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ABSTRACT:

Detecting objects in aerial images is an important task in different environmental and infrastructure-related applications. Deep
learning object detectors like RetinaNet offer decent detection performance; however, they require a large amount of annotated
training data. It is well known that the collection of annotated data is a time consuming and tedious task, which often cannot be
performed sufficiently well for remote sensing tasks since the required data must cover a wide variety of scenes and objects. In this
paper, we analyze the performance of such a network given a limited amount of training data and address the research question of
whether artificially generated training data can be used to overcome the challenge of real-world data sets with a small amount of
training data. For our experiments, we use the ISPRS 2D Semantic Labeling Contest Potsdam data set for vehicle detection, where
we derive object-bounding boxes of vehicles suitable for our task. We generate artificial data based on vehicle blueprints and show
that networks trained only on generated data may have a lower performance, but are still able to detect most of the vehicles found
in the real data set. Moreover, we show that adding generated data to real-world data sets with a limited amount of training data,
the performance can be increased significantly, and in some cases, almost reach baseline performance levels.

1. INTRODUCTION

Object detection in aerial images is an important task in remote
sensing applications like environmental monitoring, infrastruc-
ture surveillance, or traffic monitoring (Heipke, Rottensteiner,
2020, Ma et al., 2019). Deep neural networks like RetinaNet
(Lin et al., 2017b), which are specifically designed for object
detection, have shown to be suitable tools for solving such a
task (Lin et al., 2017b, Sun et al., 2018). They have proven their
capabilities in different benchmarks covering general imagery
but also aerial imagery (Lin et al., 2014b, Xia et al., 2018).
However, they share the same problem as most deep learning
methods in that they require a vast amount of annotated train-
ing data. On the contrary, in real-world applications, the lack of
training data is often imminent. This is especially true when
well generalizing models are required to be applicable over
a wide range of situations varying in the scenery, structures,
weather, and lighting conditions, and the variants of objects to
detect are even larger. Many times collecting suitable training
data covering this wide span is not possible or prohibitively ex-
pensive. Therefore, much research has been dedicated to reduce
the necessary amount of data to train a model to reach adequate
performance and generalizability.

Several approaches have been proposed to overcome this chal-
lenge. The most common, yet limited one, is data augment-
ation, where the amount of training data is increased by geo-
metric and spectral transformations. However, this approach
uses information from training data only, which may result in
a possibly not representative training set. More sophisticated
methods generate artificial data from 3D models or use gener-
ative adversarial networks (see Section 2), but they lead to a
high degree of complexity in the generation pipeline or require
large amounts of computing power.

∗Corresponding author

Figure 1. Combining artificial imagery, generated based on
vehicle blueprints, with small real-world data can significantly
improve the performance of an object detection network like

RetinaNet.

Our requirements for an artificial training data generation
pipeline, however, are to keep the generation process relatively
simple and usable for diverse applications. Therefore, compre-
hensive 3D modeling, texturing, and generation of a multitude
of possible object-background combinations should be avoided.
Ultimately, we aim for the disentanglement of relevant objects
and backgrounds. To this end, we consider image augmenta-
tion and similar approaches as complementary steps to further
increase variability.

Therefore, we focus on a simple generation process and access
its impact on a deep neural network. We base our analyses on
the task of vehicle detection in imagery from the ISPRS 2D
Semantic Labeling Contest Potsdam dataset (Rottensteiner et
al., 2013). Our contributions are as follows:

• We first evaluate the impact of limited amounts of real-
world training data.

• Building on that we test what detection performance can
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be achieved with training data consisting of purely artifi-
cial data, and how the generation pipeline can be modified
to improve the detection performance.

• Finally, we evaluate training models with joined real-
world and artificial data (Fig. 1).

The paper is structured as follows: The process of deriving ob-
ject bounding boxes from the ISPRS 2D Semantic Labeling
Contest Potsdam and creating a dataset from this is described
in Section 3. Section 4 presents the mentioned experiments,
and Section 5 closes this work with conclusions and a small
outlook.

2. RELATED WORK

Different methods have been proposed which increase the
amount of training data and its variability, either by diversi-
fying the original training data or by generating new training
data. Simple geometric and radiometric image augmentation
methods, like flipping or color changes, are well known to in-
crease the data variability, are easy to integrate, and can increase
a model’s performance significantly (Liu et al., 2016). More
advanced methods like Cutout (DeVries, Taylor, 2017), Mixup
(Zhang et al., 2017) or CutMix (Yun et al., 2019) try to broaden
the networks receptive field and remove strong location depend-
encies. There are also specific augmentations for object detec-
tion (Zhang et al., 2019); some of them are, however, strongly
dependent on the network structure (Yun et al., 2019).

Semi-supervised learning methods try to circumvent the need
for large scale annotated data sets by designing smart but simple
so-called pretext tasks, which can work on non-annotated data
sets (Berthelot et al., 2019, Nair et al., 2019). Both pretext tasks
and main tasks share central parts of the network architecture,
hence learning of the former also improves the latter. In prin-
ciple, semi-supervised learning and image augmentations are
tightly related, as data for pretext tasks is often generated by
augmentation methods. Both approaches have in common that
they can not create new data.

A more far-reaching approach is to generate artificial data by
3D rendering systems (Movshovitz-Attias et al., 2016) or 3D
video game engines (Richter et al., 2016). Generally, these ap-
proaches can generate quite sophisticated artificial imagery for
many applications. (Peng et al., 2015, Tremblay et al., 2018),
for example, show that generating imagery from 3D models
can be on par with networks trained on pure real-world data.
However, a reasonable quality of the modeled scenes and ob-
jects can be laborious or challenging to achieve. Compared to
these works, aerial imagery can be generated more easily, as the
scenery is typically only viewed in a top-down manner; hence
only the top view of the objects has to be generated. Also, gen-
erative adversarial networks (GAN) can be used to generate ar-
tificial data, which serves as additional training data (Zheng et
al., 2019). However, these networks are generally complex and
remain relatively challenging to optimize.

Another approach is the context-aware combination of real and
artificial data. By using semantic maps, objects such as vehicles
could be inserted on semantically appropriate surfaces such as
roads only. However, this requires additional data, and still res-
ults in the generation of a large amount of data with a relatively
complex generation process.

3. DATA GENERATION

We base our work on the ISPRS 2D Semantic Labeling Con-
test Potsdam data set (in the following abbreviated as Potsdam
data set) 1, which consists of 38 image patches covering part of
the city of Potsdam (Rottensteiner et al., 2013). We are aware
that other data sets, like DOTA (Xia et al., 2018) and COWC
(Mundhenk et al., 2016), exist that are specifically designed for
object detection. However, we aim for a higher ground resol-
ution than the imagery in DOTA, and COWC vehicles are an-
notated with their center points only instead of bounding boxes,
which is not suitable for us. Also, the imagery of the Pots-
dam data set matches our target domain the most. The Potsdam
data set patches are part of a true orthophoto and have a ground
sampling distance of 5 cm and a size of 6,000 × 6,000 px. As
the data set is part of a semantic labeling benchmark, semantic
annotations are provided accordingly. The annotations contain
data for five classes (imprevious surfaces, building, low veget-
ation, tree, car, clutter background). These are realized using
semantic maps with a distinct color for each of the classes. The
data set is split into 24 patches for training and 14 for validation.

3.1 Deriving object detection annotations

The Potsdam data set is designed for semantic annotation and
is not readily usable for object detection. Before we transform
its annotation masks to bounding box annotations, we first cut
the image patches into smaller subpatches. This is necessary
as object detection networks usually do not work directly on
images of a size that large as it would computationally be too
expensive. We slice them into subpatches of size 600 × 600
px in a sliding window fashion, with an overlap of 200 px in
both directions, which corresponds to 10m. This should allow
for most objects annotated as car to be at least fully visible
in one subpatch. The subpatches are padded to the target size
if necessary, and the padding color is chosen to be the mean
color of the ImageNet data set (Deng et al., 2009), which after
image normalization in the preprocessing will result as values
of 0. This slicing results in 5400 training and 3150 validation
subpatches.

For the transformation of the annotations (Fig.2), we concen-
trate on the class car, as vehicle detection is our intended task,
and extract only the corresponding color from the annotation
subpatches. We ignore all other classes. Then we determine
the contours of the contained objects and afterward compute
the corresponding smallest rectangles enclosed in the contours.
Based on those, the axis-aligned bounding boxes can be com-
puted. One could argue that the bounding boxes can be com-
puted directly on the contours; however, in some situations, we
found that the former approach creates better boxes, for ex-
ample, in the case of partially concealed cars. These boxes are
then exported in the COCO (Lin et al., 2014b) object annotation
format2.

As some vehicles are largely concealed by buildings or veget-
ation or are only partially visible due to the slicing, we re-
move annotations for whose both sides are smaller than 1m,
and a single side is smaller than 2m. Some larger vehicles like
trucks, which are part of the data set and are relatively rare,
would likely distort the data distribution. Hence we limit an-
notations on the largest side to be below 10m. Also, we manu-
ally remove the annotation of a single tram and separate some

1http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-
potsdam.html

2http://cocodata set.org/#format-data
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(a) (b)

(c) (d)

Figure 2. Transformation of the semantic annotation to bounding
boxes: (a) and (b) show the RGB and annotation subpatches; the
yellow color corresponds to the class car which is used in (c) to
create the contours (shown in orange) for each object belonging
to that class; (d) shows the derived minimal area rectangle for

each object overlayed on thr RGB subpatch, from these the
bounding boxes can be computed.

touching annotations, which otherwise result in single bound-
ing boxes covering multiple vehicles. Besides that, we remove
subpatches that do not contain any vehicle. Our final data set
consists of 2824 and 1828 subpatches remaining for training
and validation, containing 12182 and 7924 objects of the class
car.

3.2 Deficiencies of the derived data set

Some areas of the image patches contain artifacts (Fig. 3a, 3b),
which stem from the structure from motion process, which was
used to construct the true orthophoto. Another issue (Fig. 3c,
3d) is that the imagery of the data set was captured in late au-
tumn or wintertime, where most of the trees were leafless. The
data set is annotated in a way that the topmost class determ-
ines the annotation; hence cars parked underneath those trees
are not or only partly annotated, even though they are visible
to the human observer. This is a challenge for the object detec-
tion network, as we will show later in our experiments, and will
affect the detection performance.

3.3 Generation of artificial data

We generate artificial vehicle imagery based on manufacturers’
blueprints. For this, we select eight typical vehicles ranging
from small cars, over station wagons, SUVs, and vans (Fig. 4).3

We remove elements that are not part of the car, such as size
markings. Then we create masks using different colors for
background, vehicle body, and windows (Fig. 5b) and rescale

3https://drawingdatabase.com/

(a) (b)

(c) (d)

Figure 3. Examples of data set issues: (a) and (b) show a RGB
subpatch with fragments and the corresponding annotation; (c)

and (d) show a RGB subpatch with cars partially or fully covered
by a leafless tree and corresponding annotation subpatch, which

has only annotations for the not covered car parts.

Figure 4. Examples of car blueprints used to generated the
artificial data.
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them to match our targeted ground sampling distance. We ran-
domly color the vehicle body with colors typical for cars and
the windows with blueish colors (Fig. 5c). Both colors are
slightly randomly altered to increase variance. Per image we
create four of these vehicles and, also two partial vehicles, as
many of the vehicles in the real-world data set are only partially
visible. The background is covered in the mean color of the
ImageNet data set and has a combination of a very coarse and a
fine spatial noise pattern added to it. We evaluate the influence
of this process in the experiments.

4. EXPERIMENTS

Our object detection network is a customized RetinaNet (Lin et
al., 2017b) structure, with a Resnet-50 (He et al., 2016) feature
extractor back end. The feature extractor is combined with a
feature pyramid network (Lin et al., 2017a), which is the base of
the front end and consists of five layers, as published in (Lin et
al., 2017b). Deeper extractors do not perform significantly bet-
ter in our case; hence we use the 50-layer version to keep train-
ing and inference times low. The detections are computed us-
ing the feature-layer-wise shared subnets for classification and
localization. The detection front end is designed to process im-
ages of size 300 × 300 px, hence the total amount of anchors
is 17451, consisting of anchor areas from 16 × 16 to 256 ×
256. The anchor areas differ from the ones described in (Lin et
al., 2017b) by a factor of four, because these were designed for
maximum input sizes of 800 × 1333 and would be too large for
our input sizes. The classification loss function is the accom-
panying FocalLoss, which strictly requires the correct initializ-
ation of the bias of the final layer of the classification subnet.
Our regression loss is a smooth L1 loss.

We implement all our code using the pytorch (Paszke et al.,
2019) framework in combination with the fast.ai (Howard et al.,
2018) library. Our back end structure uses a model pretrained
using the ImageNet data set (Deng et al., 2009), which is part
of the torchvision (Paszke et al., 2019) model library. Each
trial is computed on a single NVIDIA Tesla V100 GPU. All
subpatches are rescaled from 600 to 300 px size during train-
ing and validation. Experimentation prior to this work has re-
vealed that working directly with an input size of 600 px does
not increase the detection performance significantly. Our im-
age preprocessing during training augments the images using
random flipping of both axes and random changes of bright-
ness, contrast, hue, and saturation. For training and validation,
the images are z-normalized using the mean and standard de-
viations of the ImageNet image colors. The batch size of the
experiments is 32, if not specified otherwise. We train all our
models using the SGD optimizer and the 1cycle learning rate
policy as described by (Smith, 2018), which is readily available
as a scheduler in the fast.ai library. The peak learning rate is
3× 10−2 if not specified otherwise. Learning starts with 1/25
of it and finishes with 1/25 000 of it4. The momentum is varied
between 0.95 and 0.85. Both hyper-parameters peak at 30 % of
the training schedule.

Over the full training process, we store the current best model
and load it after the training has finished. This allows us to get
access to the best model even if the model overfits and diverges.
We also stop early if the validation loss does not decrease for
more than 0.001 over ten epochs in a row. Our experimentation

4For a learning rate of 3× 10−2 this means 2× 10−3 and 2× 10−7

respectively.

(a)
(b)

(c)

(d)

(e) (f)

(g) (h)

Figure 5. Artificial data generation: (a) the initial car blueprint;
(b) cleared and color masked top view of the car; (c) randomly

colored car; (d, e, f) show the same image width blank
background, with noise added to the background and with

vehicle parts; (g, h) show to more example images.
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Figure 6. Training and validation loss for training the model
with the complete real-world data set for 25 epochs, which takes
about 10 minutes. The 1cylce training policy with a maximum

learning rate of 3× 10−2 is applied. The best losses at epoch 16
of 0.063 for training and 0.442 for validation result in 90.2 %

AP.

has shown that using the 1cycle scheduler it is enough to train
the model for 25 epochs to fully converge, which due to the
relatively small amount of data, takes about 10 minutes.

For the evaluation of the object detection performance we use
the average precision (AP) of the COCO data set (Lin et al.,
2014a) 5. We use an intersection over union threshold of 0.5,
which matches COCO’s APIoU=0.5. Our confidence threshold
is 0.1 to keep a safe distance from the initial confidences of
about 0.01, which result from the FocalLoss bias initialization.
We do not apply any hard limit for the number of proposals, as
after training, the number of valid proposals is generally quite
limited.

4.1 Performance on complete and reduced real-world data
sets

We begin our experimentation by establishing the baseline per-
formance of our RetinaNet on the complete real-world training
data set. For this, we train the model for 25 epochs and reach
a baseline performance of AP = 90.2%. The AP is computed
using the model state of epoch 16, where the lowest valida-
tion loss is reached. Figure 6 shows the training and validation
loss curves for the training of the baseline model. In our ex-
perimentation, we found that the achievable average precision
is most likely limited due to the characteristics of our derived
data set. Fixing the described deficiencies may help to raise this
limit.

We now determine the performance achievable of small data
sets by reducing the size in steps of 1000, starting with 2500
samples and have finer decrements below 500 until we stop at
eight samples. To keep the number of total iterations constant,
we increase the number of epochs accordingly. In general, the
model begins to overfit more rapidly as the data set size de-
creases. However, the training scheme still tends to result in a
good model if we load the best model state after the training has
finished. Table 1 shows the resulting average precision values,
which keep steady over a broad range down to 500 samples, and
only at about 50 samples largely drop.

4.2 Artificially generated data performance

In this section, we evaluate the object detection performance
of our network trained on the generated artificial imagery. The

5http://cocodata set.org/#detection-eval

# training samples AP [%]
2824 90.2
2500 90.1
1500 90.0
500 89.3
100 86.6
50 82.0
32 75.6
16 48.1
8 30.7

Table 1. Average precision for the complete and reduced
real-world data sets used for training; we train the models for the

data sets with 16 and 8 samples with a batch size of 16 and 8,
respectively.

data is generated as described in Sec. 3.3. We evaluate three
different variants to generate the data. Variant A only creates
four vehicles on a blank background image, variant B modu-
lates noise onto the blank background, and variant C adds two
vehicle parts. We train a model for each of the variants with data
sets consisting of 250, 500, 1000, and 1500 generated samples
for 60 epochs using a peak learning rate of 1× 10−2.

Table 2 shows the average precision values for each variant and
each of the data set sizes. The table shows that added noise
to the background increases the performance significantly. We
assume the reason for this is that noise likely helps the model
to remove dependencies on a homogeneous background, which
we do not observe in the real-world data, and so helps to gen-
eralize better. Adding vehicle parts also improves the perform-
ance as the real-world data set contains numerous partly visible
objects. Based on this result, we choose to use 1000 artificial
samples of variant C for the following experiment, as the im-
provement over 500 samples is significant, and more data does
not result in much better performance.

4.3 Joining real-world and generated data

Using the insights gained in the previous section, we now com-
bine both data sets. We take our best performing generated data
set and add it to the reduced real-world data sets from section
4.1. Each model is trained for 60 epochs with a peak learning
rate of 3× 10−2. The resulting average precision values are
shown in Tab. 3 and are compared to the baseline in Fig. 7. It
is visible that the generated data can lift the baseline perform-
ances of the small real-world data sets largely. There is a small
negative impact on two of the larger data sets, but this can be
neglected in practice. Moreover, a specific fine-tuning per data
set can result in on par performance levels but is not shown here
to keep hyper-parameters steady.

The samples in Fig. 8 show that the model trained solely on ar-
tificial data tends to make erroneous detections with relatively
high confidence in image regions, which do not belong to the
class car. We assume that the reason for this is that artificial
images are generated with noise background rather than real-
world background and thus, the network only learns to distin-
guish noise background from vehicles. Real-world background,
however, may contain structures which are close to the vehicle
distribution, that the model has learned, and hence may result in
false positives. The detection samples from the models which
are trained with additional 8 and 32 real-world images, how-
ever, clearly show the improvement gained from such few real
images. The false positive detections are increasingly reduced,
and the bounding boxes of the vehicles become more accurate.
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Variant AP250 [%] AP500 [%] AP1000 [%] AP1500 [%] AP2000 [%]
Variant A 38.9 51.2 47.7 53.4 55.5

+ Variant B: Background Noise 48.6 57.5 58.6 57.7 58.6
+ Variant C: Vehicle Parts 62.2 62.3 65.4 65.8 65.6

Table 2. The object detection performance of models only trained on generated data for the three variants. Each variant is computed
over a range of data set sizes. For the following experiments, we use 1000 samples of variant C.

# real-world samples AP [%] Change [% points]
2824 90.2
2500 90.2 +0.1
1500 89.8 -0.2
500 89.2 -0.1
100 86.7 +0.1
50 84.7 +2.7
32 83.4 +7.8
16 75.9 +27.8
8 73.3 +42.6
0 65.4

Table 3. Average precision values and their changes in points of
percentage compared to the baseline values for each joined data

set consisting of the reduced real-world data set and 1000
generated images. We train each model for 60 epochs using a

learning rate of 3× 10−2.

0 100 200 300 400 500

# real-world samples

30

40

50

60

70

80

90

A
P
[%

]

real-world baseline

combined

Figure 7. Average precision for models trained with an
increasing amount of real-world data (solid blue line) and

trained with a combination of the real-world data and 1000
generated images for comparison (orange dashed line). Please

note that we only show the results up to 500 real-world samples,
as from this point on, the average precision is almost constant.

4.4 Influence of data set deficiencies

The mentioned issues in the derived data set become visible
during the inference of the trained network, and both are dis-
played in Fig. 9. The second detection from the top in the left
image has a relatively high confidence; however, there is no an-
notation (no green box) as the vehicle is parked under a tree.
This detection shows that the network can detect these vehicles
even though it is not meant to learn those. These detections res-
ult in false positives, which decrease the precision, and in the
end, harm the AP. The figure also shows that the network’s de-
tection of the lower car is better than the annotation. However,
this does not benefit, but in fact, may worsen the AP value as
the intersection over union between detection and annotation is
used to assign proposals to annotations.

5. CONCLUSION AND FUTURE WORK

In this paper, we addressed vehicle detection in aerial imagery,
for which only a limited amount of labeled samples is available.
We analyzed the impact of learning with artificially generated
data samples on the detection accuracy. Our experiments on
real-world data set sizes show, that high object detection per-
formance levels can be achieved for a wide range of sizes. It
is worth to note that a reasonable high level can already be
achieved with a few hundred samples and that larger data sets
only slightly improve the performance. These observations may
especially be true as we only consider one class, and the objects
in our data set are relatively homogeneous, and hence a suffi-
cient number of samples are available. However, we also see
that at some point, the performance drops drastically, and the
detection quality becomes insufficient.

We show that data sets consisting only of artificial data, which
can easily be created from blueprints, can achieve higher per-
formances than data sets with a limited amount of real-world
training data. If we combine both, we can increase the limited
performance levels largely and almost reach baseline levels.

In summary, we conclude that these observations point to re-
search directions that are promising to efficiently reduce the
need for large data sets. This is a relevant aspect, especially
in remote sensing. However, more needs to be done to improve
certain aspects. We need to get a better understanding of what
is important for the network and what can be done to gener-
ate data that is relevant to achieve accurate and robust results.
Here, the topic of domain adaption (Saito et al., 2019) plays
an important role, as the artificial imagery and the real-world
data stem from different domains and distributions. Also, bet-
ter ways of incorporating negative samples, which means the
wide variety of samples that do not belong to the object, into
the training data have to be developed, and their effect has to
be analyzed. Semi-supervised learning methods may help to
address this issue. This is closely related to out-of-distribution
samples, which also need to be addressed (Hein et al., 2019).
We have seen that certain aspects of the data set possibly limit
and distort the real performance of the object detection network.
To this end, we plan to modify the annotation of the Potsdam
data set to contain the partly occluded vehicles in the annota-
tions, and at the same time, assess the annotations of fragmen-
ted image structures. Finally, we plan to test the methods on
more data sets, especially vehicle-related data sets like DLR-
SkyScapes (Azimi et al., 2019).
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(a) Detections of the baseline model trained on the complete real-world
data set. The detections are quite accurate and have high confidences; no

false positives are visible.

(b) Detections of the model trained with 1000 generated images only. A
lot of false positive detections are visible; however, the true positive

detections are quite accurate.

(c) Detections of the model trained with 1000 generated images and
eight real-world images. The model produces no false positives in the

left image, and in the right image, much fewer false positives are visible.

(d) Detections of the model trained with 1000 generated images and 32
real-world images. The model produces no false positives in the left
image, and in the right image, only one false positive is still visible.

Figure 8. Detections on two sample images proposed by models
trained with different amounts of real-world and generated

images. We applied a confidence threshold of 0.3 for all
detections. In general, the models’ proposals have high

confidences for true positives and most of the false positives
could be suppressed with a higher threshold, but it allows us to
show the models’ increasing ability to separate objects from the

background.

Figure 9. Left: An example of detections of hidden vehicles: the
detection of the car in the middle has no corresponding

annotation, which counts as a false positive; the detection of the
lower car is better than the annotation, which may also impact

the AP negatively. Right: An example of a detection of a
fragmented vehicle.
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