presented approach, a spa-
tially strengthened version of (Zivkovic, 2004) is applied and
especially the learning rate and sigma distance that are used in
(Zivkovic, 2004) drastically affect the region of the border in
order to filter out object candidates.

Based on the value of v, it is possible to obtain quite narrow or
wide boundary regions.

Figure 2. Moving Border of the Cloud Shadow Illustration

3.4 Moving Object Filtering under Cloud Regions

To analyze the foreground object candidates under the bor-
der regions of the moving cloud shadows, the candidates were
filtered using the sum of border masks. The real moving objects
are tried to be selected among all candidates by analyzing the
relation between the object candidate and cloud border regions
(background) surrounding the candidate on the quotient image.
It should be noted that in this part of the study, all the operations
have performed on the quotient image on the original scale.

The reflectance ratio distribution of the background border re-
gions is highly consistent in a close neighborhood even for the
penumbra region. If the candidate object is a false alarm be-
longing to the stable background the distribution of the candid-
ate and the surrounding region shows very similar characterist-
ics. The key idea behind this procedure is that one should ex-
clude the other candidate objects in the background to get reli-
able statistics belonging to the surrounding region of the object
candidates. Otherwise, the real moving objects located in the
surrounding region of the candidate can misguide the object-
surround analysis. If the candidate object is a real moving ob-
ject, it is assumed that the distributions of the candidate and
surrounding region shows distinct characteristics on the quo-
tient image. Illustrations for both a false alarm and a real object
samples can be seen in Figure 3 and 4 respectively.

For the sake of simplicity and computational efficiency, for dis-
criminating the real objects from the false alarms, the mode
values of the distributions are used. The key idea is that the
distribution of the object does not resemble the FITS or FSTI
version of the background. Hence the mode value of the ob-
ject and its surrounding regions is expected to have a different
mode intensity value on quotient image. However, if it is not
the case, the object candidate cannot be differentiated from the
background and it will be eliminated. In order to eliminate the
non-real object candidates, the thresholding operation to the ab-
solute difference of the mode values is shown as follows:

|Mo(cen)−Mo(sur)|
?

≥ thr mode, (12)

where cen : image patch showing the object,
sur : image patch showing surrounding of the object,
thr mode : real moving object threshold value.

Figure 3. Deleted Detection and Distribution of Reflectance
Ratios: (a) Zoom-Out Image Patch, (b) Candidate Object &

Surroundings, (c) Distribution of the Candidate, (d) Distribution
of the Surroundings

Figure 4. Surviving Detection and Distribution of Reflectance
Ratios: (a) Zoom-Out Image Patch, (b) Candidate Object &

Surroundings, (c) Distribution of the Candidate, (d) Distribution
of the Surroundings
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4. EXPERIMENTAL RESULTS

4.1 Evaluated Datasets

All of the three datasets are captured by using an Aerostat
WAMI solution with an 8-bit gray-level imaging format at dif-
ferent times and different locations. The video frames that the
proposed algorithm has been tested with were selected from a
time span between 5 minutes to 20 minutes later than the refer-
ence (background) frame was captured for each dataset. Each
of the three datasets has a single reference image and three test-
ing images taken from the video sequences.

4.2 Evaluation Metrics & Performance Results

To evaluate the performance of the moving cloud shadow de-
tection stage of the proposed algorithm in a quantitative way
the data is annotated by drawing ground truths for each image
in the datasets as shown in Figure 5.(c). We used different color
annotations for the FSTI and the FITS regions. The former ones
have labeled with yellow and the last ones have labeled with red
color. The drawing of the ground truths is quite a challenging
operation; therefore, in the truths there could be some minor
deflections due to human error and the lack of a rigid structure
of the cloud regions. The total detection performance of both
regions defines our scene based performance.

The recall, precision and F1 score (Goutte, Gaussier, 2005)
are well-known and common evaluation metrics used to valid-
ate the pixel-wise performance of the application of detection,
segmentation, and classification, etc. Therefore, these metrics
were used to evaluate the performance of the first stage of the
proposed method. We have repeated the same detection pro-
cedure for the 3 testing scenes of each dataset then the mean
performance results of each dataset have reported in the first
three rows of Table 1. In the last two rows of Table 1, the mean
elapsed times during the detection procedure and resolutions of
the video frames are shown respectively.

Datasets Set-1 Set-2 Set-3
Mean Recall 0.8477 0.8082 0.8361
Mean Precision 0.8583 0.8449 0.8686
Mean F1 score 0.8524 0.8216 0.8517
Detection Time (in msec) 22.5 24.45 5.48
Resolution (in megapixels) 130.14 130.14 28.83

Table 1. Performance Results of Proposed Moving Cloud
Detection Algorithm

The proposed method is implemented using OpenCV including
a few common libraries of C++ and executed in an Intel Core i7-
7700 3.60GHz 16GB RAM, GeForce GTX 1050 Ti PC system.

The total execution time for filtering out moving objects in the
elimination operation of the false alarms generated by cloud
shadows is varying depending on the number of objects subject-
ing to the mode value comparison operation. The average time
spent for the boundary identification stage is 15.8983 msec per
video frame and mode value comparison stage for a candidate
object lasts approximately 0.0613 msec. Although the test ap-
plied to eliminate false alarms takes 0.0613 msec the total time
can rise to tens of milliseconds depending on the number of
object candidates in borders of the shadow regions.

5. DISCUSSIONS & CONCLUSIONS

In the proposed approach, it is aimed to detect dynamic tar-
get objects under moving cloud shadow regions. Since the mo-

tion characteristics of the cloud shadows do not similar to the
shadow regions of the static man-made or terrain objects, back-
ground subtraction algorithms usually cannot model it success-
fully. Especially, the border regions of the cloud shadow cause
the production of highly error-prone and misleading outputs due
to the deficiencies of the background subtraction algorithms.
Hence, detection of the moving part of the cloud regions in a
precise manner is an essential stage to obtain reliable object de-
tection and tracking solutions in WAMI systems.

Even it is assumed that the camera position is static, due to
atmospheric distortions and the dynamic behavior of the ob-
served scenes, an initial preprocessing step is required before
performing any detection algorithm for the moving cloud shad-
ows regions. Since the real-time WAMI applications have a
heavy computational burden, a downscaling operation is per-
formed not only to eliminate the disadvantages of aforemen-
tioned dynamic distortion effects, but also to reduce the time
elapsed during cloud shadow detection.

Utilization of the proposed adaptive region growing approach
for cloud shadow detection and determining the moving border
of the cloud regions are two main contributions of the proposed
technique. Moreover, in this study, it is desired to successfully
detect the moving targets that are located under the border re-
gions of the cloud shadows, while trying to eliminate the false
alarms generated by the cloud itself.

As in many gray-level object independent cloud shadow detec-
tion methods, the quotient (i.e. ratio) images that are obtained
by dividing the current video frame to the background image
are the major input source for the proposed approach. The dis-
tribution of the reflectance ratio values that form the quotient
image is used in the last stage of our methodology to discrimin-
ate the real objects from the false alarms due to the boundaries
of the moving cloud. If the mode value of the reflectance ra-
tio distribution of the real object turns out to be similar to that
of the background, the object unfortunately is missed. Even in
such a scenario, the detection of such moving targets is delayed
until the objects move out from the border regions of the cloud.
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Figure 5. Moving Cloud Shadow Detection Stages for a Single Dataset: (a) Background Image, (b) Images Including the Moving
Cloud Shadows, (c) Ground Truth Masks, (d) Quotient (Reflectance Ratio) Images, (e) Moving Cloud Region Detection Results

Figure 6. Moving Cloud Shadow Detector Flow Chart (FITS: First-well-illuminated-then-shadowed, FSTI:
First-shadowed-then-well-illuminated, The overall system chart can be seen in Figure 1)

Figure 7. Moving Object Filtering Flow Chart (The overall system chart can be seen in Figure 1)
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