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ABSTRACT:

Circle and ellipse detection have been a widely discussed topic among the computer vision community. Applying circle detection
methods to satellite images can bring valuable information on urban or industrial areas. A limitation of such methods lies in the
resolution of the object to detect. The smaller they are in the image, the harder it becomes to detect them accurately. In this paper,
we explore several circle detection methods adapted to low resolution satellite images. An algorithm based on level-lines detection
and classification will be presented in this paper along with other well known algorithms. The methods are evaluated in the context
of oil tank detection in Sentinel-2 images where those circular objects can have an observed diameter as small as 2 pixels.

1. INTRODUCTION

Recognizing circular objects in images can bring insightful in-
formation on a scene. This is all the more interesting on satel-
lite images with a wide coverage of the Earth’s surface. Sev-
eral sophisticated algorithms proposing to tackle this problem
have also been proposed such as the Ellipse and Line Segment
Detector presented in (Pătrăucean et al., 2017) and the Hough
Circle Transform (Illingworth, Kittler, 1987).

In this paper we propose to compare these methods to another
one based on Closed Level-Line Extraction inspired by the Fast
Level-Line Transform (Monasse, Guichard, 2000a) on which
the isoperimetric ratio is computed to detect circles. Indeed,
circles are characterized among all other curves as maximizing
the isoperimetric ratio. Extracting the edge map of an image
and observing which closed shape has a high enough isoperi-
metric ratio can therefore be a simple way to detect circles.

The specific context of oil tank detection has been addressed in
several works. Detecting oil depots in satellite images allows
civilian and military actors to assess a region’s economic asset.
Several papers have proposed methods to tackle this problem
such as the one described in (Han, Xu, 2012, Cai et al., 2014,
Ok, Baseski, 2015, Zhang et al., 2015, Soundrapandiyan, 2017)
and more recently in (Zalpour et al., 2019) and (Tadros et al.,
2020).

These papers use two properties of oil tanks. The first one is that
they are cylindrical buildings that appear as circular or ellipsoid
objects in satellite images. The second one is that they usually
are grouped in clusters. State-of-the-art methods take advant-
age of these geometrical characteristics. Han et al. (Han, Xu,
2012) use geometrical properties of circles to detect them from
a saliency map. Then, they filter their detections and extract oil
depots by using a graph-based clustering method. Cai et al. (Cai
et al., 2014) enhance the saliency map method from (Han, Xu,
2012) and use the Hough Transform (HT) for circle detection
and a Support Vector Machine Classifier (SVM) to keep only
oil tanks.
∗ Corresponding author - atadros@ens-paris-saclay.fr

Several machine-learning based oil tank detectors have also
been developed in recent years. The authors of (Zhang et al.,
2015), (Soundrapandiyan, 2017) and (Zalpour et al., 2019) use
feature extractors (SURF, HOG or pretrained neural networks)
on top of which a classifier is trained on an annotated dataset.
On the other hand, (Tadros et al., 2020) proposes a calibration-
free clustering method controlling the number of false detec-
tions.

In the work presented here we will focus on the use of circle
detectors to recognize oil tanks in optical satellite images.

2. OBSERVATIONS

Tanks can appear in various ways in the Sentinel-2 images.
They are commonly white and therefore appear as lighter disks.
However, there is a high variability in the diameters of those
tanks, ranging from 1 to 10 pixels. See figures 1a-1d.

(a) White tank (b) White tanks (c) White tanks

(d) White tanks (e) Floating roof (f) Darker tank

Figure 1. Examples of tanks in Sentinel-2 images.

It is particularly difficult to single out tanks that have a diameter
less than 2 pixels. When the diameter gets larger than 4 pixels,
it is possible to perceive textures (Figure 1a) or curvatures (Fig-
ure 1b) on the roof.
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Those tanks also cast shadows whose length varies between 1
and 5 pixels depending on their height and on the season. This
has the advantage of further highlighting white tanks and could
be used as a complementary information for detecting tanks.

Shadows can also appear inside the so-called floating roof tanks
(Figure 1e). The roof of floating roof tanks are not fixed but
floats on the surface of the stored liquid. The external walls
are therefore higher than the roof and cast a shadow on it. See
Figure 2.

Figure 2. Shadows in floating roof tanks.

Tanks are, however, not always light and can be at the same
grey level or even darker than the ground. See Figure 1f. These
tanks are noticeably more difficult to detect: inside and outside
shadows allow here to differentiate these types of tanks from
other structures.

Furthermore, differentiating tanks from other structures can
sometimes prove difficult as shown in Figure 3. Small square
structures - such as houses - are for instance similar to small
tanks. Roundabouts are very clear examples of round structures
that are not tanks. Vegetation can also sometimes create small
and darker circular shapes that could be mistaken for darker
tanks.

Figure 3. Misleading building: The building on the left is
roughly similar to the tanks on the right.

3. METHODS

Our circle detector applied to oil tank detections is a two-step
process. Firstly, we detect salient objects in the image, one not-
able technique being edge detection. Secondly, we check the
circularity of each of those salient objects and filter out those
that are not circular. These two steps are solved independently:
we can use various combinations of methods of the first and
second step.

3.1 Salient Object Extraction

3.1.1 Minimum of all directional top-hat transforms A
fast local extrema extractor can be obtained by top-hat trans-
forms. As most tanks are represented by lighter or darker small

circles compared to the ground, one can extract them using the
top-hat and bottom-hat transforms (Serra, 1983). The top-hat of
a grey level image I extracts thin lighter elements in the image
I and is obtained as follows:

Tw(I, S) = I − opening(I, S), (1)

where S is a structuring element and opening(I, S) is the mor-
phological grey opening transform of the image I with the
structuring element S.

The bottom-hat of an image I extracts thin dark elements in the
image I and is obtained as follows:

Tb(I, S) = closing(I, S)− I, (2)

where S is again a structuring element and closing(I, S) is the
morphological grey closing transform of the image I with the
structuring element S.

The top-hat or bottom-hat transform with a round structuring
element of diameter d will highlight respectively lighter or
darker elements that are thinner than d in at least one direc-
tion. It will therefore highlight small elements but also lines
and rectangles thinner than d.

As we only want to extract small round elements and not lines
or rectangles, we compute the minimum of directional top-hats
T̂w or bottom-hats T̂b:

T̂w(I, d) = min(Tw(I, Sd)∀Sd), (3)

T̂b(I, d) = min(Tb(I, Sd)∀Sd), (4)

where Sd is a line structuring element of size d. This ensures
that we highlight elements that are thinner than d in all direc-
tions (contrary to any direction for round structuring elements).

In multi-channel images, the top-hats and bottom-hats trans-
forms are applied independently on each channel.

Figure 4 shows a Sentinel-2 image on which we have applied
the top-hat transform with a round structuring element and the
minimum of directional top-hats.

(a) Image (b) Round Top-hat (c) Min. dir. top-hats

Figure 4. Top-hat with a round structuring element vs the
minimum of directional top-hats. Diameter is 11px for both

cases. We can see that the round top-hat retains both the
buildings and the tanks, whereas the minimum of directional

top-hats only retains tanks.

The minimum of directional bottom-hat can detect darker tanks,
but in most cases detect shadows as shown in Figure 5. These
modified top-hat and bottom-hat transforms could therefore be
used in complementary processes to enhance detection.

These transforms can either be used as a preprocessing method
before another method, or directly used to detect tanks by ap-
plying a simple threshold on them. See Figure 6.
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(a) Image (b) M.D. top-hats (c) M.D. bottom-hats

Figure 5. Minimum of directional top-hats vs bottom-hats.
M.D.: Minimum of directional. We observe that top-hats detect
white tanks, whereas bottom-hats tend to detect the shadows of

the tanks.

(a) Image (b) M.D. top-hats (c) Thresh. on (b)

Figure 6. Thresholding on minimum of directional top-hats.
M.D.: Minimum of directional. Thresh.: Thresholding.

3.1.2 Canny-Devernay’s Sub-Pixellic edge detector
Edge detection provides a useful image representation. Most of
the current edge detection algorithms are inspired by Canny’s
method presented in (Canny, 1986). Let I be an image. To
detect the edges of I its gradient is first computed,

g = ∇(h ∗ I), (5)

where h is a Gaussian kernel of standard-deviation σ. An edge
point strength is defined as the norm of the gradient at this point
||g(·)||. Canny’s method keeps points whose gradient mag-
nitudes are local maxima along the direction of the gradient as
proposed by Haralick (Haralick, 1982) .

After this non-maxima suppression step, Canny proposed to
clean the edge map from spurious low contrasted structure by
applying a high threshold H and a low threshold L on the edge
points strength. If the strength of the gradient at a pixel is higher
than H , the edge point is validated; if it is between H and L the
edge is validated only if it is connected to another validated
edge point.

We are primarily interested in detecting oil tanks larger than
20 meters. For medium resolution images acquired with satel-
lites such as Sentinel-2, this means that the smallest tanks can
have a diameter as small 2 pixels. Therefore, we need to detect
edges at a sub-pixellic precision to be able to detect circles in
the next step. To achieve this, we use the method presented by
Devernay (Devernay, 1995) which adapts Canny’s method by
using a quadratic interpolation of the gradient norm to approx-
imate the sub-pixel positions of edges.

More details on the algorithm can be found in (Devernay, 1995).
Some improvements were proposed in (Grompone von Gioi,
Randall, 2017). All in all, we end up with three parameters to
set for the edge extraction step: σ, H , L.

Automatic parameters tuning In (Fang et al., 2009), the au-
thors proposed to use Otsu’s method as a way to automatically
decide the value of H and L.

Otsu’s method segments an image I by finding a threshold on
the pixel’s histogram that minimises the intra-class variance.

Let τO be the optimal Otsu’s thresholding, (Fang et al., 2009)
defines Canny’s thresholds as

H = τO and L =
τO
2
. (6)

For the experiments we will set L and H using a grid search
approach and the Otsu-based method, that we will refer to as
the “Otsu-Devenay” method in the rest of the paper.

3.1.3 Level-Line Extraction The set of all image level-
lines constitutes a complete image representation, also known
as topographic map. Each level line is actually a local holistic
geometric feature that often corresponds to the boundary of a
shape present in the image. The Fast Level Line Transform
(FLLT) (Monasse, Guichard, 2000a) is a fast algorithm organ-
izing all level lines in an inclusion tree and encoding each level
line as a piecewise affine polygon. The Image Curvature Micro-
scope (Ciomaga et al., 2017) (ICM) filters by affine curvature
motion (Sapiro, Tannenbaum, 1993, Alvarez et al., 1993) the
level lines obtained by this subpixel extraction. This procedure
is more accurate than standard methods using a finite difference
method. To extract the initial subpixel level-lines, a bilinear
interpolation of the image is used (Caselles, Monasse, 2010).
Then, an independent smoothing is performed on the level-
lines by applying the affine scale space (Ciomaga et al., 2010),
through a geometric scheme (Moisan, 1998) that smooths the
level lines and in particular removes pixelization artifacts. At
the end, the Image Curvature Microscope delivers level lines
endowed with an accurate curvature, which are much more
informative on the topology of the objects in the image than
simple edges.

Figure 7. Example of level-line extraction.

For the circle detection, we only extract level-lines with the
highest local contrast in the tree of level lines. In other terms,
the average image gradient across these level lines is higher than
on the next and former level lines in the inclusion tree (Mon-
asse, Guichard, 2000b). This method can replace the edge map
to give a good representation of an image content.

3.2 Shape Classification

The salient object extraction methods presented above, are ef-
ficient ways to simplify an image representation for our circle
detection task. We can then apply methods adapted to this new
representation to answer the problem.

3.2.1 Isoperimetric Ratio Thresholding Once the edges
or the level-lines are extracted from the image, a geometrical
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property of circles can be used in order to detect them. First,
only closed curve are kept. If a chain is closed, it defines a poly-
gon. Let S and P be respectively the surface and the perimeter
of the geometrical shape defined by this closed edge chain. To
classify a closed edge chain as a circle, a threshold is set on the
isoperimetric ratio ρ of the object where ρ = 4πS

P2 . The closer
an object’s shape to a circle, the closer the isoperimetric ratio ρ
is to 1, following the isoperimetric inequality:

4πS/P 2 ≤ 1. (7)

The shape of oil tanks is never perfectly circular in satellite im-
ages as shown in section 2, especially when the resolution is
relatively low. To remove wrong tank candidates, we reject ob-
jects with isoperimetric ratio lower than ρth. Most buildings
and objects appear in satellite images as either circles or poly-
gons, and in particular rectangles. Among the latter, squares
have the largest ρ value, equal to π

4
≈ 0.79. To be sure to reject

rectangular shapes, we set ρth in a range between 0.8 and 1.

3.2.2 Hough Circle Transform The Hough Circle Trans-
form is a well known method for extracting features to detect
circles in images.

In a 2D space, a circle is described by x0 and y0, the coordin-
ates of its center, and its radius r; the points (x, y) of the circle
satisfy the following equation:

(x− x0)2 + (y − y0)2 = r2. (8)

The Hough Space in which we will look for the best parameters
is then a 3D space. We first extract the edges from the image
and we discretize the 3D Hough Space, which can then be rep-
resented by a 3D accumulator matrix, to test various triplets
of parameters. For each triplet, we count the number of edge
points that fall on the circle that it describes. Circles are then
selected by finding the local maxima of this accumulator mat-
rix.

3.2.3 Ellipse and Line Segment Detector - ELSDc
The last detector we shall evaluate is the ELSDc al-
gorithm (Pătrăucean et al., 2017), which jointly detects line
segments, elliptic arcs and circular arcs while controlling the
number of false detections using the a contrario detection the-
ory (Desolneux et al., 2008). This method works in three con-
secutive steps: 1) candidate generation; 2) candidate validation;
and 3) model selection. What follows is a brief summary of the
method; we refer to the original publication for more details.

Candidate generation To avoid testing exhaustively all the
possible geometrical features in the image, a heuristic step is
used to propose a reduced set of candidate. Starting from a seed
pixel, a region growing procedure recursively merges pixels
with similar gradient orientation and a rectangle is computed
that encloses the obtained set of pixels. Then, new seed pixels
are selected at the rectangle end-points and the procedure is re-
peated, resulting in a chain of rectangles. Finally, these chains
are cut into parts according to curvature and three candidate
geometrical features are fit to each part: a polygonal line pd, a
circular arc c, and an elliptic arc t, see Figure 8.

Candidate validation A validation step is applied to candid-
ates, based in the a contrario detection theory (Desolneux et
al., 2008) which implies keeping only the structures which are
too regular to be the result of an accidental arrangements of in-
dependent parts. This theory requires a background model H0

(a) Region chaining (b) Polygonal candidate

(c) Elliptical candidate

Figure 8. ELSDc polygonal line and elliptical arc candidates.
(Figure reprinted from (Pătrăucean et al., 2017).)

and defines the Number of False Alarms (NFA) of an event e
observed up to an error k(e) as

NFA(e) = NT · P
[
KH0(e) ≤ k(e)

]
, (9)

where NT is the number of tests performed in principle and
the right-hand term is the probability of obtaining in the back-
ground model H0 an error KH0(e) smaller or equal to the ob-
served one k(e). The smaller the NFA, the more unlikely the
event e is to be observed by chance in the background model
H0; thus, the more meaningful. Candidates with NFA ≤ ε,
for a predefined ε value are kept as valid detections. It can
be shown (Desolneux et al., 2008) that under H0, the expected
number of tests with NFA ≤ ε is bounded by ε. As a result, ε
corresponds to the mean number of false detections underH0.

In ELSDc, the error of a geometrical event e is measured by the
image gradient orientation, which should be orthogonal to the
geometrical feature. More precisely, for an event e supported
by the set of pixels S(e),

k(e) =
∑
i∈S(e)

∣∣∣∣AngleDifference
(
∇I(i), dir⊥e(i)

)∣∣∣∣
π

, (10)

where, ∇I(i) is the gradient of the image at pixel i, and
dir⊥e(i) corresponds to the normal direction to the geometrical
event e at position i. In this case, H0 corresponds to pixels in
which the gradient orientations are independent random vari-
ables following a uniform distribution on [−π, π). It can be
shown that in these conditions, KH0(e) follows the Irwin-Hall
distribution and the probability term can be upper-bounded by

P
[
KH0(e) ≤ k(e)

]
≤ [k(e)]l(e)

l(e)!
. (11)

where l(e) is the number of pixels supporting the event e.

The formulation is completed by the Number of Test, which
is an estimation of the theoretical number of features of each
kind. In ELSDc and for an n ×m image, the number of tests
is approximated by 2d+1(mn)(d+1)+ 1

2 for a polygonal line of d
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sides, and 18(mn)4 for an elliptical event. The final NFAs are

NFA(pd) = 2d+1(mn)(d+1)+ 1
2

[k(pd)]
l(pd)

l(pd)!
, (12)

for a polygon pd of d sides and

NFA(t) = 18(mn)4
[k(t)]l(t)

l(t)!
, (13)

for an elliptical arc t. (Circular arcs share the same NFA as
elliptical arcs.) Events with NFA ≤ ε are considered as detec-
tion. For this problem, ε = 1 (Pătrăucean et al., 2017).

Model selection For some chains of rectangles, it could happen
that more than one candidate (pd, c, or t) obtains NFA ≤ ε and
therefore are meaningful. ELSDc simply keeps, among those
three, the interpretation with smallest NFA.

4. EXPERIMENTAL VALIDATION

In this section, we will first quantitatively evaluate the methods
we previously presented on a validation site where the ground
truth is known. We will in a second part discuss the influence
of the preprocessing. Another simple preprocessing step has
been considered, consisting of 2× zoom by zero-padding in the
Fourier domain.

4.1 Quantitative results

We have selected a validation site of a refinery containing all
interesting cases: large and small tanks, dark tanks and floating
roof tanks. See Figure 9a. We have annotated the center of all
231 visible tanks. See Figure 9b.

Given the detection results of an algorithm on this image, we
evaluate its performance as follows. First, we take the center of
each detection. We have then two lists: Pdet, the list of detec-
ted points, and Pgt, the list of points in the ground truth. We
then compute the recall, precision and F1 precision metrics as
described in Algorithm 1.

Algorithm 1: Recall, precision and F1 measurements
Input: Pdet, Pgt, tol = 3
S ← all pairs of points Pi ∈ Pdet and Pj ∈ Pgt
D ← distance of each pair in P
I ← Argsort D from lowest to highest
Remove all elements in I where D[i] > tol
TP← 0;
foreach i in I do

Pi, Pj ← S[i]
d← D[i]
if Pj has already been assigned then

continue;
Assign Pj to Pi
Increment TP

recall← TP
|Pgt|

precision← TP
|Pdet|

F1← 2 precision×recall
precision+recall

return recall, precision, F1

As our methods are parametric, we evaluate their performance
on a set of plausible parameters as shown in Table 1. In section
3 we stated that the isoperimetric threshold should be above

(a) Image

(b) Image + ground truth

Figure 9. Image and ground truth of the validation site.

0.8 to avoid detecting squares, but it appears that most of the
shapes detected by the level-lines extractor have isoperimetric
ratios under this value as we can see in Figure 10. We extend
then the range of tested values for ρth to 0.2, see Table 1.

Method Parameters Tested values
Devernay L 2, 5, 7, 10, 12, 15

H 5, 7, 10, 15, 30, 50
σ 0, 0.3, 0.5, 0.8, 1

Top-hat d 5, 11, 15, 19, 23
Isoperimetric Threshold ρth 0.2 to 0.98 by 0.02

Table 1. Parameters tested for each method.
.

We then select the set of parameters maximizing the F1 score.
Results are shown in Table 2.

Method Precision Recall f1
Devernay+iso 0.882 0.455 0.602
τ -Devernay+iso 0.818 0.468 0.595
Top+Devernay+iso 0.859 0.502 0.634
Top+τ–Devernay+iso 0.849 0.511 0.638
zoom+Devernay+iso 0.703 0.472 0.565
zoom+τ–Devernay+iso 0.725 0.320 0.444
zoom+Top+Devernay +Iso 0.433 0.056 0.100
zoom+Top+τ–Devernay +Iso 0.436 0.324 0.372
Devernay+HCT 0.433 0.131 0.206
τ–Devernay+HCT 0.267 0.035 0.061
Top+Devernay+HCT 0.467 0.061 0.107
Top+τ–Devernay+HCT 0.400 0.051 0.920
zoom+Devernay+HCT 1.0 0.130 0.230
zoom+τ–Devernay+HCT 0.9 0.117 0.207
zoom+Top+Devernay+HCT 0.967 0.130 0.222
zoom+Top+τ–Devernay+HCT 0.9 0.117 0.207
ELSDc 0.5 0.023 0.044
Top+ELSDc 1.0 0.023 0.045
zoom+Level 0.494 0.641 0.558
zoom+Topt+ELSDc 0.930 0.405 0.564
Level-Line+iso 0.864 0.632 0.730
Top+Level-Line+iso 0.699 0.714 0.707
zoom+Level-Line+iso 0.5 0.372 0.427
zoom+Top+Level-Line+iso 0.254 0.645 0.364

Table 2. Oil Tank detection performance. “iso”, “Top” and
τ -Devernay respectively stands for the isoperimetric

thresholding, Top-Hat and Otsu-Devernay methods The methods
have been used with the set of parameters that maximizes the

f1-score.

We observe that the level-line-based method has the best F1
score and it achieves the highest recall when it is preceded
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by the top-hat transform. The ELSDc method seems to at-
tain a really high precision, but on the other hand it has the
lowest recall, meaning that it has only a few accurate detec-
tions. We can also note that the simplest method based on De-
vernay’s edge extraction and isoperimetric thresholding is the
second best method despite its simplicity. The Otsu-Devernay
method seems to present results close to the ones that we can
observe with the Devernay method, while preventing us from
hand-tuning the parameters H and L for the edge extraction.
Detection result with the best configuration for each method
are shown in Figure 11.

Overall, the dark tanks tend to be much more often missed than
the lighter ones. It is not very surprising as the edges are much
less visible than on lighter tanks. Floating roof tanks are often
detected despite the fact that their roof doesn’t appear as per-
fect disks but as ellipses. This is not a very important issue as
ellipses tend to have an isoperimetric ratio closer to circles than
rectangular shapes.

In Figure 12, we show several qualitative examples of tank de-
tection on other sites using the level-line-based method that
achieved the best f1-score. Overall, the observed result in the
validation site seems to generalize well to other areas.

4.2 Preprocessing influence.

0.3 0.4 0.5 0.6 0.7 0.8
isoperimetric ratio

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Figure 10. Histogram of isoperimetric ratio

Two preprocessing on the images have been used on before ap-
plying the methods presented in Section 3. The top-hat, which
help enhancing contrasted areas, and the zero-padding zoom.

Top-hat Transform: Based on Table 2, we note that adding
the top-hat processing always helps to improve the recall but
can lead to a precision loss. For all the methods this can be in-
terpreted quite easily. This transformation increases the gradi-
ent magnitude at the edges by increasing the contrast. This
helps Canny-Devernay’s extraction method which is used for
both the isoperimetric threshold and the HCT. The ELSDc also
uses the gradient information to build its region candidates. The
level-line-based method can also benefit from this processing.
However, the top-hat also bring to light small structures that
would otherwise have been much less visible, creating false
positive and therefore reducing the overall precision.

4.3 Generalisation to other images.

Those models have been calibrated for subpixel circle detection.
We have also tested on PlanetScope images, which have a res-
olution of 3m per pixel, to see if the methods proposed are also
suited for more informative images. As seen in Table 2, only
the Dervernay and leve-line based methods seems promising.
Nevertheless, the later method that seems to perform well most
of the time, struggles when it comes to more resoluted images,

while the Devernay method continue to give decent results. As
shown in Figure 13, the level-line method detects a lot of false
alarm, while Canny-Devernay’s still seems accurate.

5. CONCLUSION

We have presented several circle detection methods adapted for
tank detection on Sentinel-2 images. We have quantitatively
compared them and we have shown how well they generalize to
other sites.

Results are promising despite the low resolution of Sentinel-2
images. There are some areas of improvements, such as the
detection of darker tanks. Applying these detectors on image
series instead of a single image and using additional inputs such
as Sentinel-1 images might further improve their performance.

Moreover, using time series might reduce the illumination prob-
lems as a missed detection at one date might be detected on
another date when the illumination conditions are better.

Code1 and dataset are available online.

(a) top-hat + isoperimetric threshold on
Canny-Devernay’s edges

(b) zoom + Hough circle transform

(c) top-hat + isoperimetric threshold on
level lines

(d) zoom + ELSDc, (the red curves are the
detected elliptic and circular arcs)

Figure 11. Detection result with the different algorithms

1 https://github.com/anttad/SubpixelCircleDetection
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(a) Site 1 (b) Detection on site 1

(c) Site 2 (d) Detection on site 2

(e) Site 3 (f) Detection on site 3

(g) Site 4 (h) Detection on site 4

Figure 12. Results of the circle detection using level-lines detections and isoperimetric thresholding. Left column: Input image, Right
column: Detection result. Low contrast area and dark tanks are hardly detected, while small tanks are accurately segmented.
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(a) PlanetScope Image (b) Detection via level-lines

(c) Detection via
Canny-Devernay’s edge map

Figure 13. Tank detection on a PlanetScope image.
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