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ABSTRACT:

With new accessibility to satellite videos, retrieving the dynamic information of moving objects over a vast territory becomes 
possible with the development of advanced video processing and machine learning techniques. Detecting moving objects can be 
based on the structures of both background and foreground of a satellite video, and the background is assumed to lay in a low 
dimensional subspace. As the moving objects in satellite videos are groups of neighbouring pixels other than isolated pixels, 
Low-rank and Structured Sparse Decomposition (LSD) with structured sparsity regularization on the foreground can suppress the 
false alarms caused by isolated outliers. However, in LSD, the groups of neighbouring pixels are extracted by a fixed sliding 
window over each video frame, which ignores the coherence on the appearance of a moving object. For example, a moving object 
can be in an irregular shape and arbitrary orientation. In this paper, we argue that the spatial groups on the foreground can be 
defined using the concept of superpixels, where each superpixel is formed by a group of spatially connected similar pixels obtained 
from over-segmentation. We conduct low-rank matrix decomposition at superpixel level, which is named as Superpixel-based 
LSD (S-LSD). To handle the variation in moving objects, we combine the superpixels at a range of scales in the superpixel-based 
spatial regularization on the foreground. With the reduction in the number of spatial groups, S-LSD presents reduced computation 
complexity. The results on two satellite videos show a satisfactory performance with a significant saving in processing time when 
the proposed S-LSD approach is applied.

1. INTRODUCTION

Recently, the cube satellites Jilin-1 (Luo et al., 2017) and
SkySat (Team, 2016) can produce satellite videos over a large
territory. Unlike previous still images with low revisiting fre-
quency, a satellite video is a sequence of 2-D spatial frames
captured by the satellite with a high frame rate. The abund-
ant temporal information in these videos is helpful for retrieve
motion information on objects of interest over a larger ter-
ritory, which facilitates a wide range of applications includ-
ing target tracking (Mou, Zhu; Du et al., 2018; Zhang et al.,
2018; Uzkent et al., 2018) and traffic monitoring (Kopsiaftis,
Karantzalos). Detecting moving objects from satellite videos
plays a vital role in these applications. Contemporary object de-
tectors achieve state-of-the-art detection performance by learn-
ing a image-based detector from manually annotated training
images (Long et al., 2017; Li et al., 2017; Ding et al., 2018;
Liu et al., 2018). However, in satellite videos, the applicability
of these approaches is limited by the accessibility to the suffi-
cient annotations for training such over-parameterized models.
Alternatively, unsupervised methods for Moving Object Detec-
tion (MOD) can separate moving objects from the background
scene by making use of the temporal information.

The canonical approaches for MOD assume each frame in a
video is constructed by a foreground and a background. The
background part of a frame is considered temporally stable and
similar, while the temporally changing foreground part contains
the moving objects. Based on this assumption, the dominating
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set of MOD approaches are based on the low-rank matrix de-
composition, where the background data lay in a low dimen-
sional subspace and the moving objects in the foreground are
considered as the sparse outliers (Bouwmans, Zahzah; Bouw-
mans et al., 2017, 2018). Robust Principle Component Ana-
lysis (RPCA), as a fundamental method in this set, imposes
pixel-wise sparsity regularization term on the foreground in the
low-rank matrix decomposition problem (Candès et al., 2011),
whose solution can be obtained by Principle Component Pursuit
(RPCA-PCP) (Lin et al., 2011; Candès et al., 2011; Wright et
al., 2009) and Fast Low Rank Approximation (GoDec) (Zhou,
Tao). However, RPCA is prone to the false alarms caused by
the isolated outliers in satellite videos.

To suppress these false alarms, the spatial regularization terms
are imposed on the foreground in low-rank matrix decomposi-
tion. Total Variation (TV) regularization is deployed to enforce
the smoothness on the foreground in the matrix decomposition
(Xu et al., 2017). The first-order Markov Random Field (MRF)
is also integrated into low-rank matrix decomposition to con-
strain the moving objects to be contiguous (Zhou et al., 2013;
Shakeri, Zhang). In satellite videos where spatial resolution is
low and color information is limited, these approaches have
limited improvement in MOD performance, as they risk mer-
ging neighbouring targets.

Another set of spatial prior on the foreground is defined on the
sparsity over groups of spatial neighboring pixels other than in-
dependent pixels. The structured sparsity-inducing norm (Jen-
atton et al., 2011) is then introduced to regularize the fore-
ground (Liu et al., 2015; Xu et al., 2013; Zhang et al., 2019a). In
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Figure 1. Illustration of S-LSD for moving object detection in satellite videos.

satellite videos, an Extended Low-rank and Structured Sparse
Matrix Decomposition (E-LSD) model is proposed for boost-
ing the MOD performance by imposing structured sparse regu-
larization on the foreground (Zhang et al., 2019a,b). However,
the spatial groups of neighbouring pixels in these approaches
are extracted by a fixed sliding window over each video frame,
which ignores the irregular shapes and arbitrary orientations of
a moving object. Another disadvantage of using sliding window
approach is that many spatial windows are processed unneces-
sarily, which leads to increased processing time.

In this paper, we argue that the spatial groups in the spatial
regularization can be constructed from superpixels, where each
superpixel is formed by a group of spatially connected similar
pixels obtained from over-segmentation. In satellite videos, it is
reasonable that we assume a moving object is commonly com-
posed of one or more coherent regions and each of them can
be extracted by over-segmentation. Inspired by this observa-
tion, we propose to conduct low-rank and structured sparse mat-
rix decomposition with spatial groups defined by superpixels,
which is named as Superpixel-based Low-rank and Structured
Sparse Matrix Decomposition (S-LSD) in this paper. To handle
the moving objects in various sizes, we also combine spatial
groups from multiple sets of superpixels at a range of scales.
In S-LSD, the number of spatial groups is less than it in LSD
or E-LSD, which helps reduce the computation complexity of
S-LSD in practice. We compared the proposed S-LSD with the
state-of-the-art algorithms on two satellite videos and the exper-
imental results validate the significant reduced processing time
by S-LSD with satisfactory MOD performance.

The remainder of this paper is organized as follows. The pro-
posed S-LSD is presented in Section 2. The experimental res-
ults and performance comparison against state-of-the-art ap-
proaches are presented in Section 3. Finally, conclusions is
given in Section 4.

2. PROPOSED METHOD

2.1 Problem Formulation

The proposed Superpixel-based LSD (S-LSD) is defined as a
low-rank matrix decomposition problem, where the rank of the
background is minimized. In order to suppress false alarms
caused by isolated outliers in the foreground, S-LSD imposes
a superpixel-based structured sparse regularization on the fore-
ground.

Given a sequence of n video frames and each frame contains p
pixels, S-LSD decomposes its corresponding matrix D ∈ Rp×n
to a low-rank background matrix B ∈ Rp×n and a structured
sparse foreground matrix S ∈ Rp×n. The optimization problem
of S-LSD is formulated as

(B∗,S∗,E∗) = arg min
B,S,E

Rank (B) + λ1Ω(S) + λ2 ‖E‖2F

s. t.D = B + S + E
,

(1)
where Ω(S) refers to the spatial regularization term on the fore-
ground S, and E is introduced to handle the noise in the model.
λ1 and λ2 are the weights assigned to the spatial regularization
term and the noise term, respectively.

In this paper, we assume the moving objects are sparse groups
of neighboring non-zero pixels in the foreground, and the struc-
tured sparsity-inducing norm (Jenatton et al., 2011, 2010; Jia et
al., 2012) is adopted to regularize the foreground as

Ω(S) =
∑
s∈S

‖s‖`1/`∞ =
∑
s∈S

∑
g∈G(s)

ηg
∥∥s|g∥∥∞, (2)

where G(s) refers to the set of spatial groups of neighboring
pixels of the foreground s, and s|g ∈ Rp is a sparse vector with
non-zero elements at the indices represented in a group g ∈ G.
For each group of pixels g ∈ G(s), ηg is the weight for a group
of the pixels. Applying the structured sparsity-inducing norm
on the foreground data as the spatial regularization term tends
to assign zeros to the pixels in a group, thus the isolated outliers
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on the foreground are suppressed. In S-LSD, no temporal re-
lationship on the foreground is defined in Equation. (1), so the
structured sparse penalty is frame-wise independent.

2.2 Superpixel-based Structured Sparse Regularization

In the spatial regularization term Ω(S), the groups of neigh-
boring pixels G(s) are commonly constructed by the patches
extracted by a fixed sliding windows over each frame (Liu et
al., 2015; Xu et al., 2013; Zhang et al., 2019a,b), which leads to
the increased number of generated spatial groups and hurts the
efficiency in solving Equation. (1). In this paper, we propose to
build the spatial groups G(s) from the superpixels extracted by
over-segmentation. With the superpixels extracted from a frame
s at a given scale, a spatial group is constructed by the pixels in
a superpixel. In order to handle the variation in moving objects,
G(s) combines the superpixels extracted at a range of scales.

Let M = {m1,m2, · · · ,m|M|}, m1 < m2 < · · · < m|M|,
note a selected set of superpixel scales, and Gm(s) is referred to
the groups constructed from the superpixels extracted at a given
scale m ∈M. Given a set of scalesM, we define the entire set
of spatial groups as

G(s) = Gm1(s) ∪ Gm2(s) ∪ · · · ∪ Gm|M|(s). (3)

With the spatial groups defined above, the proposed Superpixel-
based Structured Sparse Regularization on a foreground frame
s is defined as

‖s‖`1/`∞ =
∑
m∈M

∑
g∈Gm(s)

ηg
∥∥s|g∥∥∞ , (4)

where ηg is the weight for a group of neighboring pixels. In this
paper, we assign different weights to different superpixels. For
spatial groups constructed from the superpixels at coarse scales,
the small objects in the foreground would be suppressed, as the
pixels in such groups may be forced to be zero. Based on this
understanding, the weights for spatial groups at larger scales are
decreased,

ηg =
|Gm(s)|
|Gm1(s)|η0, ∀g ∈ Gm(s) and m ∈M, (5)

where |Gm(s)| is the number of spatial groups in Gm(s), and η0
is the initial weight for the spatial regularization term. Since we
always have |Gm1 | > |Gm2 | > · · · > |Gm|M| |, the weights of
spatial groups at large scales are always less than η0. The same
weight is assigned to the spatial groups constructed from the
superpixels of the same scale. For simplicity, we assign 1.0 to
the initial weight η0. In this paper, the superpixels are extracted
by the SEEDS approach (Van den Bergh et al., 2015), where the
initial size of a superpixel in SEEDS corresponds to the scale
m in the Superpixel-based Structured Sparse Regularization.

2.3 Solution to S-LSD

To make the problem in Equation. (1) more tractable, the nuc-
lear norm ‖B‖∗, which is the convex relation of the Rank(B),
is utilized to replace the rank minimization, and the linear con-
straint is removed by the Augmented Lagrangian method. Then

Algorithm 1 The Alternating Direction Method of Multi-
pliers (ADMM) for S-LSD
Input: D ∈ Rp∗n, λ1 > 0, λ2 > 0, µ > 1.0, µ̄ = µ × 1.0e5,

ρ > 1.0 and τ = 1.0e−7
Output: B, S and E

1: B0 = 0, S0 = 0, E0 = 0 and k = 0

2: while ‖
D−Bk−Sk−Ek‖

F
‖D‖F

≤ τ do
3: Update Bk+1 by solving

Bk+1 = arg min
B

1

µ
‖B‖∗

+
1

2

∥∥∥∥(D− Sk −Ek +
1

µ
Yk)−B

∥∥∥∥2
F

.

(7)

4: Update Sk+1 by solving

Sk+1 = arg min
S

λ1

µ
Ω(S)

+
1

2

∥∥∥∥(D−Bk+1 −Ek +
1

µ
Yk)− S

∥∥∥∥2
F

.

(8)

5: Ek+1 = µ
2λ2+µ

(D−Bk+1 − Sk+1 + 1
µ
Yk).

6: Yk+1 = Yk + µ(D−Bk+1 − Sk+1 −Ek+1).
7: µ = min{ρµ, µ̄}, k = k + 1.
8: end while
9: return Bk+1, Sk+1 and Ek+1

we obtain the reformulated optimization problem as

(B∗,S∗,E∗) = arg min
B,S

‖B‖∗ + λ1 ‖S‖`1/`∞

+λ2 ‖E‖2F + 〈Y,D−B− S−E〉

+
µ

2
‖D−B− S−E‖2F ,

(6)

where Y ∈ Rp∗n is the Lagrangian multiplier and µ > 0 is a
positive scalar. This augmented problem can be solved by al-
ternating direction method of multipliers (ADMM) (Boyd et al.,
2011) or Block Coordinate Descent (BCD) (Wright, 2015). In
this paper, we adopt the ADMM approach for solving this aug-
mented problem in Equation. (6), since the sufficient guarantee
on the convergence has been provided for the set of optimiza-
tion problems that minimizes the sum of three functions with
uncoupled variables under a three-block linear constraint (Cai
et al., 2017; Zhang et al., 2019a).

As summarized in Algorithm 1, the procedure for solving Equa-
tion. (6) is to alternatingly solve sub-problems with respect to
B, S and E with two remaining variables fixed until it is con-
verged.

2.3.1 Update B At each iteration, Bk+1 is updated by the
Singular Value Thresholding approach (Wright et al., 2009; Cai
et al., 2010). Let G = D−Sk−Ek + 1

µ
Yk, and UΣVT = G

is the Singular Value Decomposition (SVD) of G. Then B is
updated by

Bk+1 = US 1
µ

(Σ)VT , (9)

where S 1
µ

(Σ) conducts the element-wise soft-shrinkage on the
diagnose matrix Σ by

S 1
µ

(Σ) = max(Σ− 1

µ
,0),Σ � 0, µ > 0. (10)
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Table 1. Information on the evaluation datasets

Video Frame Size Cross Validation Performance Evaluation
#Frames #Vehicles #Frames #Vehicles

001 400× 400 200 9306 500 18167
002 600× 400 200 13443 500 39362

2.3.2 Update S The sub-problem defined in Equation. (8)
is decomposed to a set of frame-wise optimization problems,
since the spatial regularization term on the foreground is frame-
wise independent.

Given a frame d = Di, ∀i ∈ {1, · · · , n}, the decomposed
optimization problem for the foreground frame s = Sk+1

i is
rewritten as

arg min
s

1

2
‖h− s‖22 + λ′

∑
g∈G

ηg
∥∥s|g∥∥∞ , (11)

where h = d−Bk+1
i −Ek+1

i + 1
µ
Yk+1
i , and λ′ = λ1

µ
. When the

spatial groups of pixels in G are non-overlapped, the problem
in Equation. (11) can be solved by the Group-LASSO method
(Yuan, Lin). However, as G combines the spatial groups at dif-
ferent scales, overlapped groups of variables are observed, and
Equation. (11) cannot be solved directly. Instead, the solution is
obtained by its dual problem as a Quadratic Min-cost Network
Flow problem,

ξ∗ = arg min
ξ

1

2

∥∥∥∥∥h−∑
g∈G

ξg

∥∥∥∥∥
2

2

s. t. h− s +
∑
g∈G

ξg = 0,

∀g ∈ G, ‖ξg‖1 ≤ λ
′ηg and ξgj = 0 if j /∈ g,

(12)
where ξ ∈ Rp×|G| is the dual variable. This Quadratic Min-cost
Network flow problem is defined and solved in (Mairal et al.,
2010). After solving the dual problem, the foreground Si = s
is obtained by

s = h−
∑
g∈G

ξ∗g, (13)

in which ξ∗ refers to the optimal solution to Equation. (12).

2.4 Computation Complexity

For processing a video in the length of n, the computation com-
plexity for solving Equation. (1) is related to the number of
spatial groups in G, O(n(p2 +

∑
g∈G |g|)). Compared with

constructing G by sliding window, the superpixel-based spatial
regularization usually has a reduced number of spatial groups.
In case that the processing time is critical, S-LSD with spatial
groups constructed at a single proper scale may achieve both re-
duced processing time and moderate MOD performance at the
same time. Combining spatial groups of multiple scales in S-
LSD may improve the MOD performance by handling moving
objects in different sizes, which, on the contrary, may increase
the processing time. In practice, by reducing the number of spa-
tial groups, S-LSD can help reduce the time consumption for
processing large satellite videos with satisfactory performance.

3. EXPERIMENTS

3.1 Dataset

The detection performance of S-LSD was evaluated on two
satellite videos. They were captured over Las Vagas, USA
on March 25, 2014, whose spatial resolution is 1.0 meter and
the frame rate is 30 frames per second. Both videos con-
tain 700 frames with boundary boxes for moving vehicles as
groundtruth, and details on both videos are listed in Table. 1 1.

The MOD performance on these videos is evaluated on recall,
precision and F1 scores given by

recall = TP/(TP + FN)

precision = TP/(TP + FP )

F1 =
2× recall× precision

recall + precision

, (14)

where TP denotes the number of correct detections, FN
and FP are the numbers of missed detections and false
alarms, respectively. In this paper, we define a correct de-
tection with maximum Intersection over Union (IoU) against
the groundtruth greater than a threshold. To accommodate the
vehicles in small size in satellite videos, the threshold is set as
0.3 3.

(a) Video 001 (b) Video 002

Figure 3. Exemplar frames from Video 001 and Video 002.

3.2 Selecting Proper Scales for Spatial Regularization

The scale of the spatial groups in the superpixel-based spatial
regularization term plays an important role in S-LSD. We first

1 Moving vehicles are manually labelled by the Computer Vision An-
notation Tool (CVAT), and a boundary box is provided for each moving
object on each frame.

3 The estimated foreground is built by contiguous values rather than bin-
ary value, so we adopt the threshold segmentation as post-processing
for extracting the foreground mask and the moving objects (Gao et al.,
2012).
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Method S-LSD E-LSD

Superpixels -

Foreground mask

Detection

Method LSD E-LSDM = {4} M = {16} M = {64}
|G| 15616 9268 2486 39204

Recall ↑ 90.3% 87.6% 71.7% 81.5%
Precision ↑ 77.7% 72.8% 74.9% 85.9%

F1 ↑ 83.54% 79.52% 73.22% 83.64%
Time (s) ↓ 369.83 350.04 351.57 1054.85

Figure 2. Demonstration on the effects of different scales in spatial regularization in S-LSD.

evaluate the performance of S-LSD with single scale spatial
regularization. When selecting a small scale, a considerable
number of spatial groups will be constructed in G, which thus
increases the processing time. However, when selecting an en-
larged scale, the small moving objects in the foreground may
be suppressed, as pixels in a spatial group tends to be zero to-
gether. As presented in Figure. 2, when the scale of the spatial
group increases from 4 to 64, the recall rate of the moving ob-
ject drops from 90.3% to 71.7%. At the same time, as less spa-
tial groups are constructed in G for larger scales, the processing
time is reduced.

M Recall Precision F1 Time (s)
{4} 90.3% 77.7% 83.54% 369.83

{4, 16} 84.7% 86.2% 86.48% 800.10
{4, 16, 64} 83.6% 87.4% 85.42% 942.62

Table 2. Information on the evaluation datasets

In this paper, we combine spatial groups of different scales to
handle moving objects in different sizes. As shown in Table. 2,
when combining two scales of spatial groups in the regulariz-
ation term,M = {4, 16}, the MOD performance is improved.
When more scales are introduced,M = {4, 16, 64}, the MOD
performance drops a bit, as some small moving objects may be
improperly suppressed by the large spatial groups at the scale
of 64. A moderate number of scales is recommended.

In the following experiments, we select S-LSD with a single

scale withM = {4}, and, for S-LSD with multiple-scale spa-
tial regularization, we set M = {4, 16}. The weights λ1 and
λ2 are selected by cross validation, and further fine-tunes on
M, λ1 and λ2 may improve the MOD performance by S-LSD
more.

3.3 Comparison with Other Methods

To verify the effectiveness of S-LSD, we compare the detection
performance against three state-of-the-art approaches, which
are RPCA (Candès et al., 2011), LSD (Liu et al., 2015) and
E-LSD (Zhang et al., 2019a). RPCA is a low-rank matrix de-
composition method without spatial constraints on the fore-
ground,and is solved by Principal Component Pursuit. LSD and
E-LSD both impose the structured sparse regularization on the
foreground, where the spatial groups are constructed by a slid-
ing window.

As presented in Table. 3 and Figure. 4, S-LSD with the single
scale spatial regularization M = {4} achieves comparable
performance in term of recall with significantly reduced pro-
cessing time. Compared with the RPCA, the superpixel-based
structured sparse regularization in S-LSD helps reduce in false
alarms due to noises in the data, which leads to improved de-
tection precision. Compared with LSD and E-LSD where the
structured sparse regularization is based on a sliding window,
S-LSD reduces the processing time with comparable MOD per-
formance. The reduction in time consumption by S-LSD shows
it is more applicable for the applications where processing time
is critical. S-LSD improves the detection precision to the extend
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that the remaining false alarms are caused by other factors. As
presented in Figure. 4, moving objects are mistakenly recog-
nized on the top of buildings in left bottom part of the video.
Theses false alarms should be owing to the motion of the satel-
lite in capturing the videos, and suppressing these false alarms
is beyond the topic of paper.

When multiple-scale spatial regularization is imposed, S-LSD
improves the detection precision with moderate increase in time
consumption, as shown in Table. 3. Compared with LSD and E-
LSD, S-LSD (M = {4, 16}) achieves the highest precision on
both videos with lower time costs. As Video 002 contains fewer
large moving vehicles, applying spatial regularization with lar-
ger scale may suppress small moving vehicles, which leads to
the small drop in the recall rate by S-LSD. The difference scales
are selected for different videos because the performance of S-
LSD is related to the over-segmentation performance, which is
affected by the complexity of video as well as the object size.

4. CONCLUSION

In this paper, we propose a Superpixel-based Low-rank and
Structured Sparse Decomposition (S-LSD) algorithm for mov-
ing object detection, where superpixel-based structured sparse
regularization is imposed on the foreground. We show that S-
LSD with single-scale spatial regularization reduces the time
consumption greatly with moderate detection performance,
which makes it more applicable for processing large satellite
videos. S-LSD with multiple-scale spatial regularization of-
fers good detection performance, which is more suitable for ap-
plication with high requirement for precision. With improved
over-segmentation approaches for satellite videos, the MOD
performance of S-LSD would be further improved.
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