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ABSTRACT: 
 
Cloud detection for night-time panchromatic visible and near-infrared (VNIR) satellite imagery is typically performed based on 
synchronized observations in the thermal infrared (TIR). To be independent of TIR and to improve existing algorithms, we realize 
and analyze cloud detection based on VNIR only, here NPP/VIIRS/DNB observations. Using Random Forest for classifying cloud 
vs. clear and focusing on urban areas, we illustrate the importance of features describing a) the scattering by clouds especially over 
urban areas with their inhomogeneous light emissions and b) the normalized differences between Earth’s surface and cloud albedo 
especially in presence of Moon illumination. The analyses substantiate the influences of a) the training site and scene selections and 
b) the consideration of single scene or multi-temporal scene features on the results for the test sites. As test sites, diverse urban areas 
and the challenging land covers ocean, desert, and snow are considered. Accuracies of up to 85% are achieved for urban test sites. 
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1. INTRODUCTION 

The footprint of human activities on Earth is particularly visible 
at night, because human life and work at night usually involves 
artificial lighting (Levin et al., 2019). This is clearly visible in 
night-time satellite imagery in the visible and near-infrared 
(VNIR) spectral range from 0.4 µm to 1.1 µm. Such data 
contains wealth of information that is not so explicitly derivable 
from any other remote sensing product. On this basis, not only 
populated areas and its infrastructure are globally mapped and 
characterized and the expansion of urbanization is observed, but 
the illumination of a region also allows conclusions to be drawn 
about the behavior of the population (Miller et al., 2013). For 
example, socio-economic and economic factors influence the 
type and extent of artificial lighting, and different temporal 
lighting patterns indicate cultural differences. Analyses of night-
time artificial lighting are also used to derive statements 
regarding its effects on the environment, for example in the 
form of light pollution affecting wildlife and human health, 
astronomical observations, and energy consumption. 
 
So far, however, there are only a few satellite-based sensors that 
provide data for such analyses. Since 1976 DMSP/OLS (Imhoff 
et al., 1997) generates panchromatic VNIR imagery with a daily 
global coverage at 2.77 km spatial resolution, but without 
radiometric calibration. Since 2011 the Day-Night-Band (DNB) 
of NPP/VIIRS (Lee et al., 2006) generates panchromatic VNIR 
imagery with a daily global coverage at 0.75 km spatial 
resolution and with radiometric calibration. Beside these 
operational missions providing their global data free and open, 
some non-commercial cubesat missions improve for example 
the spatial resolution such as LJ1-01 (Jiang et al., 2018) to 
0.13 km or the spectral resolution such as AC-5 (Pack et al., 

2017) to three bands. Furthermore, some commercial missions 
such as JL1-3B (Zheng et al., 2018) provide better spatial or 
spectral resolutions, but focus on day-time acquisitions. And 
similar to ISS astronaut photography (Kotarba et al., 2016) all 
these images are typically not quality-controlled and acquired 
for dedicated areas-of-interest only and are thereby not 
consistently global. To fill this gap, Elvidge et al. (2007) 
proposed an optimized nocturnal global satellite mission with 
high spatial and high spectral resolution for high-precise 
analyses of night-time artificial lighting. 
 
The major prerequisite for analyses of properties of the Earth's 
surface based on optical data is reliable cloud detection to 
exclude those pixels from further considerations, where the 
surface is obscured by clouds. At night this is critical, because 
clouds are typically not visible in the VNIR spectral range due 
to the missing direct illumination by the Sun. There is only the 
limited reflected illumination by the Sun via the Moon and the 
limited artificial illumination of the Earth’s surface. Therefore, 
operational global cloud detection algorithms used to generate 
cloud masks for existing night-time satellite imagery typically 
do not rely on the VNIR observations, but on the synchronized 
TIR (thermal infrared) observations. In this spectral range 
clouds are usually well-detectable as they are usually colder 
than the Earth's surface. And as radiation is emitted by the 
clouds or Earth's surface, it is also observable at night. 
Typically, observations in the long-wave infrared range from 
8 µm to 14 µm (sensitive to low temperatures between 193 K 
and 362 K) supported by observations in the mid-wave infrared 
range from 3 µm to 5 µm (sensitive to high temperatures 
between 362 K and 966 K) are used for night-time cloud 
detection. Thus, for example, the cloud mask VCM for DNB at 
night is generated using several constant threshold value tests in 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-853-2020 | © Authors 2020. CC BY 4.0 License.

 
853



 

these two spectral ranges taking land cover types and other 
effects into account for the pixel-by-pixel differentiation 
between cloudy and clear skies (Hutchison et al., 2005). The 
enterprise cloud mask (ECM) (Heidinger et al., 2016) for DNB 
deviates from this approach by realizing a learning of the 
threshold values and by integrating tests in the VNIR spectral 
range at night, if the Moon is visible and illuminated. 
Furthermore, under such conditions some experimental 
approaches are based on the VNIR spectral range, but they 
relate to the detection of special cloud types (differences in the 
reflectivity of haze and low-lying stratus clouds) (Hu et al., 
2017) or aerosols (contrast between illuminated and 
unilluminated pixels, which is reduced by the influence of 
aerosols) (Johnson et al., 2013) only. 
 
We study how a feature-based algorithm for semantic 
segmentation of clouds has to be robustly realized using 
exclusively night-time observations in the VNIR spectral range 
(and information on the Moon) with two major objectives: First, 
to evaluate, if TIR bands are avoidable concerning cloud 
detection for night-time optical satellite missions focusing on 
VNIR bands. In the latter bands, artificial lighting is dominantly 
emitted. Adding TIR bands only for cloud detection impacts the 
entire mission. Second, to evaluate, if considering observations 
in the VNIR spectral range more intensely improves existing 
algorithms for night-time cloud detection. The focus is on the 
achieved quality of the global night-time cloud masks based on 
VNIR spectral range only, especially for areas with artificial 
lighting caused by human activities.  
 
We use; as input: DNB products as they are globally available 
and well-calibrated nocturnal data in the VNIR spectral range 
with a daily revisit, which allows considering time series; as 
ground truth: ECM products as they are globally available and 
state-of-the-art high-accurate during night-time/day-time with 
85%/94% accuracy over ocean and 88%/90% over land for 
clouds with an optical thickness ≥1. Chapter 2 details this data 
together with the considered sites, states the considered quality 
measures for the cloud masks, and establishes a model for the 
observations. Chapter 3 realizes the algorithm detailing the 
classification, considered features, and performed 
optimizations. Chapter 4 analyses the achieved results for 
different training and test sites and scenes (and radiometric 
sensitivities). Finally, Chapter 5 concludes with an overview of 
further investigations to be performed on the way to global 
cloud detection methods for night-time VNIR satellite imagery. 
 
 

2. METHODOLOGY 

2.1 DNB 

DNB (Lee et al., 2006) is one of the 22 channels of the 
radiometer VIIRS on NPP, which is placed in a Sun-
synchronous near-circular polar orbit at 824 km with a Local 
Time on Descending Node at 10:30 hours. VIIRS scans the 
Earth's surface according to the whiskbroom principle with a 
swath width of 3060 km, achieving twice daily (at noon and at 
night) coverage of the Earth. DNB products have a spatial 
resolution uniformly sampled to 0.75 km, a spectral range from 
500 nm to 900 nm, and a dynamic range of seven orders of 
magnitude; by means of different amplification levels radiances 
from 3×10-9 to 2×10-2 Wcm-2sr-1 are detectable to allow 
acquiring images during day and night with high sensitivity. 
Here, calibrated and georeferenced Sensor Data Record (SDR) 
products (Cao et al., 2017) are used. They take a terrain model 

into account and thereby achieve accuracies of about half a 
pixel in nadir and about one pixel in off-nadir. The direct 
georeferencing of urban areas covered by clouds is partially 
even more inaccurate due to a height error caused by the 
scattering of artificial lights by the cloud. We consider for each 
site and night, namely with Sun zenith angles larger than 96°, 
the scene with minimal Moon zenith angle. 
 
2.2 ECM 

ECM products (Heidinger et al., 2016) are cloud masks for 
VIIRS data generated by a Naïve Bayes approach based on 
various spectral observations and additional data like land cover 
maps. At night, the ECM algorithm is mainly using 
observations of the thermal infrared, especially if there is no 
lunar illumination. The ECM products contain cloud 
probabilities per pixel from which a binary cloud mask 
identifying cloudy and clear skies is derived. With ECM a 
conservative estimate of the cloudiness is obtained, namely the 
precision of cloudy skies is optimized. These products serve as 
ground truth, here. However, a closer look to the used ECM 
products exhibits that some of them contain rectangular 
artifacts, namely several rectangular areas have a significantly 
different cloud probability and class than the surrounding area 
as illustrated in Figure 1. 
 

  
Figure 1. ECM product for 540 km × 540 km. left: cloud 

probabilities, right: cloud classes; white: cloud, black: clear 
 
This classification is not corresponding to real cloud conditions 
and is not identified in the quality information. It is expected 
that these artefacts are caused by the data used to characterize 
the land cover types, which affects the selected threshold 
values. We do not consider the DNB product of a site, if the 
corresponding ECM product visibly has these artefacts. 
 
2.3 Sites 

The training and test sites selected for the considered cloud 
detection and its analysis cover some characteristic land cover 
types. The size of 150 × 150 pixels for each site corresponds to 
the swath width for a satellite mission suggested by Elvidge et 
al. (2007). Since the focus is on cloud detection for urban areas, 
the majority of the sites cover such regions in various forms as 
illustrated in Figure 2. To cover the specific challenges of night-
time cloud detection, sites covering specific land cover types 
with limited artificial lighting are also considered as illustrated 
in Figure 3. 

• Munich, Germany: European metropolis, which is 
densely populated and therefore strongly illuminated, 
but the hinterland is sparsely populated. It represents a 
variety of typical forms of settlement and lighting 
patterns. 

• Stuttgart, Germany: similar to Munich, Germany 
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• Milan, Italy: European urban area, which is strongly 
illuminated also because of the dense population of the 
area around the metropolis itself. 

• Brussels, Belgium: European urban area, which is 
heavily illuminated also because of the large cities 
around the metropolis itself and the illuminated 
motorways. 

• New Orleans, LA, USA: USA area, which is irregularly 
illuminated because of considerable differences in land 
cover types such as lakes and rivers around and along 
the metropolis itself. 
 

         

         

         
Figure 2. Cloud- & Moon-illumination-free ex. of Munich (top 
left), Stuttgart (top right), Milan (middle left), Brussels (middle 
right), New Orleans (bottom left) & Nagercoil (bottom right) 

 
 

         

         

         
Figure 3. Cloud free ex. of Open Ocean (top left), Oil Platforms 

(top right), Desert (middle) & Snow (bottom); 
Moon-illumination-free (left) & Moon-illuminated (right) 

• Nagercoil, India: Indian area, which covers different 
population densities around the metropolis itself and 
borders on the ocean. 

• Open Ocean: Indian Ocean south of Nagercoil, which 
appears as dark area. 

• Oil Platforms: Gulf of Mexico south of New Orleans, 
covering several deep-water offshore oil platforms, 
which are continuously illuminated and appear as fix 
punctual artificial lightings on dark areas. 

• Desert: Sahara, which exhibits a much higher surface 
albedo than the Nile shore with its agricultural, building 
and water environments. 

• Snow: Alps, which exhibits a much higher surface 
albedo especially in winter. 

 
2.4 Quality 

The semantic image segmentation separates the two classes 
cloudy and clear skies. The resulting structure of the confusion 
matrix describing the classification result of all pixels with the 
derived quantities Recall and Precision is illustrated in Table 1. 
 

 Classification Result  
cloudy clear Recall 

Ground 
Truth 
(ECM) 

cloudy TP FN TP/ 
(FN+TP) 

clear FP TN TN/ 
(FP+TN) 

 Precision TP/ 
(FP+TP) 

TN/ 
(FN+TN) 

 

Table 1. Confusion matrix structure 

To consider Precision and Recall together, they are used to form 
the harmonic mean F1=2×Recall×Precision/(Recall+Precision) 
for each class separately. Furthermore, the Overall Accuracy 
OA=(TP+TN)/(FP+FN+TP+TN) and the Balanced Accuracy 
BA=[TP/(FN+TP)+TN/(FP+TN)]/2, which is used to make the 
assessment of the classifier less dependent on the class 
distribution present in the data, are considered (Ting, 2010). 
 
2.5 Model 

As basis for the interpretation of night-time satellite imagery in 
the VNIR spectral range, a global model for such observations, 
simplified to focus on the major effects concerning cloud 
detection, is introduced. It covers the  

• Earth’s surface artificial lighting (Elvidge et al., 2017) 
with its light emissions and Moon illuminance (Miller et 
al., 2009) – the only globally available source of 
nocturnal illumination (depending on the zenith angle 
and phase of the Moon) – with their influence on the 
appearance of the surface and clouds, 

• Atmosphere and especially clouds – with their 
scattering, transmission and reflection depending on the 
cloud type and especially its albedo and optical 
thickness, and 

• Different land cover types – with their different 
reflection properties in the images. 
 

A radiative transfer model for these different elements is 
illustrated in Figure 4. The observed at-sensor or Top-Of-
Atmosphere (TOA) radiance is the sum of all radiation reaching 
the sensor from different illumination sources via different 
paths. For example, no statement can be made for a single 
observed value as to whether it was caused by a dimly lit city in 
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cloudless visibility or a brightly lit city in cloudy visibility. In 
addition to these major effects, there are other effects that are 
neglected in this model, for example under certain conditions at 
night the refractions of light from the Sun, auroras, and 
lightning flashes influence the observed radiance. 
 

 
Figure 4. Model for night-time satellite imagery 

 
 

3. ALGORITHM 

3.1 Classification 

With Random Forest (Breimann, 2001), a standard machine 
learning procedure is chosen for the classification of the pixels 
as cloudy or clear. It is a supervised and feature-based 
classification method based on the randomized learning of an 
ensemble of decision trees. Thus, it enables the integration of 
knowledge from the observation model in the feature design but 
does not solely rely on the model as it implements a learning of 
tests based on training data. An advantage is its robustness 
against noisy data. This is essential for our task, as our training 
data ECM is not a perfect ground truth. The hyperparameters of 
the Random Forest were estimated using random search 
(Bergstra, Bengio, 2012) and optimized using grid search. For 
our task, a Random Forest with 70 trees, unlimited tree depth 
and a minimum of 100 data points per leaf performed best. In 
the training phase, a randomly selected subset of features, here 
the square-root of the total number of features, is considered at 
each node. As classification result, the class for which the 
average of the predicted class probabilities over all trees 
becomes maximum is chosen. This also gives a good indication 
on the reliability of the assignment.  
 
3.2 Features 

The features shall describe the influences of clouds on the 
night-time images as characteristically as possible. Thus, 
features are needed to characterize the Earth’s surface, cloud 
albedo and optical thickness as well as the effects caused by 
scattering by clouds. Since only observations in the VNIR 
spectral range and estimations of Moon illuminations shall be 
used, all characteristics have to be derivable from this limited 
amount of information. Unless otherwise stated, we consider a 
neighborhood of 25 pixels, namely a 5 × 5 window. 
 
3.2.1 Single Scenes: The cloud albedo and optical 
thickness generally influence the measured radiance LDNB of a 
pixel, which is therefore a possible feature. Since clouds are 
usually extensive, the alternative is to use the mean radiance 
µLDNB in the neighborhood of the pixel. However, these 
observations are strongly influenced by the present Moon 
illumination Lm (Miller et al., 2009). Therefore, the feature 

δLnorm=(Lm-LDNB)/(Lm+LDNB), the normalized difference of the 
radiance of the moon and the observation, is used as a relative 
measure for the radiance of the pixel. If Lm=0, namely for 
invisible or new moon, and if LDNB=0, δLnorm has a constant 
value of -1 or +1, respectively. Thus, also δL=Lm-LDNB is 
considered as a feature. 
 
The effect of scattering by clouds influences the contrast and 
texture of the image (Elvidge et al., 2017), which is describable 
by features based on the neighborhood. The characteristic for 
the contrast or homogeneity of an image is the variance 
σ2LDNB=∑nϵN(LDNB,n-µLDNB)2/|N| describing the square deviation 
of the observed radiances LDNB,n from the mean value in the 
neighborhood N. The smaller the variance, the more 
homogeneous is the neighborhood. For example, with cloudless 
skies a small variance occurs over open oceans and a high 
variance occurs in artificially illuminated areas. The influence 
of clouds on the images is contradictory. In case of 
homogeneous surfaces and illumination by the Moon, clouds 
lead to increases in variance, because the scattering is more 
inhomogeneous, and in case of inhomogeneous surfaces such as 
artificially illuminated areas, clouds smoothen and thus reduce 
the variance. To describe this effect of clouds on artificially 
illuminated scenes, which are characterized by strong edges 
during clear skies, an edge filter such as the modified Laplace, 
represented by this filter mask, is considered: 

 
In contrast to the standard Laplace operator, this filter takes into 
account not only the horizontal and vertical second derivatives, 
but also the diagonal directions. The Laplace operator was 
selected instead of the also usual Sobel filter (first derivative), 
because it is also suitable for the detection of blobs, namely 
single brighter or darker pixels. These appear in night images of 
the considered resolution in the form of single strongly 
illuminated objects like offshore platforms. Additionally, 
features which describe the texture of the neighborhood are 
incorporated, namely some of the so-called Haralick features 
like Contrast and Energy (Haralick et al., 1973). 
 
3.2.2 Multi-Temporal Scenes: As single scenes do only 
provide a limited amount of information, additional features 
describing temporal changes based on the daily time series of 
DNB images are considered. These features are based on 
comparisons of the considered scene with previous images 
(here, at most 30) of the time series and are calculated for every 
image of the time series. Since the cloud masks of all scenes are 
assumed to be unknown, there is no cloudless reference 
available as a basis for the comparison. Therefore, the mean 
value of a single scene feature f in the corresponding previous 
images can be considered as reference and Δf(Nt)=f(Nt)-
∑1≤i≤30f(Nt-i)/30 can be used as feature (Jedlovec, 2009). 
 
Furthermore, instead of comparing features, the images can be 
compared directly. As clouds induce many changes in the 
images, a cloudy image usually has a weak correlation with 
other images of its time series. Thus, the maximum correlation 
of the considered pixel and its neighborhood Nt with the 
corresponding neighborhoods Nt-i in the previous images, 
namely ρ(Nt)=max(co-σ(Nt,Nt-i)/σ(Nt)σ(Nt-i) | 1≤i≤30), where σ 
is the variance and co-σ the co-variance, is considered as 
another feature (Lyapustin et al., 2008). For these investigations 
all images of a site have to be mapped on the same grid, 
therefore a sufficiently accurate georeferencing is essential. 
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3.3 Optimization 

Since the use of all proposed features does not necessarily lead 
to the best classification results, especially because some of 
them are very similar, the best feature combination is 
determined by a series of tests. For this task, the first 100 valid 
images of 2018 of Munich are used as training data and of 
Stuttgart as test data; the same dataset was used to define the 
hyperparameters of the Random Forest. To reduce the search 
space, the best combination of single scene features is 
determined first and afterwards they are added or replaced by 
the multi-temporal features. To further reduce the number of 
combinations, single scene features were grouped based on their 
correlation. Then all possible combinations of features were 
tested automatically in several runs for classification with the 
defined Random Forest, using only one feature from each group 
at a time. In several runs it is tested to completely omit single 
groups as well. The feature importance estimated during 
training is considered. 
 
Overall, Contrast (0) and δLnorm (1) are always among the most 
important features. Along with µLDNB (2) concerning cloud 
albedo and optical thickness as well as σ2LDNB (3), Energy (4), 
and Laplace (5) concerning scattering by clouds, they prove to 
be the best combination. Here, Energy and Laplace only lead to 
minor improvements. 
 
Based on this combination, multi-temporal features are included 
by adding them to the single scene feature vector or replacing 
their single scene equivalents. The feature ρ is considered as an 
optional feature. The features ρ (6) and Δσ2LDNB (7) as the only 
temporal equivalent significantly improve the classification 
results; Δσ2LDNB either by supplementing or replacing σ2LDNB. 
The improvements by adding one feature after another are 
illustrated in Figure 5. As cloud conservative ECM products are 
used, the method itself is as well cloud conservative. 
 

 
Figure 5. OA (blue), BA (orange), F1 cloud (green), F1 clear 
(red); number i indicates use of set of features {0,…,i-1,i}. 

 
 

4. RESULTS 

We consider the first 100 valid images of 2018 of Munich as 
training data as well as the first 30 valid images of 2018 of 
Stuttgart, Brussels, New Orleans for populated areas and Oil 
Platforms, Desert, Snow for specific land cover types as test 
data. Thus, the different conditions concerning Moon 
illumination are covered. As illustrated in Figure 6, the defined 
algorithm achieves an OA of 70% and a BA of 67% for all test 

sites as detailed in Table 2. F1 of 0.77 for cloudy and 0.57 for 
clear skies are obtained. The results of the cloud class are better 
than those of the clear class which is mainly caused by the high 
recall of the cloud class, whereas the precisions are similar. This 
corresponds to the expectations, because the cloud class is 
intentionally optimized. 
 

 
Figure 6. OA (blue), BA (orange), F1 cloud (green), F1 clear 

(red) for all test sites and single test sites 
 

 Classification Result  
cloudy clear Recall 

Ground 
Truth  

cloudy 2,053,770 324,269 0.86 
clear 868,699 803,262 0.48 

 Precision 0.70 0.71  
Table 2. Confusion matrix for all test sites 

 
4.1 Test Sites 

Figure 6 illustrates the performances of the classifier for the 
different test sites. Overall, the three urban test sites perform 
best in terms of BA, which is expected due to the exclusive 
training with an urban site and the focus in the realization of the 
algorithm on such data. By far the worst results are obtained for 
Desert. Analyzing the results separated by F1 for cloudy and 
clear skies, there are even greater differences between the 
considered test sites, which is an effect of the different class 
distributions in the data. For example, Stuttgart and Snow have 
small ratios of clear sky pixels, an advantage for the cloud 
conservative algorithm to achieve a high F1 for cloudy skies 
compared to, for example, New Orleans with a balanced class 
distribution. For Stuttgart and Brussels the results are better 
than the results for all test sites, especially with F1 of at least 
0.85 for cloudy skies. Thus, for test sites with strong light 
emissions, which are similar to the training site, the method 
works well.  
 
For New Orleans and Oil Platforms similar results are obtained. 
Their F1 of 0.7 for cloudy skies is worse than for Stuttgart and 
Brussels, although similar results are expected for New Orleans. 
However, the detailed performance for New Orleans and Oil 
Platforms is quite different. While the classifier still tends to 
classify too many pixels as cloudy skies (high recall with low 
precision of the cloud class) for New Orleans, for Oil Platforms 
the opposite occurs. Clouds over oceans are invisible without 
illumination of the Moon. Also, the blurring effects of light 
emissions from the surface by clouds do not occur. Therefore, 
cloudy and clear skies are not distinguishable for the classifier. 
This is confirmed as the best results for Oil Platforms are 
obtained with Moon illumination.  
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For Desert the interaction of Recall and Precision is essential. 
Although 84% of the clouds are detected, only 22% of the 
pixels in the resulting cloudy class are correctly classified. For 
Snow both Recall and Precision of the cloudy class are good.  
 
4.2 Test Scenes 

Not only between the different test sites, but also between the 
scenes of one test site there are large differences in the quality 
of cloud detection. Therefore, good and bad results for some 
test sites are analyzed to derive the reasons for these variations. 
For Stuttgart, the overall best classification is achieved and the 
best results – similar for Brussels and New Orleans – are 
obtained for heavily cloud covered images, where the structure 
of the metropolis is blurred, as illustrated in the first two rows 
of Figure 7. This corresponds to properties characterized by 
some of the features. Considering the worst results for Stuttgart, 
they sometimes agree better with the visual impression of the 
images than the corresponding ECM product, as illustrated in 
Figure 7. This is similar for other images and other test sites. 
For example, for the second worst result (row 3) a cloud is 
clearly visible at the lower right edge of the DNB product, 
which was correctly classified but is not part of the ECM 
product. However, for thin clouds leading to a limited blurring 
as for the worst result (row 4), the decisions of the classification 
are uncertain.  
 
For Desert the in total worst result is achieved. It explains the 
behavior concerning illumination by the Moon. As illustrated in 
Figure 7, in the worst results (rows 7 and 8) all pixels are 
classified as clouds with exception of the artificially illuminated 
bank of the Nile, although the images are not cloud covered. 
For the second best result for Desert (row 6) this is less often 
the case. Between these cloudless situations the appearance of 
the surface considerably differs due to different illuminations by 
the Moon and the large surface albedo of sand. For the worst 
results, the scenes are illuminated by the moon, for the best not. 
When illuminated by the Moon, the vast desert resembles 
clouds which leads to the described classification errors. 
 
Similar, in the worst results for Snow artificially illuminated 
surface structures are correctly classified as clear, but the Moon-
illuminated and snow-covered mountains are incorrectly 
classified as cloudy, because they are confused with clouds. 
However, also the opposite effect occurs, where areas with high 
darkness and low inhomogeneity are incorrectly classified as 
cloudy. This is explained by the use of Munich as training site. 
For clear skies there are no extended dark areas in the training 
set, but rather a high inhomogeneity because intensities of 
neighboring pixels are often highly different due to highly 
variable artificial lighting in urban structures. 
 
In general, the influence of the illumination by the Moon on the 
results can be analyzed by considering the relation between OA 
and estimated Moon illumination Lm for each scene. For all test 
sites except Desert, an OA of less than 40% only occurs in the 
absence of Moon illumination. Thus, in general Moon 
illumination mostly has a positive effect on the results. 
Considering the test sites individually, a dependence of OA and 
Moon illumination is recognizable especially for Oil Platforms 
and Desert, which confirms the observations described 
previously. While an increase of Moon illumination has a 
positive effect on the OA for scenes of the Oil Platform site, it 
has the opposite effect on Desert. 
 

 
Figure 7. Best (rows 1, 2, 5, 6) and worst (rows 3, 4, 7, 8) 

scenes of Stuttgart (rows 1, 2, 3, 4) and Desert (rows 5, 6, 7, 8); 
left: DNB, right: ECM, 

middle: result of classification (blue: cloud, black: clear) 
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4.3 Single Scenes vs. Multi-Temporal Scenes 

Let us compare the cloud classification results not using or 
using the multi-temporal beside the single scene features. 
Overall, additionally considering multi-temporal features led to 
minor improvements of the cloud detection for all test sites. 
However, an improvement for F1 for clear skies of at least 0.04 
is achieved only for Oil Platforms and Snow and for F1 for 
cloudy skies by 0.09 for Oil Platforms only. All other 
improvements are below 0.02. The difference between these and 
the urban test sites, where the multi-temporal features have 
limited influences, is the significant difference in the presence 
of artificial lighting. Because of the higher inhomogeneity of 
lighting in urban areas, small inaccuracies in the geolocation 
lead to large deviations in the multi-temporal features. In this 
case the comparisons of time series are no longer valid. Thus, 
for urban areas an accurate co-registration is more important for 
the success of temporal considerations than for unpopulated 
areas with lower inhomogeneity. For example, consider the 
differences in the co-registration of Stuttgart in the second 
worst result, which is partly free of clouds, and in the second 
best result, which is covered by clouds, as illustrated in 
Figure 7. The cloud virtually lifts the city from surface to cloud 
elevation and shifts the geolocation of the city, especially 
depending on the tilting angle, terrain, and cloud elevation. 
Here, these effects result in the limited improvements of the 
classification for urban areas using multi-temporal features. 
 
4.4 Training Data 

Let us consider the choice of training data. The classifier was 
trained using only one urban area, namely 100 scenes of 
Munich. However, the aim for accurate classifications is to have 
a sufficient data set representative for all situations. We 
therefore analyze how the diversity or type of the training sites 
and the number of training scenes affects the quality of the 
cloud detection results. Figure 8 illustrates the BA of the 
semantic segmentation of the six test sites using different 
training data sets. As an extreme situation, the exclusive usage 
of the first 100 valid images of 2018 of Open Ocean (0100), an 
area without artificial lighting, as training data leads to bad 
classification results as expected. The only exceptions are Oil 
Platforms, which also mainly consists of an ocean. But for Oil 
Platforms good results are also obtained, if only urban areas are 
used for training. Thus, the selection of the training sites and 
scenes is essential. 
 
4.4.1 Adding Training Sites: Let us consider training the 
classifier not only with Munich (1n), but with two further 
training sites, namely adding Milan and Nagercoil (2n) and 
further adding Open Ocean (3n), where the first valid images of 
2018 are used. These sets are selected such that the diversity of 
types of land cover is increasing. With regard to the diversity 
and type of training sites, there is a tendency for better results 
achieved with less different sites considering an in total 
equivalent number of training scenes. In this case, the time 
series per site gets shorter by adding sites, which makes the 
multi-temporal features less meaningful. Furthermore, not only 
the land cover types represented in the training data have 
influences on the results, but also the class distribution. For 
example, if an image covered by clouds has to be classified, 
having only few examples of cloudiness in the training data 
results in lower robustness, as the cloudy class is only 
influenced by few points; independent of the land cover type. 
Therefore, namely because of few examples of cloudiness in the 
training data compared to the test data, adding Open Ocean 

to the training sites worsens the results for almost all test sites  – 
not necessarily because the area is not artificially illuminated. 
 
4.4.2 Adding Training Scenes: Let us consider the classifier 
is trained with 200 and 300 scenes in addition to 100 scenes for 
the different selected sets of training sites. As expected, the 
quality of the results increases with the number of considered 
images. Furthermore, the quality of the results for the clear class 
is typically more influenced by the variation of the training data 
than that of the cloudy class. And it is advantageous if the 
training sites are similar to the test sites – both in the land cover 
type and in class distribution. For example, consider training 
data set (1) with 100 scenes and (2) with 300 scenes, which 
fully contains (1). The latter leads to the expected improvements 
for all test sites. However, the extent of these effects depends on 
the test site. For example, for Stuttgart the results partially even 
worsen, when the number of training scenes is increased. 
Therefore, a careful selection of the training data is essential. To 
obtain optimized results, the training sites have to be adapted to 
the characteristics of the test sites to which the method is 
applied. Further improvements are achieved by increasing the 
number of scenes. 
 

 
Figure 8. BA for all test sites (grey) and single test sites; 

number in indicates n training scenes of training sites (i) are 
considered in equal shares 

 
4.5 Radiometric Sensitivity 

Finally, the influence of the quality of the night-time images is 
investigated. Therefore, changing the radiometric sensitivity 
from the specified 3×10-9 to 3×10-8 and 3×10-7 Wcm-2sr-1 is 
simulated. The BA for all test sites changes from 67% to 57% 
and 52% as expected. 
 
 

5. CONCLUSIONS 

We realized and analyzed an algorithm based on Random Forest 
for cloud detection in night-time panchromatic visible and near-
infrared satellite imagery focusing on urban areas. The 
classification was trained and tested on DNB imagery using 
ECM as reference, considered Moon illumination and especially 
no information based on thermal infrared data. Features on 
contrast – describing the scattering by clouds especially for the 
inhomogeneous artificial Earth’s surface light emissions – and 
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normalized difference of Moon illumination and measurement – 
describing the Earth’s surface compared to the cloud albedo and 
optical thickness especially in presence of Moon illumination – 
were of major relevance. Overall accuracies of up to 85% for 
urban areas were obtained. These investigations lead to 
improvements of methods for existing missions as well as 
support realizations and analyses of algorithms for future 
missions. To operationalize the method, more training and test 
sites and scenes have to be considered as well as the features on 
single and multi-temporal scenes have to be detailed and 
refined. Instead of binary cloud masks also cloud probability 
maps and more detailed information such as cloud albedo and 
optical thickness shall be derived to support next processing 
chains. Furthermore, an evaluation on the consideration of 
further external operational services such as on land cover types 
based on global, for example, static maps or Sentinel products, 
or on cloud information based on geostationary weather 
satellites has to be performed. Concerning future missions for 
night-time VNIR satellite imagery, advantages of multi-spectral 
data for deriving atmospheric and cloud parameters – also with 
dedicated spectral bands – have to be investigated. 
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