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ABSTRACT:

We propose a method for the relative radiometric normalization of long, multi-sensor image time series. This allows to increase the
revisit time under comparable conditions. Although the relative radiometric normalization is a well-studied problem in the remote
sensing community, the availability of an increasing number of images gives rise to new problems. For example, given long series
spanning several years, finding features that are maintained through the whole period of time becomes arduous. Instead, we propose
in this paper to use automatically detected reference images chosen by maximization of a quality metric. For each image, two affine
correction models are robustly estimated using random sample consensus, using the two closest reference images; the final correction
is obtained by linear interpolation. For each pair of source and reference images, pseudo-invariant features are obtained using a
similarity measure invariant to radiometric changes. A final tone-mapping step outputs the images in the standard 8-bits range. This
method is illustrated by the fusion of time series of Sentinel-2 at correction levels 1C, 2A, and Landsat-8 images. By using only the
atmospherically corrected Sentinel-2 L2A images as anchors, the full output series inherits this atmospheric correction.

1. INTRODUCTION

Given the numerous satellites observing the earth, any point on
the ground is present in multiple and long image time series.
It becomes indispensable to build more complete time series
obtained by fusing the output of different imaging devices (with
roughly comparable resolution). However, due to the differences
between sensors and acquisition modes, such a task is more
intricate than expected. In particular, resolutions are different,
dynamic ranges are different, color bands are different. Still
more challenging, the pixels where the ground is visible and
stable can vary in each image due to atmospheric perturbations,
clouds, and human actions. Thus equalization requires the ap-
plication of a different sieve to each image.

Besides facilitation of human visual scene interpretation, the
need for relative radiometric normalization in satellite time series
is acknowledged since the seventies, with the start of the Landsat
missions. Coppin and Bauer noted in 1996 that there were two
outstanding requirements for satellite time series analysis: multi-
temporal image registration and radiometric calibration [Coppin,
Bauer, 1996]. Even now, radiometric normalization is a fun-
damental step in many applications [Canty, Nielsen, 2008]: to
prepare data for change detection [Paolini et al., 2006, Jianya et
al., 2008]; tracking vegetation indices over time, for example
with the Normalized Difference Vegetation Index (NDVI) [Du et
al., 2002]; for supervised and unsupervised land cover classifica-
tion; for multi-temporal Satellite image mosaicing [Rahman et
al., 2015]. The method presented in this paper was successfully
used in [Drouyer, 2020] to improve the accuracy of parking
occupancy estimation with time series of PlanetScope images.

According to Du et al. [Du et al., 2002], there are four main
reasons for the variations of sensor measurements of the same
scene at different dates: (1) changes in satellite sensor calibration
over time, (2) differences in illumination and observation angles,
(3) variation in atmospheric effects, and (4) changes in target
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Figure 1. Composite image, formed by concatenating horizontal
(left side) or vertical (right side) bands from each image of the

time series. The time series contains a total of 39 images,
captured by Sentinel-2 (correction levels 1C and 2A) and

Landsat-8. Our algorithm automatically normalizes the spectral
values in the series using a few well chosen references.

reflectance. In the case of multi-satellite fusion, a fifth reason is
the difference of sensors.

Figure 1 shows the aspect of a time series without radiomet-
ric normalization. The image is recomposed by concatenating
horizontal or vertical bands from the inputs. After the relative
radiometric normalization, seams between the bands are much
less visible, even though bands come from images taken at dif-
ferent dates and with different sensors. The first and last images
were captured on Feb. 18, 2018 and Sep. 21, 2019, respectively,
over Versailles (France). Their size is 2×5 km. Figure 2 shows
the temporal coherence of a region within this series after the
application of our algorithm.

Radiometric correction methods are generally classified in two
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Figure 2. Temporal evolution of the mean and variance of a small sample in the initial (left) and radiometrically normalized (right) time
series. The sample is displayed in Figure 3; this is a urban area. Our algorithm outputs a series with consistent mean and variance

through time. Small variations are unavoidable due to changes in observation and illumination angles, in the resolution, calibration and
spectral filters of the different sensors, and in the reflectance on the ground.

categories: the first encompasses the ones that aim at mapping
the sensors’ values to physical measurements like ground ra-
diance or reflectance [Yuan, Elvidge, 1996]. These methods
require external measurements. The second category includes
methods whose objective is simply to normalize the sensors’
values, so that the relative changes remaining are only due to
changes in the target reflectance. These methods use only in-
formation from the time series itself. In many cases, the retrieval
of surface reflectance to correct the sensor calibration, differ-
ences in illumination, view angles and atmospheric effects, is
difficult or even impossible [Du et al., 2002]. This second cat-
egory is therefore a desirable alternative. Moreover, absolute
radiometric correction is in many cases not required.

In the 1996 review of seven relative radiometric normalization
techniques [Yuan, Elvidge, 1996] the authors noticed that all
used affine models whose parameters were found by regres-
sion. The assumption is that among the different sources of
change between the same channel of two images at two differ-
ent dates, linear effects dominate nonlinear effects [Du et al.,
2002]. Hall et al. [Hall et al., 1991] noted that the affine nature
of the transformation linking two images can be destroyed by
the heterogeneity in the atmospheric properties across the scene
and the non-linearity in calibration differences between sensor.
From our own experiments, the former is a far more serious
issue. We indeed generally keep in our time series images with
transparent clouds, but the non homogeneity of these clouds
hinders a perfect correction for these images.

The most important and difficult parts of relative radiometric cor-
rection are the selection of pseudo-invariant features (PIFs) [Du
et al., 2002, Canty et al., 2004], and the regression method used
to find the affine model parameters [Syariz et al., 2019].

Hall et al. [Hall et al., 1991] proposed a method to rectify the
colors of Landsat-5 images, at different dates and with different
sensors. Their algorithm identifies “radiometric control sets, i.e.,
sets of scene landscape elements with a mean reflectance which
is expected to change little with time.” They construct those
sets by selecting the extremes of the Kauth-Thomas greenness-
brightness scattergram [Kauth, Thomas, 1976], which are sup-
posed to have the same average surface reflectance between
images. These pixels may not be the same in different images.

To select the PIFs, [Du et al., 2002] used principal component
analysis (PCA) and quality control. They tested their procedure
using three Landsat-5 Thematic Mapper images of the same
area in years 1986, 1987, and 1991. Their algorithm detects and
removes cloud and water pixels, found using simple thresholds
on the pixels’ values. This method assumes that the affine trans-
formation of the PIFs in the couple of images is close to the

identity. Their quality control consists in computing a linear
correlation coefficient for the candidate PIFs; then verifying that
the obtained major axis is close to unity. While it is not close
enough, the parameters are iteratively updated and a new axis is
computed. The method [Xu et al., 2012] also requires this linear
relationship to accurately find the pseudo-invariant features. Our
method, however, makes no assumption on the PIFs.

Multivariate alteration detection (MAD) transformation was
proposed by [Canty et al., 2004] to obtain invariant pixels. This
technique was proposed in [Nielsen et al., 2002, Nielsen et al.,
1998]. They first form linear combinations of the intensities
for all channels in the two images (at different dates). The
combination’s coefficients are determined so that the positive
correlation between the two obtained images is minimized. This
is meant to enhance the actual changes between the two images
as much as possible; then pixels with smallest normalized MAD
components are selected for the regression. Only one image is
used as a reference.

In 2015, Lin et al. [Lin et al., 2015] did simultaneous cloud
detection and radiometric normalization. They argue that both
objectives overlap, as both require to find invariant pixels. Based
on the method of [Du et al., 2002], they proposed a weighted
principal component analysis to help removing outliers and find-
ing invariant pixels. High weights are assigned to points with
strong spectral similarities, which are measured using Euclidean
distance, spectral angle and spectral correlation. These three
measures were proposed for change detection [Carvalho Júnior
et al., 2011] and adapted to the pseudo-invariant feature selec-
tion [De Carvalho et al., 2013].

In this paper, we propose an algorithm addressing these prob-
lems, able to produce time series from different statellite sources
with uniform contrast and color on relevant stable pixels. We
shall test our method on time series with mixed Sentinel-2 at cor-
rection level L1C and L2A, and Landsat-8 data. Since Sentinel-2
L2A images are atmospherically corrected, the final time series
with normalized radiometry inherits this atmospheric correction
without the need of other external data.

Unlike other methods, our algorithm first automatically chooses
in the series regularly distributed reference images that maximize
three criteria: ground visibility, local contrast and sensor quality
(resolution and correction level). Since the time series may span
several years, the reference samples must be dense enough to
cope with seasonal color changes. All remaining images are then
equalized with the two closest references. To this aim, relevant
stable ground pixels are found in these images by comparing
their gradients’ angles pairwise. Then an affine radiometric
correction matching the colors of these pixels to those of both
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nearest reference images is robustly estimated using random
sample consensus. The final correction is a temporal linear
interpolation of both affine corrections.

The method we propose makes no assumption on the input
images: they can be of any range, color, number of channels,
resolution or from any sensor. This means that we do not rely
on thresholds that have to be set for each different satellite.
Furthermore, our method handles well small images (e.g. 500×
500 pixels), which usually cause problems for algorithms that
require to find, for example, “black pixels” from areas with zero
reflectance, to estimate the thickness of the atmosphere.

Our aim is therefore threefold: (1) to create visualizable time
series from more than one satellite, in order to ease humans’
interpretation, inspection and annotation; (2) to prepare the
data for detection algorithms that expect inputs with consist-
ent color, contrast, resolution and dynamic ranges; (3) to obtain
atmospherically corrected images without any knowledge of
the atmospheric conditions, but rather by using as example the
available and already-corrected Sentinel-2 L2A images.

Our contributions are: (1) A general method for relative ra-
diometric normalization of long and heterogeneous time series;
(2) A complete pipeline for the preparation of multi-satellite
data; (3) A simple example-based tool for atmospheric correc-
tion: given some atmospherically corrected images inserted in
the time series, our method propagates the correction to neigh-
boring frames, without requesting external data.

2. METHOD DESCRIPTION

Sentinel-2 visible bands have a resolution of 10m, while Landsat-
8 panchromatic band is at 15m and its visible blue, green and red
bands are at 30m resolution. To create a time series with images
from both satellites, the pixels’ size must be made uniform. We
thus use the panchromatic band to pansharpen Landsat-8 visible
bands to 15m/pixel and then upsample them to 10m/pixel by
interpolation. Gdal1 pansharpening tool is used for the first
step. This algorithm first upsamples the low resolution bands,
then computes the ratio between the panchromatic band and the
weighted average of the upsampled bands, and finally applies
this ratio to the different spectral bands to pansharpen. The time
series is then registered with sub-pixel accuracy using the phase
correlation method [Foroosh et al., 2002]. We sample the image
after translation by spline interpolation [Briand, Davy, 2019].

Sentinel-2 and Landsat-8’s sensors output very different val-
ues. Landsat-8 typically has values around 10 times higher
than Sentinel-2 for the same ground reflectance. Although our
method is absolutely independent from this, we applied a first
rough normalization of the images in function of their sensors,
so as to place most of their values in the range [0, 1]. This nor-
malization is needed, for example in Figure 1, to display images
from the two satellites side by side with comparable values.

The overall image series processing chain then works as follows:
(1) Apply the ground visibility detector, remove exceedingly
cloudy images from the time series; (2) Apply quality metrics
and select reference images as local maxima of the global quality
score; (3) Find stable pixels by comparing the gradient angles in
the pairs of source and reference images; (4) Correct the spectral
values based on relevant pixels and the two closest references
images; (5) Apply a final tone-mapping step. These steps are
summarized in Algorithm 1. Next sections detail each step.
1 https://gdal.org/index.html

Algorithm 1: Relative Radiometric Normalization
input :registered time series (possibly mutli-sensor)
output : time series with normalized radiometric values
Apply the ground visibility detector
foreach image do Compute image quality // Equation (6)
Select as key images the ones with highest quality
foreach image do // estimate and apply corrections

foreach channel do
for previous key, next key do

compute mask for the pair (current, key)
estimate the affine model with RANSAC

interpolate the parameters
correct the image

foreach image do Apply tone-mapping // Equation (11)

2.1 Ground visibility detector

Rather than a single image spectral cloud detector such as [Zhu
et al., 2015], we use a ground visibility detector [Grompone von
Gioi et al., 2020]. This is a simple and fast detector perfectly
adapted to our problem. The difference is that in addition to the
clouds, all elements of the scene that appear only once in the
time series are detected as invisible, which means that they are
unstable parts that should not be selected as pseudo-invariant
features. This will be typically the case for cloudy pixels or for
the waters of maritime shores or lakes, which may vary strongly
in color and texture [Guindon, 1997, Du et al., 2002].

The ground visibility detector [Grompone von Gioi et al., 2020]
works as follows: given a set of registered images, the ground
visibility masks for the images are all initialized as not visible;
then all pairs of images are compared locally. The comparison
is performed on the angles of the image gradients, which means
that it is insensible to affine modifications of the contrast. When
a match is found, the corresponding parts are marked as visible
in both image ground visibility masks. More specifically: for
each pair of images, an image of angles difference is computed.
These differences are small when the region is the same in the
two images; on the other hand, they are large when the region
has changed. The presence of new objects, clouds and water
are the main reasons for large gradient angle differences. Match
decisions are taken in regions where differences are small, which
are obtained with a region growing algorithm. The a contrario
statistical framework [Desolneux et al., 2000, Desolneux et al.,
2008] is used to decide if the match is meaningful or not.

So as to reduce noise, we apply the detector on the average of
the images’ spectral bands. We call un the image at index n
in the time series, and uc,n the channel c of this image. The
gray-level image is obtained as:

ūn = 1
C

∑C
c=1 uc,n, (1)

with C the number of channels. The ground visibility masks are
then obtained as

{m1, ...,mN} = ground visibility ({ū1, ..., ūN}) , (2)

with N the length of the time series. Images whose ground
visibility is below 75% are removed from the series.

Figure 4 displays some results obtained with this ground visibil-
ity detector.
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Temporal evolution of a patch taken in the input time series

Temporal evolution of the same patch but taken in the radiometrically normalized time series.
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Figure 3. Value of the three metrics: proportion of visible ground S, local contrast C, accuracy A, and final score Q. The values are all
in [0, 1]. A sample of the initial and stabilized time series (same series as in Figure 1) is displayed on the top and center rows,

respectively. The key images found by the method are at index 11, 21 and 38 (over 39 images); they are highlighted in red in the
normalized sequence and indicated with vertical dashed lines in the graph.

Figure 4. Results of the ground visibility detector [Grompone von
Gioi et al., 2020]. Some of the input images from the time series
are shown on the top row; corresponding ground visibility maps
are shown below. Black means visible, white means invisible.

2.2 Detection of key images

Robust relative radiometric normalization of long time series
requires several reference images. Our method relies on some
well-chosen key images, selected as local maxima of the product
of three metrics.

First, the proportion of visible ground, which is the proportion
of pixels in the image that are not clouds, water or other factors
rendering the pixel unreliable. This score is directly derived
from the ground visibility detector:

S(un) = 1
|Ω|
∑

x∈Ω mn(x), (3)

where Ω is the set of pixels in the image un. The mask mn has
value 1 when the pixel is visible ground, and 0 otherwise.

Second, the local contrast, measured as the local standard devi-
ation:

C(un) = 1
|Ω′|

∑
x∈Ω′

√
(k∗ū2

n)(x)−(k∗ūn)2(x)

std(uΩ′ )
, (4)

where k is a uniform kernel of size 15×15 pixels, and Ω′ is
the set of visible pixels in the image. That is, we measure the
local contrast of the visible values only. This value is divided
by the standard deviation of the image restricted to the visible
ground pixel, namely, std(uΩ′), so as to remain independent
from the dynamic range of the input image. This measure is
high when the contrast is located mostly in the high frequencies
of the image. As a consequence, blurred and hazy images will
have a low score.

Third, the accuracy. High resolution images are to be preferred,
because they contain richer spectral information. The weights
are arbitrary and favor Sentinel-2 L2A images.

A(un) =

{
1 if Sentinel-2, Level-2A
0.1 if Sentinel-2, Level-1C and Landsat-8

(5)

This is notably useful when Sentinel-2 and Landsat-8 images
are mixed together.

These metrics are then multiplied to obtain a score Q for each
image:

Q(un) = S(un) · C(un) ·A(un). (6)

Finally, we look for local maxima in this series of scores. An
image at index n is declared a key if its score is superior to all
other scores in a local time window of size [n−w, n+w], where
n is the index of the image in N images long time series and w
is a parameter, by default set to 9.

The scores S(un), C(un), A(un), and Q(un) are displayed in
Figure 3. The selected key images are framed in the time series
and indicated with dashed vertical lines in the graph.

2.3 Pseudo-invariant features

Once the key images have been found, we use them as targets
for the rest of the time series. We use the two closest keys to
correct the spectral values of each image. We then obtain two
set of parameters, which are linearly interpolated in function of
the time difference in the series. However, we cannot rely on
all pixels to estimate the correction. Most of the time, a large
proportion of the observed scene has changed: apparition of new
objects, changes in the aspect of the vegetation, humidity, clouds,
are frequent sources of changes in the actual ground reflectance.
Furthermore, changes in the angle of view or time of the day
also modify the measured values. We need first to remove as
many outliers as possible.

We compute the difference of angles between the gradients of the
input and the key image. These angle differences are normalized
in [0, 1]. They are averaged locally (by a uniform square kernel
k of size 3×3) and then clipped to obtain a binary mask.

D(u, v) = [k ∗ (| angles (∇u,∇v) |/π)] < τ, (7)
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where u is the current image and v the previous or next key.
The second term in the convolution is an image of normalized
gradient angles between u and v, i.e. with values in [0, 1]. The
threshold τ is obtained so that D always contains 10% of the
image pixels. In other words, the selected PIFs are the 10%
pixels with the smallest angle difference. This ensures that we
always have enough PIFs for the following regression step. We
show in Figure 5 the aspect of these masks.

2.4 Robust regression strategy

As discussed earlier, we assume that affine effects dominate
between two images from different dates and possibly from
different sensors. This can be modeled as:

vc = ac · uc + bc, (8)

where c is the channel, u the input image, and (ac, bc) are the
parameters of our affine model for this specific channel.

Denoting by uD the input image restricted to its persistent pixels
as computed in Section 2.3, we want

arg min
ac,bc

‖vc,D − ac · uc,D − bc‖, (9)

with ‖ · ‖ a certain norm. An affine model is computed for each
channel independently.

Knowing that we generally still have outliers at these points, we
need a robust way of estimating the affine model’s parameters.
We thus opted for the RANSAC strategy [Fischler, Bolles, 1981],
because it can handle a large proportion of outliers.

However, RANSAC would fail in estimating this model because
images tend to have large areas with uniform colors. Indeed, if a
large number of pixels are located on the same place, there are
great chances that the other values will not impact the regression
much. Thus, before applying RANSAC, we remove points in
very dense regions, so as to reduce their weight when estimating
the parameters of the affine model. The objective is to use points
as uniformly disposed as possible in the dynamic range.

De-densification of the bi-temporal scattergram We com-
pute the histogram of the bi-temporal scattergram; this is a joint
histogram of the source and key images. That is, we quantize the
scattergram and count the number of points in each cell of the
grid. Then, we randomly remove points in cells that are above a
threshold. In practice we proceed in a faster and approximately
equivalent way: We successively compute the histogram (using
100 bins) of the source and key images and each time remove
at random points in bins whose count is above 3% of the total
number of points.

Algorithm 2 summarizes the RANSAC procedure. We use the or-
thogonal regression (total least squares) [Markovsky, Van Huffel,
2007] in RANSAC. Such a technique is used when there are
uncertainties in both variables. This amounts to use PCA on the
inliers and keep the major axis.

We also tried to use the L1 norm minimization and robust statist-
ics, e.g.: ac = mad {vc} /mad {uc} and bc = median {vc} −
ac ·median {uc}, but found that RANSAC was preferable, be-
cause it performs well even in the very challenging cases where
the affine assumption is not respected, for example in presence
of semi-transparent clouds that do not cover the whole image.

Algorithm 2: RANSAC: random sample consensus
input :source and target images, restricted to the persistent

pixels, and de-densified
output :affine model parameters: abest, bbest
t← 1000 // initialize

while t > 0 do
Select two points at random
(a, b)← compute parameters of line passing through
d← orthogonal distances from the points to the line
i← d < 20σ // inlier set

if |i| > |ibest| then
(ibest, abest, bbest)← (i, a, b)
i′ ← i
do

(a′, b′)← orthogonal regression(i′)
d′ ← orthogonal distances to the line
i′ ← d′ < 20σ // refined inlier set

if |i′| > |ibest| then
(ibest, abest, bbest)← (i′, a′, b′)

t← t− 1
while |i′| > |ibest| and t > 0

t← t− 1

Noise estimation The RANSAC method requires to establish
a threshold for the definition of its inlier set, which is usually
related to the uncertainty or the noise of the data points. The
sources of uncertainty in our model are: the image noise and
the model deviations: misalignment, non-lambertian surfaces,
inhomogeneity of the atmosphere, etc. We can determine the
noise present on each image σn using the Ponomarenko noise
estimation algorithm [Ponomarenko et al., 2007,Colom, Buades,
2013]. Then, in order to account for the model deviations we
set the inlier threshold to 20σ, with σ = median({σn |n =
1...N}), and σn the noise standard deviation of image un.

We show in Figure 5 scatterplots of the bitemporal pairs of source
and target images. The affine model found by RANSAC is traced
for each channel. The bright colored points are the inliers found
by RANSAC, while the rest of the colored points are the rest
of the PIFs. The points in gray represent values removed either
by the difference of angles measure, or the de-densification
step. Remark that most points that do not correspond to an
affine relation between the input and reference images have been
removed by these masks. This indicates that the angle measure
succeeded in removing a large part of the outliers.

2.5 Dynamic range compression

So far, we have stabilized the contrast of the time series, but its
dynamic range has not been altered. Since most applications
assume images in the typical 8-bits dynamic range, a strong
tone-mapping step is required. This is also useful for human
interpreters who visualize the images on standard screens with
limited dynamic range.

Tone-mapping can be either global or local. The latter is gen-
erally able to perform a stronger compression of the dynamic,
yet the former is generally simpler and generates fewer artifacts.
We use a simple linear compression of the dynamic with a slight
gamma-correction. The minimum and maximum values of the
tone-mapped time series, that will be mapped to 0 and 255 re-
spectively, are computed so as to clip the minimal number of
pixels but also to avoid strong compression of the contrast. We
use the median 1st and 99th percentiles, respectively. That is:
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Sentinel-2 L2A 2018-10-21
previous key PIFs with previous key RANSAC inliers (red channel) RANSAC inliers (green channel) RANSAC inliers (blue channel)

Sentinel-2 L1C 2019-07-25
input stabilized bitemporal scattergram bitemporal scattergram bitemporal scattergram

Sentinel-2 L2A 2019-09-16
next key PIFs with next key RANSAC inliers (red channel) RANSAC inliers (green channel) RANSAC inliers (blue channel)

Sentinel-2 L1C 2019-07-25
input stabilized bitemporal scattergram bitemporal scattergram bitemporal scattergram

Figure 5. The top two rows show the pair (input, previous key), and the bottom two rows the pair (input, next key). Next to the keys are
displayed the pseudo-invariant features obtained with the angle difference. The three columns on the right show the bitemporal

scattergrams for each channel and the RANSAC inliers. The gray values of the scattergram represent points excluded by the mask. The
colored values are the PIFs, and among them, the bright ones are the RANSAC inliers, also displayed in the images above.
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Figure 6. Top row: inputs, with Sentinel-2 (L1C, L2A) and Landsat-8 images. Center row: our relative radiometric normalization result.
Bottom row: results with the method “relnorm” [Goslee et al., 2011].
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Table 1. Pixels’ temporal standard deviations, summarized by
quantiles; “Versailles” time series. Series are normalized by their

standard deviation before the measure. The lower the better.

Quantile Input Naive Relnorm Ours
0.25 0.4895 0.2934 0.3070 0.1833
0.50 0.5375 0.3387 0.3756 0.2547
0.75 0.6610 0.4290 0.4644 0.3897{
βmin =median({percentiles(ūn; 1) |n=1 . . . N})
βmax =median({percentiles(ūn; 99) |n=1 . . . N}) .

(10)
This is computed using the average of the channels, denoted by
ū. Finally, the tone-mapped image z is obtained after clipping
and application of a slight gamma-correction:

zc = clip[0,1]

(
(uc − βmin)/(βmax − βmin)

) 3
4 . (11)

All images shown in this paper are obtained this way.

3. EVALUATION AND COMPARISONS

Figure 1 and 2 display the result of our method for a 1.5 year
long time series made of 29 Sentinel-2 images (7 with correction
level L1C, 22 with L2A) and 10 Landsat-8 images. Figure 5
shows the pseudo-invariant features (PIFs) obtained for two
couples of images. The accompanying scatterplots show the
estimated affine translations for each channel. The input image,
which contains haze, is corrected.

Figure 6 shows a rectangular detail of the “Versailles” series
and the normalized result. This is an urban area whose color
should remain roughly constant over time. This series covers
one year and a half, from January 2018 to September 2019. In
the normalized version, changes in vegetation color are visible
on the bottom of the patch, but the town region is well stabilized.
Images selected as key are framed in red; they were captured at
dates 2018/06/25, 2018/10/21, and 2019/09/16.

We compared our method with the “relnorm” function from the
“landsat” R package2. This method was proposed by Goslee et al.
in [Goslee et al., 2011]. Results are presented in Figure 6, last
row. It needs a manually selected reference image; we used the
one at index 21. It is framed in red. We passed as cloud masks
the result of our ground visibility detector. The method used for
the regression was set to the recommended “Major Axis”. Our
method is significantly more stable in this example.

We measured an execution time of 7min for our algorithm for
this series of 39 images. This is more than 50× faster than
“relnorm”, that required around 398min for the same sequence.
Tests were carried out on an 3.1 GHz Dual-Core Intel Core i7.

Table 1 quantitatively evaluates the stability of our results. We
proceeded as follows: first, we normalized each evaluated time
series by its global standard deviation. This makes the measure
independent of the output dynamic range. Then we removed
a local temporal average of the pixel’s color, so as to discard
variations due to seasonal changes. We averaged seven dates,
i.e., approximately three months in the tested series. Finally, the
pixels’ standard deviation across time is measured. The final
result is the average of the three channels. We summarized the
results for the “Versailles” time series (used in Figure 1 to 6)
with three quantiles. The “naive” method is the independent
2 https://rdrr.io/github/phiala/landsat/

input time series stabilized series

Figure 7. Composite images made in the same way as Figure 1.
Time series with 93 images, 18 Landsat-8 and 75 Sentinel-2 L2A,

from 2019/01 to 2020/05 in the region of Rabak (Sudan).

normalization of each image by removing its mean and dividing
by its standard deviation. Our method gives a remarkably more
stable series.

Figure 7 shows the result of our relative radiometric normaliza-
tion on another sequence. This scene is more difficult because
it is mainly composed of agricultural crops with many seasonal
changes. Our method nonetheless produces a stable result in
which radiometric changes are due to changes in the ground
reflectance. The crops change but the tracks are stable.

Limitations Images with non homogeneous transparent
clouds (haze and cirrus) are difficult to handle, because they
do not respect the assumption of a global affine modification
of the radiometric values. Even if the RANSAC method finds
good parameters in most cases, some images are not perfectly
normalized, for example the fourth image from the right in Fig-
ure 6. Another limitation lies in the selection of PIFs based on
the angle of the image gradients. Textured regions, although
they could also be relevant in the regression, tend to be rejected
because their gradients are not stable temporally.

4. CONCLUSION

We presented a pipeline for the relative normalization of multi-
satellite image time series. We tested our method with freely
available Sentinel-2 and Landsat-8 images. The results demon-
strate good temporal stabilization. The key and most challenging
parts of our method are first, to automatically select good refer-
ence images, second, to sort out the persistent pixels between
each image and its reference, third, to robustly estimate the affine
correction parameters. Using quality metrics, similarity masks
based on the angles of images gradients, and a random sample
consensus method, we succeeded in obtaining an algorithm that
gives plausible results in any situation.

As a most basic utilization, this algorithm can fill missing L2A
images in Sentinel-2 time series using the L1C, which are always
available. A more sophisticated usage, demonstrated in this
paper, is the fusion of time series from different satellites. Our
algorithm does not need external information, and makes no
assumption on the sensors. This means that our method can
directly be used with images from other satellites.

We expect to extend this algorithm to make an online version.
Indeed, for the moment we require the full time series to find
the reference images, compute the affine correction models.
However, it is desirable to have a method that allows to add new
images to an already stabilized time series.

The code of our method is available online at https://github.

com/chlsl/rrn-multisensor-multidate.
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