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ABSTRACT:

Extracting roads from aerial images is a challenging task in the field of remote sensing. Most approaches formulate road extraction
as a segmentation problem and use thinning and edge detection to obtain road centerlines and edge lines, which could produce spurs
around the extracted centerlines/edge lines. In this study, a novel regression-based method is proposed to extract road centerlines
and edge lines directly from aerial images. The method consists of three major steps. First, an end-to-end regression network
based on CNN is trained to predict confidence maps for road centerlines and estimate road width. Then, after the CNN predicts the
confidence map, non-maximum suppression and road tracking are applied to extract accurate road centerlines and construct road
topology. Meanwhile, Road edge lines are generated based on the road width estimated by the CNN. Finally, in order to improve
the connectivity of extracted road network, tensor voting is applied to detect road intersections and the detected intersections are
used as guidance for the overcome of discontinuities. The experiments conducted on the SpaceNet and DeepGlobe datasets show

that our approach achieves better performance than other methods.

1. INTRODUCTION

Road extraction from high-resolution remote sensing images is
an essential task in the field of remote sensing. It has a wide
range of applications, such as vehicle navigation, urban plan-
ning, autonomous driving and automatic digital line graphic
making. Although various methods have been proposed in re-
cent years, road extraction is still a challenging task because of
the considerable variation in road shape, color and context char-
acteristics. Besides, roads is often occluded by objects such as
shadows and trees, thereby increasing the difficulty of extrac-
tion.

To deal with road extraction task, many CNN-based methods
(Panboonyuen T et al., 2017) have been proposed. However,
most of these approaches formulated road extraction as a seg-
mentation problem. In automatic map construction, the road
centerlines and edge lines are needed. Thus, the thinning oper-
ation and edge detection are followed to attain the road center-
lines and edge lines, the segmentation-based methods have sev-
eral defects: (1) Thinning operation could easily bring about
spurs around the extracted centerlines. (2) The road topology
is not taken into account. So it is of great practical signific-
ance with a framework to directly extract road centrelines and
edge lines from satellite images. In human pose estimation,
researchers aim to locate the anatomical keypoints. The basic
idea of pose estimation methods is to produce 2D belief maps
for the location of each part. The belief maps encode the spatial
uncertainty of each keypoint’s location.

Inspired by the belief maps in human pose estimation, for over-
coming the above-mentioned shortcomings in the existing meth-
ods, this study proposes an end-to-end regression network to
learn confidence maps for road centerlines and road width map.
A confidence map represents the probability that each pixel is
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lying on the road centerlines and a road width map indicates
the width of road where each pixel is located. After the regres-
sion network predicts the confidence map and road width map,
a simple non-maximum suppression (NMS) method and road
tracking are applied to obtain accurate road centerlines. Road
edge lines are then extracted based on the tracked centerlines
and estimated road width. Finally, in order to improve the con-
nectivity of extracted road network, tensor voting is applied to
detect road intersections and we use detected intersections as
the guidance for the overcome of the discontinuities. The final
output of our algorithm is file of road centerlines and edge lines
with shp format, which can be directly used in automatic road
map generation.

In this study, we use a multi-task learning strategy to jointly
learn confidence map and road width map, which could not only
improve the efficiency of computation but also enhance the gen-
eralization ability of the network. Considering roads have long
continuous shape structure, thus the spatial relationship is es-
sential for road extraction. The astrous convolutions (Chen et
al., 2018) with different rates are proven to effectively capture
the context information, which are also adopted in our network.

This study conducts experiments on the DeepGlobe (Demir et
al., 2018) and SpaceNet (Etten et al.,2018) datasets, then we
compare our approach to other road extraction methods. Our
method achieves equal performance to the state of the arts.

Below the related works of road extraction is presented in Sec-
tion 2. Methods for road centerlines extraction, edge lines gen-
eration and overcome of discontinuities are explained in Sec-
tion 3. Experiment procedure and results are shown in Section
4. Conclusions are presented in Section5.
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2. RELATED WORK

In recent years, there are many works attempting to extract
roads from aerial images. Most of these approaches can be di-
vided into two classes: methods based on heuristic knowledge
or methods based on machine learning. The heuristic methods
generally utilize some prior knowledge in road extraction, such
as edges, radiometry, texture, geometry, etc. For instance, Hu
et al., (2005) proposed a model which describes the radiometry
and geometry characteristics of roads. He analysed the profiles
along the direction perpendicular to the road direction and ex-
tracted ribbon roads form satellite images. Mohammadzadeh
et al., (2006) extracted main road networks from IKONOS im-
agery using an approach based on mathematical morphology
and fuzzy logic. Movaghati et al., (2010) made a combination
between Extended Kalman filter and a special particle filter (PF)
to maintain the robustness of road tracing in region where roads
are occluded by obstacles. The road tracer finds and follows
different road directions after it reaches a road junction. Shao
and Guo et al., (2011) presented an effective and fast approach
to detect ribbon-like curvilinear structure from remote sensing
images. The key content of the algorithm is a simple assump-
tion: the grey value of center pixel and its near neighbor pixels
in road region are lighter than that of pixels in the surrounding
region. In contrast, machine learning methods take advantage
of the huge data to train models for road extraction. Maurya et
al., (2011) used the K-Means clustering to classify each pixel
in aerial images into two classes, road and non road. Then the
non road area is removed based on the morphological features.
Huang et al., (2009) used object-oriented algorithm to extract
structural features such as Shape Index and Density, then ad-
opted support vector machines (SVM) to classify regions into
road or non road based on multiscale spectral-structural fea-
tures. Wegner et al., (2013) proposed a higher-order CRF for
road labeling, in which the spatial properties of road network
are exploited and is represented by the higher-order cliques as
the prior for road extraction. Mattyus et al., (2015) made use of
Markov random field to inference the location of road center-
lines and road width based on the OpenStreetMap (OSM). The
algorithm is very efficient and the OSM roads of the world
could be segmented in one day.

Recently, the convolutional neural network(CNN) has achieved
huge success in computer vision and remote sensing image pro-
cessing, such as image classification, object detection and se-
mantic segmentation. CNNs have also been used for road ex-
traction from aerial images. Mnih and Hinton et al., (2010)
made the first attempt of applying deep learning in the field of
road extraction. They adopted restricted Boltzmann machines
(RBMs) for urban network extraction. To fully use the con-
text information, a large patch is trained to predict the road
map in the center area of it and PCA is adopted for decreas-
ing the dimension of the input image. To get better results,
Saito et al., (2016) proposed a CNN model for semantic seg-
mentation of aerial images, the image is segmented into three
classes (road, building, background). Besides, a new channel-
wise inhibited softmax (CIS) loss function is designed to obtain
better segmentation results. Mttyus et al., (2017) taked advant-
age of CNN models to have an initial road segmentation of aer-
ial imagery and then designed an algorithm to overcome the
missing connections in the extracted road topology. Cheng et
al., (2017) proposed CasNet, a cascaded convolutional neural
(CNN) network to simultaneously conduct road segmentation
and road centerline extraction tasks from aerial imagery. How-
ever, the distribution between centerlines and background is

heavily biased and their method still needs thinning operation,
which cannot extract accurate road centerlines and infer the
road topology. Inspired by the deep residual learning and U-
Net, Zhang et al., (2017) proposed the deep residual U-Net,
which combined the deep residual learning with U-Net archi-
tecture and is more powerful in road segmentation. Wei et al.,
(2017) proposed RSRCNN, a CNN model for obtaining refined
segmentation of road structures from aerial images, a loss func-
tion considering spatial correlation and geometric information
of road structure is designed to train the CNN model. Zhou et
al., (2018) proposed D-LinkNet for road extraction, the back-
bone of D-LinkNet is LinkNet and several dilated convolution
layers are added in its center part. D-LinkNet won the first place
in the DeepGlobe2018 Road Extraction Challenge.

Several work represent road network as an undirected graph.
Bastani et al., (2018) proposed roadtracer, a method that used a
CNN-based decision function to guide an iterative search pro-
cess to generate a road graph. Ventura et al., (2018) designed
a CNN that predicts the connectivity between the current road
nodes and other nodes in its neighbourhood. In polymapper (Li
et al., 2019), the author defines the road as closed graph and
used Polygon-RNN to detect the position of graph nodes.

3. METHODOLOGY

The workflow of the proposed method is shown in Figure 1.
Aerial images are inputs in the study, a regression network is
trained to predict the confidence map for road centerline and
road width map. At the inference stage, after the network pre-
dicts the confidence map and width map, NMS and road track-
ing are applied to attain road centerlines. Then road edge lines
are generated based on the extracted centerlines and predicted
road width map. Finally, in order to improve the completeness
of extracted road network, tensor voting is applied to detect road
intersections and the detected intersections are used to guide the
overcome of discontinuities.

3.1 Confidence map for centerlines

The training set is denoted as S = {X,, Y, Zn,n =1,..., N},
in which X,, = {xg."),j =1,...,|Xn|} denotes the input aerial
image, Y, = {y;n) j = 1,....|Yn|} denotes the correspond-

ing confidence map for road centerlines. Z, = {zj(."), j =
1,...,|Zx|} denotes the corresponding road width map.

The value of pixel on confidence map represents its probabil-
ity of lying on the road centerlines, which is shown in Figure
: e (M)
2. The confidence map has the following properties: y;" is
;-”) is on the centerlines and the value of
yj(-”) gradually decreases as the distance between a:;") and road
centerlines becomes larger. The confidence map Y, is defined

as follows:

local maximum when =

(n)
yj(n) — ¢~ Doz, )2 /202 )
DC (ﬂ?;n)) - TEin c@itzrlines :L‘;") - CL‘kH (2)

where D¢ (xm)

J
pixel :vg.") to pixel x on the road centerlines. o controls the
spread of the peak. In our approach, we set 0 = 5. In most
datasets for road extraction, the road label is a binary mask, in

which the values of the pixels in road areas are 1 and the values

) denotes the minimum distance from the j-th
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Figure 1. Workflow of the proposed method

of the pixels belonged to background are 0. Thus, we need to
convert the road mask to the confidence map for road center-
lines. We adopt a thinning algorithm to obtain road centerlines
from road mask and then generate the road confidence maps.
The confidence map for centerlines is calculated as Eq. (1).

(b)

Figure 2. Confidence map for road centerlines. (a) Input image.
(b) Corresponding confidence map.

3.2 Road width map

In order to estimate the road width of each pixel on extracted
road centerlines, the study proposes road width map which in-
dicates the width of road where each pixel is located. A regres-
sion network is trained to predict road width map for input im-
ages. The ground-truth for road width map is generated based
on road binary mask either. For each pixel on the roads, the
width of which is calculated along the direction perpendicular
to road direction, as shown in Figure 3. The road width map Z,,

is calculated as follows :
g0 _ § W) if Pai) =1 3)
J 0 ifP{™) = 0

where W(acgn)) denotes the road width of the j-th pixel Jsg").
P(mg-")) denotes whether ac;") is in the road region. P(x§")) =

1 denotes that xgn) is in the road region and P(xﬁ-”)) = 0 de-
(n)

J

notes that =’ is in the background.

Figure 3. For pixel p and q, the width of which (w1, w2) is
calculated along the direction perpendicular to road direction.

3.3 Network architecture

The whole network is shown in Figure 4. We adopt encoder-
decoder architecture to simultaneously predicts confidence map
and width map. We choose the pretrained ResNet (He et al,
2016) as the encoder. The network is split into two branches,
the first decoder predicts the confidence map while the second
predicts the width map. The two decoders share the same archi-
tecture. Each decoder has five upsampling layers to gradually
upsample the feature map by a factor of 2. Each upsampling
layer is followed by 2 convolution layers to generate dense pre-
dictions.

Road generally has a long continuous shape structure, thus con-
text information and spatial relationship are important in road
recognition. Dilated convolutions with different dilate rates can
effectively increase the receptive field of network while pre-
serving the details, so this study adds additional dilated convo-
lution layers in the center part of the network.

The confidence map and width map predicted by our network
are denoted as Y and Z. The ground-truth for confidence map
and width map are denoted as Y and Z. In this study, mean-
squared loss is adopted as the loss function of our network. The
loss for predicted confidence map is denoted as Ly while the
loss for predicted width map is denoted as Lz. Ly and Lz are
calculated as following.

Ly = 3+ () - Y () @

L= Zp;@(p) ~ Z(p))? 5)
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where p denotes position of pixel in the confidence and width
maps. N denotes the number of pixels in the map. The total
loss function of the network is the sum of Lz and Ly, which is
defined as

Loss = Ly + Lz (6)

confidence map

input

width map

M

Resblock

Conv+BN+Relu

Conv+BN+Maxpool ’ Resblock with downsampling Dilated Conv Transpose Conv

Figure 4. Our architecture is split into two branches: top and
bottom, which simultaneously predicts confidence and road
width maps.

3.4 Extraction of centerlines and edge lines

Since the values of pixels on centerlines in the confidence map
are local maximums along the direction perpendicular to direc-
tion of road. After the network predicts the confidence map for
centerlines and road width map, a Canny-like non-maximum
(NMS) is applied to the confidence map to obtain accurate center-
lines. Given the confidence map M predicted by CNN, the dir-
ection @ perpendicular to the road direction at position p(z, y)
is calculated as follows.

0 = tan™ ' (Dy, Dz) (7
where Dx and Dy denote the Horizontal and Vertical gradients.
If the value of p(z,y) on M is local maximum along direction
0, p is on centerlines.

Although the centerlines are extracted after NMS, the results
are simply binary images (as shown in Figure 5), which lack
the road topology. Thus in order to construct road topology, we
take advantage of road tracking to track road centerlines.

To track road centerlines, firstly, a point on centerlines is selec-
ted as the start point, and the direction of the road at the start
point is calculated. The binary image for road centerlines is de-
notedas C, C = {¢; ;| =1,...H,j =1...,W} where ¢; ; = 1
for pixel (7, ) on the centerlines and ¢; ; = 0 for pixel (¢, j) on
the background. Given the direction Ocyrrent Of current trace
point (Zeurrent, Yeurrent ), the positions of candidates for the
next trace point are calculated as follows.

|:xs,t:| _ |:Icur7“ent + Cos(ocurrent + t) X S (8)

ys,t ycu'rrent + Sin(ecuT'rent + t) X S

where ¢ is the change of road direction. S is the suitable size of
the distance between current trace point and the next point. In
this study, t € (0, %1, ..., £10), S = 15.

The next trace point (Tneqt, Ynewt) is calculated using the fol-
lowing formula.

(@newt; Yneat) = (Ts,tmins Ys,tmin) ©)

t = argminC (s, ys) = 1 (10)
t

The road direction 6 for the next trace point is updated as fol-

lows.

an

After road centerlines are tracked, road edge lines are generated
based on the tracked centerlines and road width map predicted
by the CNN model. Let W denotes the predicted road width
map, p denotes pixel on the tracked centerlines. The locations
of pixels on road edge lines are calculated as following.

ecur'rent = ecurrent +t

{ z =z, £ W(p) x (—sinb,) (12)

Y =yp £ W(p) x cosb,

where (zp,yp) denotes position of p and 6, denotes road dir-
ection at p. The extracted road centerlines and edge lines are
shown in Figure 5.

(C)

Figure 5. Extraction of centerlines and edge lines. (a) Input
image. (b) Binary map for centerlines. (c) Tracked road
centerlines. (d) Extracted road edge lines.

3.5 Refining road topology

After the previous road tracking, the main road network has
been extracted. However, there are still some gaps and isolated
road fragments in the extracted road network. Most of isolated
segments should be connected to other roads to generate inter-
sections, as shown in Figure 6. Therefore, this study used tensor
voting algorithm (Maggiori et al., 2015) to overcome the dis-
continuities. Though intersections could be directly predicted
by CNN, tensor voting is more simple and doesn’t need train-
ing, which is a more generic for road network refinement.

Tensor voting is a robust method for perceptual grouping. It
firstly encodes input space points as stick-shaped tensors or
ball-shaped tensors. After encoding the input points into per-
fect tensors (Maggiori et al., 2015), the information they encode
is propagated to their neighbourhood in the voting procedure.
After the first voting, the tensors for input points are refined
and a second voting is carried out.
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(c) (@

Figure 6. Intersections detected by tensor voting. (a) tensor
voting. (b) Binary map for road region. (c) Saliency of ball
tensors. (d) Detected intersections are shown in yellow.

In the tensor encoding procedure, for each pixel p in the road
region, the normal vector of p is n = (ng,ny). p is encoded as
NaNz  MaNy

. T can be decomposed as follows.
NaMy  NyNy

tensor 1" = {

T = )\1816? + )\26265 = ()\1 — Az)elef —+ /\z(ele? —+ 626%1)

(13)
where A1 and A2 are eigenvalues of 7" and A1 > Ao, €1, ez are
eigenvectors. A1 — Az is the saliency for stick tensor and Az is
the saliency for ball tensor.

Voting is carried out after points in road region have been en-
coded. Tensors propagate their information to other points in
the neighbourhood, as shown in Figure 6 (a). Assuming that P
is the voting point and O is the receiver. The salience of vote
from P received by O is calculated as follows.

DF(0) = e~ (" +er?/e%) (14)

where s denotes the length of arc along the osculating circle
from P to O and x denotes the curvature. ¢ denotes the scale
parameter. The decay of salience is controlled by c. The vote
of P received by O is calculated as follows.

SV(T,v) = { DF(v)R2eTRYy, if — m/A<0<7/4
0, otherwise
(15)
where 6 is the angle subtended by the arc of the osculating circle
from P to O. Ry is the rotation matrix for 260. T is the tensors
for P.

After tensor voting, the ball saliency of intersections is higher
than other points in its neighbourhood, which is shown in Fig-
ure 6(c). The intersections are extracted after applying NMS to
the saliency map of ball tensors. The detected intersections are
shown in Figure 6(d).

Figure 7. Intersections guide overcome of discontinuities. (a)
inital road network. (b) refined road network.

The detected intersections are used as the guidance for the over-
come of discontinuities. If the intersections are on the extended
lines of road line segments, the road fragments are connected
to the corresponding intersections. Figure 7 shows the refined
road topology.

4. EXPERIMENTS
4.1 Dataset

This study conducts experiments on DeepGlobe and SpaceNet
datasets. DeepGlobe dataset consists of 6226 aerial images.
The satellite imagery used in DeepGlobe is sampled from the
DigitalGlobe+Vivid Image dataset, the spatial resolution of that
is 1m? /pixzel. We randomly select 4626 images for the train-
ing part and 1600 for the testing part. SpaceNet dataset consists
of 3347 images, the ground resolution of which is 30 cm/pixel.
This dataset includes four areas: Las Vegas, Paris, Shanghai,
and Khartoum. We split the dataset into 2780 images for train-
ing and 567 for testing.

4.2 Implementation details

We implement the proposed network using the Pytorch frame-
work. Encoder is initialized using the pretrained model on Im-
ageNet dataset. The network is optimized using RMSprop with
learning rate policy of poly. The hyper parameters of our model
include initial learning rate (2¢~*), mini-batch size (2) and max
epoches(300).

4.3 Evaluation Metrics

Two different measures are used to evaluate the quality of ex-
tracted road networks: a classical measure and a measure named
connectivity to evaluate the connectivity of topology.

The classical measure (Heipke et at., 1997) consists of recall,
precision and Fl-score. Their definitions are presented as fol-
lows.

*

recall = T;LT (16)
t
precision = Z—m 17
t

o precision - recall

Fy —
precision + recall

(18)
where n;, denotes the length of reference road path in the buffer
of extracted road network, n; denotes the length of reference
road network. Similarly, n.,, denotes the length of extracted
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Figure 8. Examples of road extraction results on the DeepGlobe and SpaceNet datasets. The first row shows road centerlines and edge
lines extracted by DLinkNet, the middle row shows results of the proposed method and the bottom row shows the ground-truth. We
overlayed the extracted road centerlines(yellow) and edge lines(red) on the image. Our approach extracts more complete road network
while has lower error rate than other methods.

road path in the buffer of reference road network and n: denotes
the length of extracted road network. The buffer width is set as
3 pixels in the experiments.

The Connectivity C (Ventura et al., 2018) is defined as the ratio
of continuous road segments, the definition of which is presen-
ted as follows. N
tivity = —=2% 19
connectivity N ( )

gt

where N.., denotes the number of continuous road segments
and Ny denotes the number of gt segments.

4.4 Quantitative Results

Our approach has been compared with some deep learning-
based road extraction methods, Unet and DLinkNet. This study
make experiments on the test set of the DeepGlobe and Spa-
ceNet datasets. U-Net structure is widely used in biomedical
images segmentation and has shown great performance in road
segmentation. D-LinkNet performed well in the DeepGlobe
challenge and won the first place in the DeepGlobe Road Ex-
traction Challenge. We report performance in terms of mean
recall, precision, F1-score and connectivity across the two data-
sets.

On the DeepGlobe dataset, our method outperforms other meth-
ods in terms of mean recall, precision and F1-score (as shown
in Table I). Specifically, in comparison with D-LinkNet, our
method obtains increments of 0.69% in mean recall and 0.35%
in mean precision, thereby indicates that ours method can ex-
tract more complete road networks while has a lower error rate
than other methods. Furthermore this study calculates F1-scores
to assess the overall performance of extracted road topology.
Our approach obtains increments of 0.54% in mean F1-score.
In addition, the proposed method obtains increments of 0.52%
in mean connectivity. The quantitative results show that our
method remarkably surpasses other methods in extracting high-
quality road networks. This study then conducts experiments
on the SpaceNet dataset to further evaluate the performance of
proposed method. Results are shown in Table II. The proposed
method obtains increments of 1.48% and 0.53% in mean reall
and precision, obtains increments of 1.05% and 2% in F1-score
and connectivity with respect to D-LinkNet. The reuslts indic-
ate that the proposed method still achieves higher performance
on SpaceNet dataset.

4.5 Qualitative Results

Figure 8 shows some predicted results of the methods men-
tioned above on the test set of the SpaceNet and DeepGlobe
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Method Recall Precision Fl-score = Connectivity
U-Net 0.7868 0.8174  0.8018 0.7663
D-LinkNet  0.8170 0.8756  0.8452 0.8041
ours 0.8239 0.8791  0.8506 0.8093

Table 1. Performance on the DeepGlobe dataset. Recall and
precision are calculated using a distance threshold of 3 (in

pixels)
Method Recall Precision Fl-score  Connectivity
U-Net 0.5733 0.6157  0.5937 0.6132
D-LinkNet  0.6015 0.6669  0.6325 0.6486
ours 0.6163 0.6722  0.6430 0.6686

Table 2. Performance on the SpaceNet dataset. Recall and
precision are calculated using a distance threshold of 3 (in
pixels)

datasets. The proposed method extracts more complete road
networks and the extracted road networks have less discontinu-
ities, especially in urban area where roads are often occluded by
buildings and shadows. Although the proposed method can ex-
tract relatively complete road networks, it still has a lower error
rate and does not produce more incorrect road fragments. The
extracted road edge lines shown in Figure 8 indicate that the
road width estimated by CNN is relatively accurate compared
with the ground-truth.

Generally, in DeepGlobe and SpaceNet datasets, the proposed
method achieves higher performance in road topology extrac-
tion against the baselines (Unet, DLinkNet). However, there
are still some false road fragments and discontinuities in the
extracted road neworks, especially in dense urban areas where
roads are frequently occluded and have visual similarity with
some buildings. Thus, it is still a great challenge to extract road
networks in dense urban areas.

5. CONCLUSIONS

This study proposes a regression-based method for automatic
extraction of road centerlines and edge lines from aerial images.
The first step is to train a regression network for predicting con-
fidence maps for road centerlines and road width map. Second,
after the CNN predicts the confidence map, NMS and road
tracking are followed to attain accurate road centerlines. Road
edge lines are generated based on extracted centerlines and road
width estimated by the network. Finally, in order to improve
the connectivity of extracted road network, tensor voting is ap-
plied to detect road intersections and the detected intersections
are used as the guidance for the overcome of discontinuities.
The major contribution of this study is the introduction of the
method that uses a new strategy, which is different from image
segmentation to solve the problem of road extraction. We have
conduct experiments on the DeepGlobe and SpaceNet datasets
and the results indicate that the our approach achieves better
performance than some other road extraction methods. In the
future we plan to extract road networks in dense urban areas.
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