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ABSTRACT:

Nowadays, object detection is considered as an unavoidable aspect that needs to be addressed in any robotic application, especially
in industrial settings where robots and vehicles interact closely with humans and objects and therefore a high level of safety for
workers and machines is required. This paper proposes an object detection framework suitable for automated vehicles in the factory
of the future. It utilizes only point cloud information captured by LiDAR sensors. The system divides the point cloud into voxels
and learns features from the calculated local patches. The aggregated feature samples are then used to iteratively train a classifier
to recognize object classes. The framework is evaluated using a new synthetic 3D LiDAR dataset of objects that simulates large
indoor point cloud scans of a factory model. It is also compared with other methods by evaluating on SUN RGB-D benchmark
dataset. The evaluations reveal that the framework can achieve promising object recognition and detection results that we report as

a baseline.

1. INTRODUCTION

Interpretation of point cloud data is considered as an inevitable
step in the development of a perceptual component of most of
the recent robotic applications. It can provide useful informa-
tion about the surrounding environment such as the location of
objects and obstacles. Unlike image-based object detection, ob-
ject detection based on point cloud can determine the exact 3D
coordinate of the objects and help to plan the subsequent steps
such as object manipulation or obstacle avoidance in a naviga-
tion scenario. Such a system can help to produce smart indus-
trial robots for factories of the future, therefore scaling down
the ergonomic concerns while improving the productivity and
quality of the working environment.

Recent advancements in remote sensing technologies have been
resulted in manufacturing sensors that capture 3D point clouds
with a higher accuracy which makes them relatively robust agai-
nst challenging scene characteristics (illumination, noise, etc.).
In contrast, point clouds have irregular representations that make
them not a suitable input for typical CNNs. To avoid the pro-
blem of irregularity in the point clouds, most of the current ob-
ject detection approaches rely on methods based on 2D detect-
ors. Such methods either extend 2D RGB detectors from im-
ages to detect objects in 3D or generate 2D images from point
clouds in order to feed them to the detection network. For in-
stance, in (Song, Xiao, 2016) and (Hou et al., 2019), an ex-
tended version of Faster and Mask R-CNN are applied to 3D.
Usually, 3D irregular point clouds are voxelized and conver-
ted to regular grids, where a 3D detector is applied to those
grids. These methods are usually subjected to high computa-
tional costs caused by costly 3D convolutions.

On the other hand, methods such as (Chen et al., 2017) (Zhou,
Tuzel, 2018) project 3D point clouds to 2D bird’s eye view
(BEV) images, and similar to regular 2D cases, apply 2D de-
tectors on the images. Despite being useful in some scenarios,
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these methods overlook enormous amounts of geometric in-
formation that can be critical, particularly in indoor environ-
ments. In such scenarios, as there are lots of clutter and oc-
cluded objects, using bird’s eye view is not an effective option.
For instance, in Frustum PointNet (Qi et al., 2018), there is a
two-step detection network, such that 3D detections in the se-
cond step completely rely on the 2D detections in the first step.
Using front-view RGB images, in the first step, objects are loc-
alized and their 2D bounding boxes are retrieved. In the second
step, 3D frustums produced from the 2D boxes are utilized to
localize objects in point clouds. These methods are highly de-
pendent on 2D detectors in such a way that if the 2D detector
can not detect an object, the 3D detector will also miss the ob-
ject entirely in the point cloud.

Some architectures (Qi et al., 2017b) (Wang, Posner, 2015) uti-
lize the sparsity of the cloud, only by considering the sensed
points and convert them into regular structures. Directly pro-
cessing the points can also prevent information loss caused by
the quantization procedures. Therefore, a straightforward way
for object detection is to represent the whole point cloud with
such architectures (similar to the 2D detectors) and produce
object proposals directly from the learned features. These ap-
proaches work in a two-dimensional case since the object cen-
ter is a visible pixel in the image. However, this is not an
advantageous solution in presence of sparsity, as is the case
in 3D point clouds. In point clouds, the object center is not
visible and it is usually far from the captured surface points.
Such networks have therefore difficulty to aggregate the fea-
tures in the local neighborhood of the object centers (unlike 2D
cases). Increasing detection range can not even help, as it adds
on further clutters and points from adjacent objects to the de-
tection result. To mitigate this issue, some methods such as
Hough VoteNet (Qi et al., 2019) propose a voting mechanism
that generates points to estimate the object centers which are
later will be aggregated to produce object proposals. This me-
thod is efficient and well-adapted for indoor scenarios, where
there are lots of occlusions and methods based on bird’s eye
view will fail. Motivated from these studies, in this work, we
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Figure 1. Architecture of the proposed method illustrating object detection procedure

propose a new framework for object detection based on fea-
ture aggregation in the context of the factory of the future. The
framework is adapted to improve the perceptual capabilities of
Automated Ground Vehicles (AGVs) in the factory field. To
this end, first, the acquired point cloud is passed to a prepro-
cessing module that prunes the point cloud and generates the
features. Then the point cloud is segmented into local patches,
where features are aggregated and constitute the final object
proposals. An object classifier iteratively trained through hard
negative mining is used to determine object classes. Our con-
tribution in this paper is three-fold: Firstly, we propose a new
framework (Section 3) that is capable of object detection by fea-
ture aggregation from large point clouds using only point cloud
information in cluttered indoor scenes. Secondly, we provide a
challenging, partially-labeled synthetic object classification and
detection dataset (Section 4) suitable for testing object detec-
tion frameworks. Our dataset introduces new challenges, spe-
cific for indoor industrial environments. Finally, using our de-
veloped framework, we produced baseline object recognition
and detection results on collected dataset (Section 5). In addi-
tion, we evaluate its performance on challenging SUN RGB-D
dataset using only geometric point clouds as input. We provide
a detailed comparison to available methods in the literature that
use only geometry or both geometry and RGB information.

2. RELATED WORK
2.1 3D Object Detection using Point Cloud

Previously, the proposed object detection methods were mostly
as an extension of 2D approaches. Some methods use template-
based detection approaches (Nan et al., 2012) (Li et al., 2015)
and some others extended the use of sliding window detec-
tion (Song, Xiao, 2014) or feature engineering (Ren, Sudderth,
2016) to 3D. Object detection becomes challenging especially
in terms of instance-based segmentation where most of the stud-
ies (Gupta et al., 2010) (Reitberger et al., 2009) (Wu et al.,
2013) applied in urban environment in order to detect bound-
ing boxes of individual objects in a cluster of similar objects,
such as trees alongside road corridors.

Recently, there is a burst of interest in using deep neural net-
works that resulted a torrent of studies which achieved state-of-
the-art performance in object detection. These networks per-
form efficiently when they work directly with 3D sparse in-
puts. In (Song, Xiao, 2016), they divided the point clouds into
voxels and applied 3D CNN to learn features and to generate
3D bounding boxes. Another voxel-based method is Voxel-
Net (Zhou, Tuzel, 2018), which is an end-to-end deep network.

It divides a point cloud into equally spaced 3D voxels and trans-
forms a group of points within each voxel into a unified feature
representation also known as Voxel Feature Encoding (VFE).
Encoded point cloud is given to the region proposal network
(RPN) to produce detections. PointPillars (Lang et al., 2019)
is also an end-to-end architecture with 2D convolutional layers.
It uses a novel encoder that learn features from pillars (vertical
columns of the point cloud). First, the raw point cloud is con-
verted into a stacked pillar tensors and pillar index tensors. The
encoder uses the stacked pillars to learn a set of features that
can be scattered back to a 2D pseudo-image for a convolutional
neural network. The features from the backbone are used by de-
tection head to predict 3D bounding boxes for objects. PointPil-
lars run in 62 Hz and currently is the fastest method available.
Transform, rotate and scale of raw point clouds are easy and
straightforward. SECOND (Yan et al., 2018) uses this property
to perform data augmentation on point cloud which boosts the
performance of the network and speeds up the convergence pro-
cess. It also introduces a new angular loss function that resolves
the large loss values produced when the angular difference of
the predicted bounding boxes and the ground truth bounding
box are equal to w. The framework takes raw point cloud as
input and converts it through a two layers voxel feature encod-
ing (VFE) and a linear layer. Finally, a region proposal network
produces the detections.

By increasing the complexity of working directly with 3D point
cloud data, especially in an environment with a large number of
points, some other types of methods (Ku et al., 2018, Ren et al.,
2018) try to use projection to reduce the complexity. A popular
approach in such methods is first to projects the 3D data into a
bird’s eye view before moving the data forward in the pipeline.
They exploit the sparsity in the activation of CNNs to speed
up inference. Similarly, ComplexYOLO (Simon et al., 2018)
converts a point cloud into RGB BEV map, where the RGB map
is encoded by a grid map using the CNN network. Inspired by
the YOLO architecture for 2D object detection (Redmon et al.,
2016), the network predicts five boxes per grid cell. Each box
prediction is composed by the regression parameters and object
scores with a general probability and class scores.

However, the bird’s eye view projection and voxelization and
in general 2D image-based proposal generation suffers from
information loss due to the data quantization. These methods
might fail in indoor challenging scenarios because such scenes
can only be observed from 3D space and there is no way for
a 3D object box estimation algorithm to recover these kinds of
failures.
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2.2 Learning Point Cloud Representations for Detection
and Segmentation

Instead of the above-mentioned methods that represent the point
clouds as voxels or in multimodal formats, these methods learn
features directly from the raw point cloud. This direct utiliza-
tion of point cloud is extremely efficient and increases the speed
of the classification and segmentation architectures. PointNet (Qi
et al., 2017a) learns a higher dimensional spatial feature repres-
entation for each 3D point and then aggregates all the points
within a small 3D volume (typically an occupancy grid cell) in
order to model a 3D neighborhood context. However, Point-
Net lacks the ability to capture local context at different scales.
The follow-up work PointNet++ (Qi et al., 2017b) introduced a
hierarchical feature learning framework that improved the fea-
ture extraction quality by considering the local neighborhood
of the points. Direct interaction of these methods with the raw
point data makes them efficiently run in real-time.

Most of these methods work on outdoor autonomous driving
scenarios to detect cars and pedestrians and use BEV for re-
presenting the point clouds. Therefore, they are not a suitable
choice for an indoor scenario, where there are lots of occlusions
and clutter in the scene. In a factory, there are lots of racks
where lots of objects will be occluded and therefore BEV rep-
resentation will end up an enormous loss of 3D information,
which accordingly will lead to poor detection results. Plus,
a good many methods utilize RGB information as input. Al-
though images are rich in perceptual information, our proposed
framework considers efficiency and confidentiality in industrial
factories by using only point cloud information. Moreover, it
is flexible in using various feature extraction backbones. The
feature aggregation module can use any kind of feature that is
provided by the feature extraction module of the framework.

3. PROPOSED FRAMEWORK

The proposed framework consists of five main components (see
Figure 1): a preprocessing block that takes a point cloud as in-
put and performs several operations such as pruning, cropping,
calculating grids and producing sparse representation. The res-
ulted voxels are used for calculating features which represent
the geometry of the contained points by a feature extraction net-
work. Based on the calculated features, a segmentation method
is used for partitioning the patches of the calculated local fea-
tures into individual object segments. The aggregation block
takes these segments and calculates the final object proposal
feature by concatenating features of the constituent voxels. Fi-
nally, a deep convolutional network based classifier identifies
the class type of the proposal. The classifier is initially trained
with a set of labeled object instances as well as a small set of
a background class. The classifier makes two types of errors:
false positives and false negatives. After several iterations, the
false positives are incrementally collected in the background
set. Therefore, the classifier is iteratively trained with on-the-
fly generated instances.

3.1 Pre-processing

The input for the ground surface detection algorithm is a trans-
lated point cloud D from each scan. The point cloud is trans-
lated in a way that the ego-vehicle is the origin of the coordin-
ate system. Therefore, P; can be considered as a set of the
3D point clouds at time ¢ and P = {P;—pm,...,Pi—1,P;} as
the set of current and last m point clouds. Similarly, set N =

{Ni—m,...,Ni—1, N;} can be assumed as translation and ro-
tation parameters of the vehicle in the Euclidean space, where
each consists of a three by three rotation and a one by three
translation vector: N; = [R;|7T;]. To transform the point cloud
in the current time from vehicle coordinates to global coordin-
ates, we can apply the following transformation to the point
cloud P: R; x P; + T;. Moreover, we can combine several
scans to create a dense point cloud, since 12 sensors are avail-
able in the recorded dataset. When the transformation para-
meters among the sensors are available, we can merge points
from different sensors by aligning the source cloud to the target
point cloud coordinate to construct the dense point cloud. This
process can be done efficiently by the Iterative Closest Point
(ICP) algorithm (Rusinkiewicz, Levoy, 2001). The output is a
point set of tightly aligned point clouds. Finally, a combined
dense point cloud is obtained knowing the correct transforma-
tion from ICP (N. == [R.|T%]) to our target reference frame
(ego-vehicle) and the parameters of each scan V;:

Di = UR;:l X ((Rc X Pc +Tc) - Tk) (1)

where U combines the points from each & = 1,..., K sensor.
The crop operator (Crop(D;)) is also introduced that can crop
the dense point cloud in a range from the ego vehicle. This way,
a range value can be assigned by considering different criteria.
For instance, a range very close to the vehicle can be considered
as the critical region and object detection algorithm can be used
in this cropped region with higher accuracy. A pruning operator
(Prune(D;,)) is utilized that takes the given point cloud and
prunes it in a given range. This way, we sub-sample the point
cloud to a lower number of points to gain efficiency. By default,
we prune the point clouds at 30 cm. Finally, the point cloud is
discretized into fixed-dimensional grid voxels. Compared to
RGB images, 3D point clouds are sparse and most of the space
in such data is unoccupied. To exploit the sparsity of the point
cloud only occupied grids are kept and the rest is discarded.
This is critical for feature extraction step as it maps unoccupied
grids to zero feature vector.

3.2 Feature Extraction

We refer to feature vector of a grid G at location (i, j, k) by
fi,j,k. If we consider that each grid has a dimension of (N, Ny,
N.), then we can define set ® as the set of grid indices in the
feature grid to keep track of occupied and unoccupied grid cells.
Therefore, ¢ € ® indicates a specific set of voxel indices in the
whole grid. If the voxel is unoccupied, then its feature set is
mapped to zero (f, = 0) in order to help to generate a sparse
feature set. Our framework is flexible and can utilize any fea-
ture extraction head for the occupied voxels. In this work, we
use a modified version of (Ben-Shabat et al., 2017) for feature
extraction. This object recognition network is adapted to extract
features from a large point cloud grid with a given grid dimen-
sion and create its sparse grid set ¢. This set is used for feature
aggregation in later steps. The utilized network generalizes the
Fisher Vector representation (Sanchez et al., 2013) to describe
3D point cloud data uniformly in order to use them as input for
deep convolutional architectures. Therefore, to extract features
of only one voxel, if X = p; where ¢t = 1...7T is considered as
a set of T 3D points in voxel (G; of ¢) of a given point cloud,
we can define a mixture of Gaussian with & components and
determine the likelihood of a single point p; of X associated
with & component as:

1 e—%(l?—wc)/z;zl(ﬁ—uk) )

u(p) = 427TD/2|21€|1/2
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Figure 2. Result of over-segmentation for generating local object
patches before applying min-cut optimization to final object
segmentation

where D is the number of dimensions of the data points. p and
> are the mean and covariance, respectively. Then, we can
calculate likelihood of all points belonging to G; to mixture of
all £ Gaussian components as:

K
ua(X) = wiuk(X) ©)
k=1

with wy, the weight of k" Gaussian component. Therefore,
given a specific GMM with parameters A and point set X we
can normally calculate its Fisher vector 5° which is sum of
normalized gradients:

@x = Z Vx logux (pe) 4

the soft assignment of each point in the voxel to the GMM com-

ponents can be calculated with its normalized gradient compon-

ents (Yoy,, 9.5 and get concatenated to produce the final
Fisher vector representation of the voxel:

X X X X X X

G, = (Y5 - Y590 -G, Lo

Bk

Ga) )

The feature vector is normalized to sample size. This is a hy-
brid representation that combines the discrete nature of the grids
with the continuous structure of the Gaussian mixtures. The
calculated features create unique representations for grids inde-
pendent of the number of the points as well as invariant to both
permutation and feature sizes.

3.3 Segmentation into Local Patches

For segmentation of the point cloud into individual objects, we
follow lo — cut greedy approach (Landrieu, Obozinski, 2016)
which is a graph-cut method based on the min-cut algorithm
(Kohli, Torr, 2005). It first over-segments a given point cloud
into various partitions using its nearest neighborhood graph.
Later, it iteratively calls min-cut algorithm to minimize the seg-
mentation error. If we describe a point cloud’s geometrical
structure with an unoriented graph G = (V, E) (nodes as points
in the point cloud and edges as their adjacency relationship), we
can achieve optimal segmentation error by optimizing a Potts
segmentation energy function (g) and produces individual ob-

ject segments:

argenll%inZHgi—fin-!-p Z 5(gi — 95) (0)
g

iev i,j€E

where f; is acquired local geometric features. This formula-
tion is beneficial as it uses a regularization parameter (p) that
determines the number of clusters. There is also no need to
set the maximum size of the segments and therefore objects
in various sizes can be retrieved. By solving the optimization
problem, the algorithm generates K non-overlapping partitions
S = (S1,...,Sk) which is used as input for the aggregation
block of the framework. Figure 2 illustrates the process of gen-
erating local object segments.

3.4 Feature Aggregation

Given the feature sparsity set f, and the generated segments
S, object proposal can be generated for the classification step.
Set f indicates non-sparse grid cells that occupy each generated
segment S;. By retrieving these cells, the final representation of
the proposals can be calculated by aggregation of the cell fea-
tures that comprise the segments which are simply a normalized
combination of the occupied cell’s Fisher vector descriptors:

1o _
F=_ D fogtve; @)
j=1

where n is the number of the segments, j is the non-occupied
cell index and w is the weight of the features that can be de-
termined based on the feature type or location of the cell in the
grid.

3.5 Classification

The aggregated point cloud features are received by convolu-
tional network architecture proposed in (Ben-Shabat et al., 2017)
and the object models are trained through back propagation and
optimization of the standard cross-entropy loss function using
batch normalization. The training starts with a small initial set
of background class instances and continues with standard hard
negative mining technique inspired by common image-based
object detectors (e.g. (Felzenszwalb et al., 2009)). In each ite-
ration, the classifier is evaluated on the training set and all the
false positive detections are stored. These negative samples
then are listed in decreasing order and the first NV samples are
collected and added to the background class samples. Finally,
the classifier is trained by the updated training instances and
this process is repeated for several iterations until the desired
result is achieved.

3.6 Post-processing

The detection process can result in multiple overlapping object
bounding boxes because of the dense nature of the dataset that
includes lots of objects placed in a close range from each other.
To avoid this problem, we employ a 3D non-maximum suppres-
sion approach which has been widely used in many detection
tasks (Neubeck, Van Gool, 2006, Felzenszwalb et al., 2009).
First, the detection bounding boxes are listed with descending
order of their detection scores. By comparing those on top of
the list with the currently accepted object list, we can make a
decision to keep them or not. If the overlap of the bounding
box with the previously accepted one is no more than a given
threshold then, it is kept. The bounding boxes overlap is calcu-
lated by intersection over union (IoU) metric.
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Object category  Barrel Bobbin

Box Cone

Pallet Person Truck

No. of instances 1664 28961

32057 404 5651 888 113

Table 1. Details of the annotated objects in the synthetic dataset

Figure 3. Shows a point cloud scan from the factory model in
the synthetic dataset

Figure 4. Vehicle and configuration of the twelve sensors
mounted on it

4. DATASETS
4.1 Synthetic Dataset

We introduce novel simulated dataset representing a scenario in
a modeled factory. In the simulation, a ground vehicle starts
from a specific point in the 3D model of a factory and navigates
throughout the factory and comes back to its primary position.
Figure 3 shows a point cloud retrieved from a scan captured
from the simulated 3D factory model. As it can be partially
seen from the point cloud, there are lots of racks in the model
where at each row of the rack various object types are located.
The objects are interconnected with racks and also the other
nearby object. This introduces difficulties for segmentation and
makes object detection in this dataset a very challenging task.
As shown in Figure 4 twelve sensors (S1 to S12) are mounted
on the vehicle. The 3D sensors have a 120° horizontal and 45°
vertical field-of-view. Each sensor has its own yaw, pitch and
raw angles and records with a maximum scan range of about
100 m.

We evaluate our framework on this dataset. The dataset contains
3 minutes and 20 seconds of simulation consisted of 6389 scans.
The scans are recorded in 30 scans per second rate and each
scan on average includes 80000 points. For evaluations, we
selected 2/3 of the scans (4260 frames) for training and the rest
for testing. For object recognition/detection, there are around
344 objects annotated in the global map of the factory.

Considering the whole scans, the total number of the annotated
object instances in the dataset are 69 738. The initial instances

c) Bobbin

f) Truck g) Pallet

Figure 5. The simulated dataset from the factory model

precision-recall graph
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Figure 6. Precision-Recall curve of the whole dataset after
iterative hard negative mining. The curve is obtained by setting
different detection thresholds and is compared with SVM
3D-DPM baseline

F-Score

Grid Resolution (meters”3)

Figure 7. The effect of grid resolution parameter on accuracy of
detections on the synthetic dataset
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Bobbin
98.55

Pallet
98.99

Person Truck Total
99.21 100 99.84

Cone
95.92

Box
98.05

Object category  Barrel
99.07

Accuracy (%)

Table 2. Results of object recognition on the synthetic dataset using the trained deep classifier

Barrel Bobbin  Box Cone Pallet Person Truck Total (F-Score)
SVM 3D-DPM (Pepik et al., 2012)  0.12 0.634  0.327 0.241 0396 0497 0.194 0.417
Ours 0.038 0964 0.698 0.457 0.651 0.773  0.258 0.793

Table 3. Results of the object detection on the synthetic dataset using the proposed framework

in the background class are around 2000. With the background
class, in total, there are 8 object classes in the dataset. The
annotated objects consist of at least 2048 points. Every frame
in the dataset is accompanied by an RGB image. Figure 5 de-
picts instances of the available objects in the dataset and Table 1
shows the details of the dataset. Unlike other recent datasets re-
corded for autonomous driving scenarios which main focus is
on cars, pedestrians and bikes, our dataset includes seven differ-
ent object classes emphasizing on industrial environment that
are not addressed by most of the current solutions.

4.2 SUNRGB-D

SUN RGB-D is a scene understanding 3D benchmark dataset
consisting of 37 object classes. The dataset includes around
10K RGB-D indoor images with accurately annotated object
categories and orientations. Prior to feeding the dataset into
our framework, the RGB-D images are converted to point cloud
data. For evaluation, we followed the standard protocol provided
in the original study and for comparison, we use 10 commonly
used object categories. This dataset is used to evaluate per-
formance of the proposed framework in real-world scenarios,
enabling us to compare with state-of-the-art.

5. EXPERIMENTS

To evaluate performance of the framework, we use mean av-
erage precision (mAP) and F-score metrics (calculated as F' —
score = 2 X %ﬂigiig%). The intersection over union
threshold for the reported best results is set to 0.6 for the syn-
thetic dataset while it is set to 0.25 for SUN RGB-D dataset.
Table 2 shows the results of the object recognition using the
trained final classifier. For training the network, the batch size
is set to 64, decay rate to 0.7 and learning rate to 0.001. For
the representation of the feature vectors, the number of Gaus-
sian functions and their variances are empirically chosen to be
5 and 0.04, respectively. The minimum number of points for
an object is 2048. For optimization, Adam optimizer is used.
For training, only 50 epochs were used on an Nvidia Geforce
RTX 2060 and each training iteration took about two hours on
synthetic (and 10 hours on SUN RGB-D datasets). The ob-
tained average class accuracy is 99.84% (mean loss is 0.010).
As it can be noticed, the trained classifier achieved a very high
recognition accuracy. It is even possible to further increase ac-
curacy by increasing the number of epochs at each iteration.
Table 3 and Figure 8 show object detection results on our data-
set. The table presents the results which are obtained after the fi-
nal training iteration (the hard negative mining iteration is set to
50). We achieve satisfactory performance in most of the classes.
However, for some classes, such as “Barrel” and “Truck”, the
detection results are not desirable. This is related to several
problems. In some scenes (especially, the ones including “Bar-
rels”) the object points are so interconnected that the segment-

Figure 8. Qualitative results of the proposed object detection
framework applied on a sample scene from our synthetic dataset

ation algorithm fails to separate the object and therefore, gen-
erates improper proposals. Moreover, the provided dataset is
partially annotated. Thus, for some classes, such as “Box” and
“Bobbin”, the classifier performs a correct detection of the ob-
jects (TP) which are not initially annotated in the ground-truth
(“Bobbin” instances on the back row of the racks on the right
side of Figure 8). Those instances can be added to the back-
ground class in the training set and reduce the accuracy of the
classifier and detection. The dataset is also not balanced and
for some classes, such as “Cone” and “Truck”, the training data
is not sufficient. The Precision-Recall curve in Figure 6 under-
lines that despite all these challenges, the overall accuracy of the
baseline framework is promising. Resolution of the grid cell is
an important factor in producing accurate detections. Figure 7
depicts influence of this parameter on performance. As the res-
olution of grids increases, the performance increases until it
tops when the grid resolution is 0.2 m?. Increasing grid resolu-
tion further makes the feature blocks bigger hence less detailed.
Accordingly, the feature aggregation is affected in a negative
way which decreases the performance. We compare perform-
ance of our framework on synthetic dataset with (Pepik et al.,
2012) which is an extension of 2D deformable part models to
3D. Table 3 and Figure 6 show that our framework significantly
outperforms this baseline (by 0.39 in F-score). Higher perform-
ance of 3D-DPM method (which is not a CNN based method)
on the “Barrel” category explains the low performance of our
method on classes with low number of instances and thereby
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Method Input type bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP
DSS (Song, Xiao, 2016) Geo & RGB 44.2 78.8 11.9 61.2 205 6.4 15.4 53,5 503 789 42.1
COG (Ren, Sudderth, 2016) Geo & RGB 58.3 63.7 31.8 622 452 15.5 27.4 51.0 513 70.1 47.6
2D-driven (Lahoud, Ghanem, 2017)  Geo & RGB 43.5 64.5 31.4 483 279 25.9 41.9 504 37.0 804 45.1
Ours Geo only 61.3 84.9 29.2 442 375 26.4 52.7 624 472 884 53.4
F-PointNet (Qi et al., 2018) Geo & RGB 433 81.1 333 642 247 32.0 58.1 61.1 51.1  90.9 54.0
VoteNet (Qi et al., 2019) Geo only 74.4 83.0 28.8 753 220 29.8 62.2 64.0 473 90.1 57.7
Table 4. Results of 3D object detection on the SUN RGB-D validation set
Scene RGB Predictions Ground truth Scene RGB Predictions Ground truth

“ ’»r

Figure 9. Examples of qualitative detection results on SUN RGB-D dataset. In all set of images from left to right: a RGB image from
test set, predicted 3D bounding boxes by our framework and annotated ground-truth

the network has difficulty to converge in those categories.

We also made a comparison to prior state-of-the-art methods
using SUN RGB-D dataset. To be able to compare with these
methods, we use mean Average Precision (mAP) metric. No-
tice that we use the same set of hyperparameters to train ob-
ject detection network in both datasets. Deep Sliding Shapes
(DSS) (Song, Xiao, 2016) is a 3D CNN based method that uses
RGB images with 3D information together. Cloud of Oriented
Gradients (COG) (Ren, Sudderth, 2016) is a sliding window
based detection method that produces HOG like descriptors for
3D detectors. 2D-driven (Lahoud, Ghanem, 2017) and F-Point-
Net (Qi et al., 2018) use 2D detectors to reduce search space
for 3D detection. VoteNet (Qi et al., 2019) is current state-of-
the-art method that uses Hough voting for 3D object detection
using only point cloud information. As shown in Table 4, we
achieve competitive results compared to the current best me-
thods in the literature. Out of ten categories, we achieve the
best performance in one category (“bed”) and second best per-
formance on three other categories. It achieves third best overall
performance, however, notice that our method and VoteNet are
the two methods that use only geometric information. Other
methods use both RGB and geometry information to perform
object detection. Figure 9 represents qualitative examples of
our framework on SUN RGB-D dataset. Despite various chal-
lenges introduced in these scenes (e.g. cluttered, attached ob-
jects etc.), our framework produces robust detection bounding
boxes. For example, in bottom right and bottom left of the
Figure 9, the chairs and the sofa are attached to the tables, how-
ever, the framework is able to distinguish between them and
produce correct detection boxes. It is interesting to see that in-
terconnected objects make more trouble for the network in syn-
thetic dataset as the density of the point clouds is much higher
than a real scene. It therefore fails to produce correct proposals
and misses on those objects. Similar to synthetic dataset that
the framework was able to detect several similar attached ob-
jects in a scene (such as “Bobbin”s and “Boxes”), it also detects
vast majority of similar objects such as chairs in real scenes (top
right of Figure 9). Like other methods, the proposed framework

has some limitations. Difficulties in segmentation of very dense
and attached objects and false hallucinations of occluded ob-
jects are among them. The future work will target these issues
to further increase the performance in object detection task.

6. CONCLUSION

In this paper, a novel object detection framework is proposed
with a focus on the indoor factory environment. Unlike most
of the recent state-of-the-art methods that use image and point
cloud together, it only uses point cloud information. The fea-
tures of the grid representation are computed and stored as a
sparse representation. These features are restored and aggreg-
ated after local segmentation of the objects. A deep classifier
trained with generalized Fisher representation is employed to
learn object models. The developed framework is evaluated on
a dataset which simulates a factory of the future setting and
also SUN RGB-D object detection benchmark dataset. Based
on the evaluations, the proposed framework achieves a compet-
itive performance in object recognition as well as object detec-
tion task.
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