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ABSTRACT:

Nowadays, deep-learning-based object detection methods are more and more broadly applied to the interpretation of optical remote
sensing image. Although these methods can obtain promising results in general conditions, the designed networks usually ignore
the characteristics of remote sensing images, such as large image resolution and uneven distribution of object location. In this
paper, an effective detection method based on the convolutional neural network is proposed. First, in order to make the designed
network more suitable for the image resolution, EfficientNet is incorporated into the detection framework as the backbone network.
EfficientNet employs the compound scaling method to adjust the depth and width of the network, thereby meeting the needs
of different resolutions of input images. Then, the attention mechanism is introduced into the proposed method to improve the
extracted feature maps. The attention mechanism makes the network more focused on the object areas while reducing the influence
of the background areas, so as to reduce the influence of uneven distribution. Comprehensive evaluations on a public object detection

dataset demonstrate the effectiveness of the proposed method.

1. INTRODUCTION

In the field of remote sensing image analysis, object detection is
a fundamental and important task which has been widely used
in traffic controlling, urban planning, environment monitoring,
etc.. With the continuous development of remote sensing tech-
nology, rapidly increasing data makes manual detection unreal-
istic. Therefore, automatic object detection has drawn increas-
ing research attention, and researchers have done a lot of work
in this field (Cheng et al., 2016 [Li et al., 2018, Ding et al.,
2019| [Li et al., 2019). With the advance of computer vision and
machine learning, many machine-learning-based methods, such
as saliency detection (Zhang, Zhang, 2017), have been utilized
in object detection of remote sensing images and have shown
excellent performance on some specific tasks. In recent years,
much of the research has benefited from deep learning (Sun et
al., 2016, |Deng et al., 2017, [Tang et al., 2017).

Different from the conventional methods, deep-learning-based
object detection methods can automatically learn the effective
features from the remote sensing images. These methods can
be divided into one-stage and two-stage types according to the
detection process. One-stage methods generate dense anchor
boxes with multiple scales and aspect ratios at different posi-
tions of the images. Convolutional neural network (CNN) is
then used for feature extraction, classification and localization.
The common single-stage methods contain single shot multi-
box detection (SSD) (Liu et al., 2016), you only look once
(YOLO) (Redmon et al., 2016, |Redmon, Farhadi, 2017, |Red-
mon, Farhadi, 2018)), RetinaNet (Lin et al., 2017a), etc. There
is only one step in the whole process, therefore this kind of
methods is fast and efficient. However, in most remote sensing
images, the scenes are quite large and the objects are sparely
distributed. It makes the positive and negative samples of the
anchor boxes extremely imbalance, which aggravates the detec-
tion performance. For this reason, the current object detection
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methods for remote sensing images are mostly two-stage meth-
ods such as region-based CNN (RCNN) (Girshick et al., 2014).

The RCNN-based methods include two stages. In the first stage,
a series of class-agnostic proposal boxes are generated accord-
ing to the feature maps extracted by the backbone network.
The proposal generation algorithms include selective search al-
gorithm (Uylings et al., 2013) and region proposal network
(RPN) (Ren et al., 2015). In the second stage, the feature maps
corresponding to the proposal boxes are cropped and resized
into the same size. The resized feature maps are then used to
classify and further fine-tune the proposal boxes.

As mentioned above, the generation of proposal boxes, the clas-
sification and regression all rely on the extracted feature maps.
Therefore, the ability to extract effective features plays a key
role in deep-learning-based methods. Although various meth-
ods have achieved promising detection performances in remote
sensing images, there are still some issues that need to be fur-
ther studied.

(a) Backbone network of the deep-learning-based methods de-
termines the extracted features. Actually, most backbone net-
works in the detection methods are fine-tuned from pre-trained
classification models, such as VGGNet (Simonyan, Zisserman,
2014) and residual network (ResNet) (He et al., 2016). These
networks are usually made up of some basic block, for example,
the bottleneck block (He et al., 2016) in ResNet is composed of
convolutional layers. The parameters and the number of these
blocks determine the width and depth of the network. Although
the current VGGNet and ResNet have a variety of forms, most
of them do not take into account the consistency of width and
depth. In addition, these forms usually ignore the impact of
the resolution of input image. In the case of high-resolution re-
mote sensing images, these backbone networks may limit the
performance of object detection.

(b) Most remote sensing images contain large scenes and sparse
objects. The current methods based on deep learning usually
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use fully convolutional network to extract features. Therefore,
the weight of the extracted features is the same for each position
in the image. In this way, the network pays uniform attention
to the objects and the background as well. However, for remote
sensing images, there are many background areas in the scene.
The features of the background areas are likely to interfere with
object detection and may lead to false predictions.

To address these problems, in this paper we propose a new ob-
ject detection method for remote sensing images on the basis of
RCNN. First, we use EfficientNet (Tan, Le, 2019)) as the back-
bone network of the proposed framework. For large scenes and
various object sizes, EfficientNet can balance the width, depth
and input resolution through the compound scaling method.
Therefore, it makes the network architecture more consistent
with the input resolution. In addition, in view of the large scenes
and the sparse objects, we try to make the network pay more at-
tention to the object area rather than the background area. To
this end, we apply the attention mechanism (Vaswani et al.,
2017) into the proposed method, so as to adjust the weights
of the extracted features. Thereby the proposed method can
enhance the features of the object regions and decrease the in-
fluence of the background.

The remainder of this paper is organized as follows: Section
2 reviews the related works on backbone network and atten-
tion mechanism. Section 3 depicts the proposed method for
object detection. In Section 4, the experiments are conducted
to validate the effectiveness of the proposed method. Section 5
concludes and further discusses this paper.

2. RELATED WORK

In recent years, researchers have tried to improve the RCNN-
based object detection methods from many aspects, such as loss
function (Rezatofighi et al., 2019) and anchor generation (Wang
et al.,, 2019). In this section, we mainly review the common
backbone networks and attention mechanisms.

2.1 Backbone Network

The backbone network for object detection is mainly used for
feature extraction. The current methods usually adopt classific-
ation networks as the backbone network. In general, these net-
works are composed of some basic blocks. The channel number
of the block determines the width of the network, the number of
the blocks and the stacking method determines the depth of the
network. According to the experience, the researchers have de-
signed different combinations of the blocks with diverse depths
and widths, so as to meet the needs of various tasks. At present,
the commonly used backbone networks include VGGNet, Res-
Net and DarkNet (Redmon et al., 2016).

VGGNet is proposed by Simonyan et al., and proves that the
depth of network contributes to the classification accuracy. The
basic block of VGGNet is a simple convolutional layer, and spa-
tial pooling is carried out by a max-pooling layer which follows
the basic block. In which, the sizes of convolution kernels are
3 x 3 and the max-pooling strides are 2 x 2. VGGNet is usu-
ally used in SSD and faster RCNN (Ren et al., 2015). ResNet
is developed by Kaiming He et al., who proposes shortcut con-
nection to make information propagation smooth and to ease
the training procedure. The depth of ResNet is up to 152 layers
which is far deeper than VGGNet, meanwhile ResNet has low
complexity in computation. In detail, the basic block of ResNet

is a bottleneck architecture, which contains a stack of 3 layers.
These layers are 1 x 1, 3 x 3 and 1 x 1 convolution, where two
1 x 1 convolutions are used to reduce and restore the channels
respectively, thus to decrease the channels of 3 x 3 convolution.
In terms of object detection, ResNet is widely used in RCNN-
based methods. DarkNet is proposed by Joseph Redmond and
used in YOLO. The basic block of DarkNet is composed of 1x 1
and 3 x 3 convolutional layers. In addition, DarkNet adopts the
shortcut connection as well.

Although the backbone networks mentioned above have
achieved good performance in object detection, they do not con-
sider the influence of the input image resolution, i.e., the depth
and width may be not consistent with the image resolution.

2.2 Attention Mechanism

Humans usually pay more attention to some specific parts of the
visual scene according to their needs, while ignoring the other
parts. The above phenomenon is often referred to the attention
mechanism. For machine learning, by applying the attention
mechanism, we can learn the importance of each element in the
feature, and obtain its corresponding weight coefficient.

Inspired by the non-local mean method, non-local neural net-
work (NLNet) (Wang et al., 2018) uses the non-local operation
to model the pixel-level pairwise relations and computes the
weight coefficient at a position as the weighted sum of the fea-
tures at all positions. In NLNet, attention weight means the
captured long-range dependency which is not constrained by
the distance. However the calculation of the pixel-level pair-
wise relations needs abundant computational resources, and the
resource requirement grows rapidly with the increase of image
resolution. Then, the criss-cross network (CCNet) (Huang et
al., 2018)) is proposed to model the pixel-level pairwise relations
in a resource-saving way. For each point, CCNet only com-
putes the pixel-level pairwise relations based on its surrounding
points on the criss-cross path. The relations between the point
and points at the other positions can be obtained through the re-
current operation. Therefore, for each position, the pixel-level
pairwise relations can be modeled by the criss-cross attention
module. In order to further reduce the amount of computation,
Cao et al. propose the global context network (GCNet) (Cao et
al., 2019), which assumes that the attention weight is irrelevant
to the position of the pixel to be calculated. Specifically, GCNet
uses a convolutional layer and a softmax function to calculate
the global attention weight. This method can not only reduce
the amount of calculation, but also maintain the accuracy to a
certain extent.

In addition to calculating the attention weight in the spatial di-
mension, the relation between different feature channels should
also be explored, since the contents in different channels play
different roles in the interpretation task. Squeeze-excitation net-
work (SENet) (Hu et al., 2018]) tries to apply the attention mech-
anism in the channel dimension, and allocates different weights
to the channels. Specifically, SENet obtains the global distribu-
tion of channel-wise response through squeeze operation, and
generates the attention weight value of each feature channel by
excitation operation. The channel-level attention weights can
be used to select and emphasize the informative feature chan-
nels and suppress useless ones.

On the basis of RCNN, EfficentNet is used as the backbone net-
work of the proposed framework in this paper. The compound
scaling method in EfficientNet can solve the inconsistency of
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depth and width in network design in terms of different res-
olutions. In addition, in order to reduce the influence of the
background, we also use the attention mechanism to make the
network pay more attention to the object areas.

3. THE PROPOSED METHOD
3.1 EfficientNet

As described in Section 2, the backbone network plays a key
role in feature extraction, and the current backbone networks for
object detection are usually transformed from the ones designed
for classification tasks through fine-tuning, such as ResNet and
VGGNet. Although these backbone networks have achieved
good results, the width, depth and basic block of the backbone
network are usually designed based on experience. Compared
with the natural optical images, the scene of the remote sensing
images is much larger, and the sizes of the objects have a wider
range. These characteristics increase the difficulty of network
design. In addition, the backbone network should fit the input
data with different image resolutions.

In (Tan, Le, 2019), Tan et al. find that the classification accur-
acy can be improved by scaling up any dimension of the width,
depth or resolution of the network, but these dimensions are
not independent. It is important to balance all dimensions dur-
ing scaling up. Their EfficientNet uses the compound scaling
method to uniformly scale the width, depth and resolution in a
principled way. The EfficientNet takes the resolution as one of
the adjustable dimensions, which needs to be balanced with the
other two dimensions, namely width and depth.

Inspired by EfficientNet, we argue that with fixed input resol-
ution, a better dimension balance should be achieved by ad-
justing width and depth, thus improving the effectiveness of
extracted features. Empirically, as resolution increases, we
indeed need to expand the receptive fields and extract fine-
grained features by increasing the depth and width of the net-
work.Therefore, EfficientNet is used as the backbone network
in this paper. It is notable that, because the resolution of the
input image is fixed, the compound scaling method only ad-
justs the depth and width in our detection framework. Specific-
ally, we first need a baseline backbone network, the width and
depth are then uniformly scaled by compound coefficient. The
scaled network is more suitable for the image resolution and is
used as the final backbone network. Due to the excellent per-
formance in (Tan, Le, 2019)), we still adopt baseline network
EfficientNet-B0 obtained by network architecture search in Ef-
ficientNet. Due to the different tasks, we remove the last layer
used for classification in the original EfficientNet-BO.

EfficientNet-B0O contains multiple stages and every stage con-
sists of the several mobile inverted bottleneck convolution (MB-
Conv) blocks. Compared with the bottleneck block in Res-
Net, MBConv is more effective in feature extraction. In detail,
MBConv block first uses the depth-wise convolution (Howard
et al., 2017) instead of the standard convolution to reduce the
amount of computation. Different from the standard convolu-
tion, a depth-wise convolution kernel is only responsible for
one input channel, namely each channel is convoluted by one
convolution kernel. Therefore, the number of the input chan-
nels is the same as that of output channels, and it affects the
extracted features. To increase the output channels and the di-
versity of the features, the inverted residual block (Sandler et
al., 2018)) is adopted in MBConv, and it uses a convolutional

1 Conv 3x3 2 1 32 1
2  MBConv 3x3 1 1 16 1
3 MBConv 3x3 2 6 24 2
4 MBConv 5x5 2 6 40 2
5  MBConv 3x3 2 6 80 3
6 MBConv 5x5 1 6 112 3
7 MBConv 5x5 2 6 192 4
8 MBConv 3x3 1 6 320 1

Table 1. The details of baseline backbone network Efficient-BO.

layer to expand the channel dimension before the depth-wise
convolution. In addition, squeeze-and-excitation is introduced
into MBConv, and it is placed after the depth-wise convolution
to build the dependencies between different channels. Further-
more, the shortcuts between the bottlenecks are used to improve
the gradient propagation between layers. The structure of MB-
Conv is shown in [Figure 1| where Conv means convolutional
layer, BatchNorm is the batch normalization (loffe, Szegedy,
2015)), Swish is a kind of activate function (Ramachandran et
al., 2017), and FC denotes the fully connection layer. The de-
tails of the baseline network Efficient-B0 are listed in[Table 11

!

Conv 1x 1
BatchNorm, Swish

I

Depth-wise Conv kx k
BatchNorm, Swish

Squeeze-and-excitation

—

Conv 1x 1
BatchNorm

Figure 1. The structure of mobile inverted bottleneck
convolution.

After obtaining the baseline network, we need to uniformly ad-
just the depth and width of the network by using compound
scaling method. The depth of the network is related to the num-
ber of stages and the number of basic blocks per stage, and the
width is related to the number of channels per basic blocks.
In EfficientNet, the baseline network EfficientNet-BO fixes the
number of stages. Therefore, we scale up the number of basic
blocks and their channels to adjust the depth and width. Assum-
ing the compound coefficient is represented by ¢, the numbers
of basic blocks and channels in the ¢-th stage are denoted by
r; and c;, respectively. The compound scaling method can be
expressed as:

i = ceil(r; -a¢), ci = ceil(c; - ﬁ¢), €))

where r; and ¢; denote the basic block number and the chan-
nel number of the i-th stage in EfficientNet-BO. « and (8 are
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the corresponding hyper-parameters which are set optimally ac-
cording to the neural architecture search. ceil function can ob-
tain the next highest integer value by rounding up value. By
adjusting the compound coefficient ¢, we can control the num-
bers of basic blocks and the channels in each stage of the final
EfficientNet. Take the fifth stage of the network as an example,
there are 3 MBConvs and 80 channels in original EfficientNet-
BO. Referring to (Tan, Le, 2019), o and 3 are set as 1.2 and
1.1, respectively. According to Equation 1, there should be 5
MBConvs and 97 channels in the fifth stage of the EfficientNet
when ¢ = 2, namely r5 = 5 and c§ = 97.

3.2 Attention Mechanism

In general, the scene of the remote sensing images is large,
while the object areas occupy only a small part of the whole
scene. A large amount of information in the background area
can easily interfere with object detection. Therefore, it would
be beneficial if we suppress the feature of the background areas
and make the network more focused on the feature of the object
areas. To achieve this end, we apply the attention mechanism
into the network.

It is known that the calculation of the weights in the attention
mechanism mainly involves two contents: query and key. In
the field of computer vision, visual content such as pixels or
regions of interest (Rols) can be considered as queries and keys
in the attention mechanism. Xizhou Zhu et al.(Zhu et al., 2019)
summarizes the attention mechanism into a general formula:

M
Yo = Wil Y Anla,k, zq,26) © Wizi],  (2)

m=1 kEQq

where z, denotes the content of the ¢-th query element, x;, de-
notes the content of the k-th key element. €2, is the key region
for the query. An(q,k, 24, 1) is the attention weight in the
m-th attention sub-network, and W,,, and W}, are the learnable
weights. M is the number of the attention sub-networks. v, is
the output of the attention mechanism. © means element-wise
multiplication.

How to get the attention weight by using the query and key in
the image is one of the issues we need to consider. As men-
tioned in Section 2, some methods including NLNet, aggregate
the features of all points by building query-specific attention
map. These methods can capture the long-range dependency
in the image, and have achieved good performance. However,
they need to set different weights for different query locations,
taking up a lot of computation resources, especially for high-
resolution images. In addition, (Cao et al., 2019) find through
experiments that although NLNet calculates independent atten-
tion weight for every query position, the attention weights of
different query locations tend to be the same after training.
Namely, the attention weights are independent of the query loc-
ations. Thereby, in this paper, we apply the attention method
which is independent of the position of query, and is only re-
lated to the position of key. Referring to (Zhu et al., 2019), the
attention weight can be modeled as:

Am(q, k, zq,28) = softmax(u}:,,V,(,ka), 3)

where V,$ denotes the learnable embedding matrix for the key
content, and u,, is a learnable vector.

According to [Equation 2| and [Equation 3| the final formula of

attention weights is:

M

Yg = Z Wl Z softmax(um V,s 1) © Whar].  (4)
m=1 kEQy

Based on we can get the flowchart of attention

weight calculation, as shown in Specifically, for
the m-th attention sub-network, the input feature maps x5 go

through a convolutional layer, generating the feature maps Z7".
Zr' is reshaped and then multiplied with the learnable vector
Um. In this way, the feature maps are weighted and summed
up to get z’ +'. Then the softmax function is applied to '
to normalize the attention weights and get the final attention
weights 2/ +'. In the other pathway, the input feature maps x,
go through another convolutional layer and the feature maps Z '
can be obtained. According to the learned attention map z”/ o
the feature maps Z;.' are element-wise weighted and summed up
to obtain the channel-level dependencies. Subsequently, these
dependencies are broadcast in each spatial dimension to match
the input features. Finally, the input feature maps and the broad-
cast channel-level dependencies are element-wise added to gen-
erate the enhanced feature maps.

Input x,
(CxHxW)
+ Conv % Conv
(Ix 1) (1x 1)
X, |cxHxw) X, |ccxtxm)
(Cx HW)
%
Learnable
Vector u
(1xC)
Yany Yy w Conv
N (Cxixly (Ix 1)
Output

Figure 2. The flowchart of attention weight calculation in the
proposed method. The numbers in parentheses denote the shape
of the feature map.

4. EXPERIMENTS

In order to verify the effectiveness of the proposed method, we
conduct several experiments on the dataset for object detection
in aerial images (DOTA) (Xia et al., 2018). All the experi-
ments are conducted on a computer with a central processing
unit (CPU) of Intel 6700K, a graphics processing unit (GPU) of
NVIDIA GTX 1080Ti, and random access memory (RAM) of
32 GB. All the experiments are implemented based on the open
source code base mmdetection (Chen et al., 2019).

4.1 Data Preparation

DOTA is a large object detection dataset, which contains 2,806
images. The original sizes of the images in DOTA range from
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about 800 x 800 pixels to 4000 x 4000 pixels. DOTA data-
set contains 15 categories: plane (PL), baseball diamond (BD),
bridge (BR), ground track field (GTF), small vehicle (SV), large
vehicle (LV), ship (SH), tennis court (TC), basketball court
(BC), storage tank (ST), soccer ball field (SBF), roundabout
(RA), harbor (HA), swimming pool (SP), and helicopter (HC).
There are 188,282 annotated objects in the dataset, and the ob-
ject sizes range from 10 to 1500 pixels. DOTA dataset includes
three subsets: training set, validation set and testing set. The
training set contains 1411 images, the validation set contains
458 images and the testing set contains 937 images. Because
the testing set does not have the corresponding annotations, the
detection performance on the validation set is used for evalu-
ation.

In the experiments, we resize the training set to two scales, 1.0
and 0.4. Then the images are cropped and resized into small
images of 1024 x 1024 in step of 824. As with (Ding et al.,
2019), we rotate some samples of the minority categories to
augment the dataset and reduce the data imbalance between dif-
ferent categories. The rotation angle is randomly selected in [0,
90, 180, 270]. After all this preparation, a total of 19,757 train-
ing samples are obtained. In the testing phase, we also crop
the testing image to small images of 1024 x 1024 in step of
824. These small images are detected separately and the de-
tection results are merged into one which is consistent with the
original large image.

4.2 Evaluation Metric

In order to quantitatively evaluate the performance of the pro-
posed method, the commonly used metric, i.e. average preci-
sion (AP) is adopted.

The detection results can be divided into three types: true pos-
itive (TP), false positive (FP) and false negative (FN) according
to the intersection over union (IoU) between the predicted box
and the corresponding ground truth box. When the IoU exceeds
a threshold, the predicted box can be regarded as TP, otherwise
it is considered as FP. FN means the missing object. The pre-
cision P measures the proportion of TP in all detection results
and the recall R measures the proportion of correctly identi-
fied positives in all positives. The precision P and recall R are
defined as:

TP
P = oy Epy

TP ©)
R=TP+rN)

AP computes the average value of P over the interval from R =
0 to R = 1. Due to that the objects have multiple categories,
the mean average precision (mAP) is also computed to evaluate
the overall performance on the multi-class dataset.

4.3 Experimental Configuration

In the experiments, we adopt EfficientNet as the backbone net-
work. Referring to (Tan, Le, 2019), the hyper-parameters «
and [ are set as 1.2 and 1.1, respectively. Moreover, the com-
pound coefficient ¢ is set as 2 in our experiments. The overall
framework is based on FPN (Lin et al., 2017bl), which uses the
bottom-up pathway to calculate the feature hierarchy composed
of feature maps of multiple scales. The top-down pathway is
used to obtain high-resolution feature maps with stronger se-
mantic information. The feature maps of the same size, which

are from the bottom-up and top-down pathways, are merged by
lateral connection. The merged feature maps are finally used
to obtain the final feature maps by convolution. The final fea-
ture maps in our experiments have 4 scales, and their strides are
22 23 2% 2% respectively. These feature maps are enhanced by
attention mechanism and used in subsequent steps. There are 8
attention sub-networks in the experiments. It is worth noting
that the backbone network has 8 stages in total, we use the out-
put of the 3rd, 4th, 6th and 8th stages of the backbone network
as the input of FPN. The schematic of the detection framework

is shown in|Figure 3|

RPN is used to generate proposal boxes, where the sizes of an-
chor boxes are {2, 4, 8, 16, 32} , and the aspect ratios are {0.5,
1, 2}. In the training phase, the cross entropy function is used
as the loss function of classification, and the smooth L1 loss
is used for regression. In the testing phase, the cropped small
images are overlapping and the generated proposal boxes are
usually redundant. Therefore, the non-maximum suppression
(NMS) algorithm is used to filter the similar predicted boxes.
The IoU threshold used to determine the correct boxes is set as
0.5.

4.4 Experimental Results and Comparisons

In these experiments, several classic and state-of-the-art meth-
ods including one-stage and two-stage ones are used for com-
parison. These methods contain Faster RCNN, FPN, GCNet,
SSD, RetinaNet, and their configurations are introduced as fol-
lows:

(1) Faster RCNN. Faster RCNN uses ResNet-50 as the back-
bone network and uses RPN to generate proposal boxes. The
stride of the feature maps generated by backbone network is
16. The loss functions are the same as those in the proposed
method.

(2) FPN. FPN also uses ResNet-50 as the backbone network.
As the foundation of the proposed method, FPN is the baseline
for comparison. Therefore, except for the backbone network
and attention mechanism, all the settings of FPN are the same
as the proposed method.

(3) GCNet. As mentioned in Section 2, GCNet is an effective
detection method which is combined with the attention map.
On the basis of FPN, GCNet adds the attention map to enhance
the extracted feature maps. Apart from this, GCNet has the
same framework and parameter settings as FPN.

(4) SSD. SSD is a one-stage method, which extracts the fea-
ture maps of different scales from the images for object detec-
tion. There are multiple anchor boxes of different scales and
aspect ratios in each sampled position. The features of the an-
chor boxes are classified and regressed by CNN. In this exper-
iment, SSD uses VGG-16 (Simonyan, Zisserman, 2014) as the
backbone network. The anchor boxes adopt 7 scales according
to the sizes of the feature maps, and 5 aspect ratios. The cross
entropy function and smooth L1 function are also used as the
loss functions.

(5) RetinaNet. RetinaNet is a one-stage method based on
FPN, and the backbone network is ResNet-50. Backbone net-
work attaches two sub-networks, which are used to classify
and regress anchor boxes, respectively. The anchor scales are
{2°,21/3 22/3} and the aspect ratios are {0.5,1.0,2.0}. The
main contribution of RetinaNet is that the focal loss is proposed
to ease the imbalance between positive and negative samples.
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Figure 3. The network structure of the proposed method.

lists the APs of all the methods on different categor-
ies. The full names of the category acronyms are described in
Section 4.1. Nothing that, Faster RCNN, FPN, GCNet and the
proposed method are two-stage methods, while SSD and Ret-
inaNet are single-stage methods. As we can see from [Table 2]
two-stage methods perform obviously better than single-stage
methods. In all two-stage methods, the proposed method
achieves mAP of 75.0% and outperforms the comparison meth-
ods. Compared with the baseline FPN, the proposed method
contributes to an improvement of 2.2%.

We also conduct the ablation experiments on the DOTA dataset.
In detail, we apply EfficientNet and attention mechanism, re-
spectively, to compare their respective impact on the detection
performance. In order to compare these improvements fairly,
all the other settings are the same as the baseline (FPN). In ad-
dition, we adopt different compound coefficient ¢ in the exper-
iments to compare the impact of different widths and depths.
The results are shown in[Table 3

shows that both EfficientNet and attention mechanism
can improve the detection performance. Specifically, individual
EfficientNet can contribute to an improvement of 1.0%, and at-
tention mechanism can increase the detection result by 1.4%.
As for the compound coefficient, we find that the network can
obtain the best result when the compound coefficient is set as 2.

Several samples of the detection results obtained by the pro-
posed methods are shown in The green, yellow and
red rectangles denote true positive, false negative and false pos-
itive, respectively.

5. CONCLUSION

In this paper, we propose an effective object detection method
for optical remote sensing images. Instead of the conventional
backbone networks such as ResNet, we introduce EfficientNet
into the proposed method. The compound scaling method of
EfficientNet can adjust the width and depth of the network more
consistently, thereby solving the problem of network design
under different image resolutions, especially high-resolution.
Moreover, we apply the attention mechanism in the detection
framework. Attention mechanism makes the network pay more
attention to the important areas such as the object areas, and
suppress the background areas. It can effectively reduce the in-
fluence of background noise on object detection. The quantitat-
ive comparison results on the public DOTA dataset demonstrate

the superiority of the proposed method over several state-of-the-
art methods. In the future, more efforts will be made to further
investigate the attention mechanism in deep learning.
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