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ABSTRACT:

This paper proposes a fused 3D transparent visualization method with the aim of achieving see-through imaging of large-scale
cultural heritage by combining photogrammetry point cloud data and 3D reconstructed models. 3D reconstructed models are effi-
ciently reconstructed from a single monocular photo using deep learning. It is demonstrated that the proposed method can be widely
applied, particularly to instances of incomplete cultural heritages. In this study, the proposed method is applied to a typical example,
the Borobudur temple in Indonesia. The Borobudur temple possesses the most complete collection of Buddhist reliefs. However,
some parts of the Borobudur reliefs have been hidden by stone walls and became not visible following the reinforcements during
the Dutch rule. Today, only gray-scale monocular photos of those hidden parts are displayed in the Borobudur Museum. In this
paper, the visible parts of the temple are first digitized into point cloud data by photogrammetry scanning. For the hidden parts, a 3D
reconstruction method based on deep learning is proposed to reconstruct the invisible parts into point cloud data directly from single
monocular photos from the museum. The proposed 3D reconstruction method achieves 95% accuracy of the reconstructed point
cloud on average. With the point cloud data of both the visible parts and the hidden parts, the proposed transparent visualization
method called the stochastic point-based rendering is applied to achieve a fused 3D transparent visualization of the valuable temple.

1. INTRODUCTION

Tangible cultural heritage sites can be damaged or destroyed
accidentally, deliberately, or by a natural disaster, which is
a huge loss to the civilization. With the rapid development
of laser scanning and photogrammetry scanning techniques,
these problems can be solved by establishing digital archives
of tangible cultural heritage sites. The visualization of di-
gital archives is increasingly important for the preservation and
analysis of cultural heritage sites. Many meaningful applic-
ations such as walk-through displays, computer-aided design,
geographic information systems, and virtual reality applica-
tions can be implemented based on the visualization of digital
archives. All these methods require an efficient and accurate
digitizing method of cultural heritage sites.

Nowadays, it is efficient to acquire and preserve digital data of
extant cultural heritages using 3D scanning technologies and
3D modeling tools. However, there are a lot of cases where
many cultural heritage sites no longer exist or are partially dam-
aged. In this situation, 3D scanning technologies are insuf-
ficient for establishing a complete digital archive of their ori-
ginal appearance. If adequate photos from different directions
remain available, 3D models of the damaged parts can be re-
constructed by multiple image-based methods. However, in a
lot of cases, there is only a single monocular photo per object.
Hence, for this kind of cultural heritage sites, a method that can
perform 3D reconstruction from a single image is urgently re-
quired. In addition, cultural heritage sites are generally broad
in their scale. Therefore, the efficiency of the reconstruction
method is extremely important. To address this issue, this study
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proposes a method based on deep learning to efficiently recon-
struct cultural heritage sites from a single monocular photo. The
proposed method is successfully applied to a typical example,
the Borobudur temple, and its results are promising.

The Borobudur temple in Indonesia is a UNESCO World Her-
itage Site and the largest Buddhist temple in the world. The
temple consists of six square and three circular stacked plat-
forms topped by a central dome. This temple comprises ap-
proximately 2,672 individual bas-reliefs (sculptural reliefs in
which forms extend only slightly from the background) con-
taining 1,460 narrative and 1,212 decorative panels distributed
on six square platforms. These reliefs can be divided into five
sections based on different independent stories they tell. The
section that needs to be reconstructed is called Karmavibhangga
and it consists of 160 reliefs distributed on the first square plat-
form. This temple of high cultural value has been restored and
its foot encasement was reinstalled owing to safety concerns.
During the restoration, the Karmavibhangga reliefs on the first
square floor were covered by stones. Since then, the first square
floor has been called the hidden foot and the Karmavibhangga
reliefs have been hidden from common visitors. Today, only the
southeast corner with four Karmavibhangga reliefs of the hid-
den foot is revealed. For the hidden 156 reliefs, only gray-scale
photos taken in 1890 remain. For each relief, there is only one
photo taken right in front of the reliefs (see Fig. 1).

This paper proposes a method for visualizing the original ap-
pearance of this valuable cultural heritage site before its parts
were covered. It bases on a deep-learning-based 3D reconstruc-
tion method and a transparent visualization method called the
stochastic point-based rendering (SPBR). For the visible parts
of the Borobudur temple, photogrammetry scanning is used to
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Figure 1. An example of old photos taken in 1890

digitize surfaces into point cloud data. For the hidden parts,
the hidden reliefs are reconstructed into point clouds from their
monocular gray-scale photos. Then the photogrammetry data
of the visible parts and reconstructed data of the hidden re-
liefs are combined after a coordinate transformation. After the
stochastic point-based rendering is applied, the result provides
see-through imaging of the entire temple as well as the appear-
ance of reliefs which are supposed to be covered by stones, such
combination is defined as fused transparent visualization in this
paper. With fused transparent visualization, the hidden reliefs
of Karmavibhangga can be clearly seen through the stone walls.

The proposed 3D reconstruction method is based on a depth
estimation neural network that maps intensity or color meas-
urements to depth values. Compared to other methods that
need hand-crafted features or manual annotation, the proposed
method is more efficient and suitable for large-scale cultural
heritage sites. Once the model is properly trained, the hid-
den reliefs can be reconstructed from a single monocular photo
within a few seconds. Supervised learning is used to train the
depth estimation neural network with a training data set ob-
tained from the photogrammetry scanning data of the visible
reliefs in Borobudur. With the information of 3D coordin-
ator in point clouds, the monocular images and corresponding
depth maps of the visible parts of the Borobudur reliefs can be
created. Herein, ten visible reliefs containing four reliefs of
Karmavibhangga and six reliefs from other sections are used
as our training data set. After the model is trained properly, a
depth map can be predicted by the neural network. While the
study (Pan et al., 2018) suffered from low output resolution and
overfitting during training and testing, the model used in the
present work is inspired by the residual network (ResNet) with
higher output resolution, which should solve these issues. As
a result, the accuracy of the reconstructed model reaches 95%,
which is 5% more compared to the result of (Pan et al., 2018).

Furthermore, to provide a good understanding of the Borobu-
dur temple’s complex internal structure as well as the original
appearance of Karmavibhangga reliefs, this study applies trans-
parent visualization to the point clouds. As the Borobudur
temple is a large cultural heritage site, the total point num-
ber of 3D points in the photogrammetry point cloud reaches
about 10'*. For conventional transparent visualization meth-
ods, depth sorting is performed to achieve the correct depth
feel. Every rendering primitive is sorted along the line of the
sight beginning with the farthest one, which involves huge com-
putational costs. In the case of the Borobudur temple, it is
impractical to achieve interactive visualization with depth sort-
ing, so the stochastic point-based rendering mechanism is used
as a stochastic algorithm without depth sorting for transparent
visualization. This work achieves a fused transparent visualiz-
ation of the southeast corner of the Borobudur temple and the
stochastic point-based rendering mechanism provides a prom-
ising result with a correct depth feel of 10'° points in a few
seconds.

2. RELATED WORK

3D reconstruction of cultural heritage has gained a lot of at-
tention in recent years. With laser-scanned data of intact cul-
tural heritage objects, it is now possible to efficiently and flex-
ibly obtain or reconstruct digital data of cultural heritage (Nut-
tens et al., 2011). Besides, as raw scanning data contains
noise in the boundary, there are many manual modeling meth-
ods with various 3D reconstruction tools (Park et al., 2014).
For many defective cultural heritage objects which are partially
damaged, point generation approaches are widely applied (Her-
moza, Sipiran, 2017, Lu et al., 2011). However, many cultural
heritage objects are no longer available for acquiring 3D in-
formation due to irreversible damage. In this situation, image-
based 3D reconstruction is needed and there are many meth-
ods that use multiple images to reconstruct 3D models (Ker-
sten, Lindstaedt, 2013, Ioannides et al., 2013, Kyriakaki et al.,
2014). However, only a single monocular photo per object re-
mains prevalent in many cases. In this case, manual modeling
methods are impractical for large-scale cultural heritage sites
such as Borobudur, which is why an efficient reconstruction
method from a single image is required.

The proposed method based on monocular depth estimation is
used to map intensity into depth value from a single image,
which is an ill-posed problem for its inherent ambiguity. Hand-
crafted features and probabilistic graphical models are mainly
used to tackle the monocular depth estimation problems in clas-
sical methods (Saxena et al., 2005). Recently, many studies us-
ing deep learning have achieved remarkable advances in depth
estimation tasks. Deep learning is an efficient approach espe-
cially suitable for the relief reconstruction task carried out in
this study. The common feature inside the reliefs can be learned
and extracted by neural networks in order to eliminate manual
workload. Most of the related studies involved working on in-
door or outdoor scenes in which the depth was expressed in
meters (Eigen et al., 2014, Laina et al., 2016). In one of the
works (Pan et al., 2018), such depth prediction network was
applied to relief-type data and its estimation possibility was
proved in centimeters. However, that network structure con-
tained two fully connected layers, in which a great number of
parameters limited the resolution of the output depth map. In
this paper, a fully convolutional network is used to increase the
resolution of the output and reduce computational costs. Since
over-fitting might occur during training owing to the complex-
ity and the limited quantity of the data set as reported in (Pan et
al., 2018). To avoid this issue, the proposed method also applies
a residual structure inspired by the residual network ResNet.

Many studies propose a visualization method of point clouds
based on opaque rendering (Kersten, Lindstaedt, 2013). How-
ever, in the case of transparent fused visualization of multiple
point clouds, such studies are not appropriate. For the trans-
parent visualization method for large-scale point clouds, the
pioneering approach of (Zwicker et al., 2002) suffers from a
large computational cost due to the depth-sorting process in-
volved. On the other hand, the transparent fused visualiza-
tion of large-scale point clouds has been barely studied. The
stochastic point-based rendering used in this paper enables the
rapid, precise, and interactive transparent rendering of large-
scale point clouds (Tanaka et al., 2016). It achieves an accurate
depth feel by employing a stochastic algorithm without depth
sorting. In this study, the stochastic point-based rendering is
applied to both the photogrammetry scanning point cloud and
the reconstructed point cloud in order to achieve fused transpar-
ent visualization.
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Figure 2. Network architecture of the depth estimation model. The proposed architecture applies ResNet-50 for down-sampling
convolutional layers (blue parts). The fully connected layers are replaced by up-residual blocks (green parts) as described in (Laina et
al., 2016). The fast-up in up-residual blocks is explained in Fig. 3.

3. METHOD

This section first describes the proposed 3D reconstruction
method based on a depth estimation network, providing a de-
tailed explanation of the network structure and the details of
previous and post data processing. The transparent visualiza-
tion method called the stochastic point-based rendering is then
briefly introduced.

3.1 3D Reconstruction Method

To reconstruct the complete Borobudur temple into point cloud
data, the 3D data of visible parts had to be merged with the 3D
data of the buried Karmavibhangga reliefs. For the visible parts,
photogrammetry scanning was used to obtain the 3D coordin-
ator as well as color information. For the hidden parts, the only
information that could be obtained is the gray-scale monocular
photo containing 2D coordinator and intensity. Therefore the
first step was to estimate the value of the axis Z, that is, the dis-
tance between the point and camera. Herein, a depth estimation
neural network was used to map the intensity into a depth value.
The photogrammetry scanning data was used as training data
after separating its information into pairs of monocular photos
and depth maps. The details of the depth estimation network
will be provided in Section 3.2.

After the depth map was predicted from the single monocular
photo, the value of axis Z could be obtained by a linear trans-
formation from the depth value of each point. With the 3D co-
ordinates and intensity, the gray-scale 3D points of the hidden
Karmavibhangga reliefs were reconstructed from the old pho-
tos. The information about the camera or photography envir-
onment of the old photos is unavailable for reconstructing the
3D points under perspective projection rules. Moreover, the
depth of the relief is much smaller than the photographic dis-
tance where its photo was taken and the relief is rectangular

and the figures on it are extended only slightly from the back-
ground as shown in Fig. 1. Thus, we approximate that the old
photo is a parallel projection of the hidden relief.

3.2 Depth Estimation Network

As convolutional neural networks decrease the resolution
of input images during progressive convolutions and pool-
ing strategies, an up-sampling strategy is required for high-
resolution output in tasks such as depth estimation. The study
in (Pan et al., 2018) uses a fully connected layer as the last
layer and reshape the output into 55 x 74 resolution. The fully
connected layers limit the output resolution for a large number
of weights causing a large computational cost. Instead of fully
connected layers, the present work uses deconvolutional layers
with higher resolution output feature maps than their inputs.

The proposed architecture is shown in Fig. 2. The resolution
of input monocular images with corresponding depth maps is
304 x 228. The resolution of the final output is 160 x 128,
which is about half of the input resolution. The blue boxes on
the top represent the feature map output by convolutional lay-
ers. This part uses the same architecture with ResNet-50 and is
initialized with pre-trained weights. ResNet makes it possible
to create deeper networks without facing vanishing gradients
with a design of residual blocks. The residual blocks use a skip
architecture with a shortcut for two convolutions and fuse the
final outputs. The two residual blocks used in this architecture
are shown at the bottom of Fig. 2.

The green parts at the bottom represent feature maps output by
deconvolutional layers. The up-residual blocks have the same
concept as the residual block B introduced in the blue parts.
In the up-residual blocks, a fast-up convolution was used, as
described by (Laina et al., 2016). The main idea of fast-up con-
volution is to avoid operations on zero pixels after conventional
unpooling (Shi et al., 2016). In a feature map after unpooling,
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only certain locations are multiplied with non-zero values. As
shown in Fig. 3, a 5 x 5 filter can be divided into four sets of
weights based on the location(A,B,C,D). The sizes of four new
filters are 3 x 3 for A, 3 x 2 for B, 2 x 3 for C and 2 x 2
for D based on the original filter. By interleaving the four final
output feature maps by four sets of weights, the same output as
the original output of conventional unpooling can be achieved.
Compared to using a 5 x 5 filter on an 8 x 8 unpooled feature
map, the fast-up convolution operation provides a more efficient
way to use four sets of smaller filters on the original 5 x 5 fea-
ture map before unpooling by avoiding all zero multiplication.

4 sets of weights
B
B
B

5x5 filter

lve)

Figure 3. Fast-up convolution concept.

Only one 3 x 3 max-pooling layer is used at the beginning of the
network to decrease input resolution. Besides, at the end of both
blue and green parts, dropout layers are added to avoid over-
fitting. After every convolution, batch normalization as ResNet
is included to make further deeper networks. The work of (Pan
et al., 2018) suffered from over-fitting using as a result of using
an architecture of only eight hidden layers. Residual blocks and
batch normalization make a great contribution to deepening the
architecture on the limited data set used in this study.

The reverse Huber called BerHu (Lambert-Lacroix, Zwald,
2012) is used as the loss function for the proposed method in
this work. As shown in Eq. 1, BerHu is a combination between
the Ly loss function (see Eq. 3) and L, (see Eq. 4) loss func-
tion. When x < [¢, ], BerHu is equal to L; loss and L2 outside
this range. Where there is a switch from L1 to L2, the func-
tion is continuous and first-order differentiable at point ¢. Dur-
ing training, if y* represents predictions and y represents the
ground truth, B (y* — y) is computed in every gradient descent
step. Let i be index pixels over each image in the current batch,
while c is set as shown in Eq. 2.

= lz| < e
B@{zﬁg|ﬂ>c M)
1 *
c= gmiax(|yi - i) @
Ly -y=Iv -yl 3)
Ly —y) =1y -yl “)

L loss is widely used in regression problems for minimizing
the squared Euclidean norm. Due to the L, term, Lo loss puts
high weight to samples with a high residual. Meanwhile, L;
has stronger influence on samples with smaller residual than

L,. Therefore, BerHu provides a good balance between L; and
L in the given task.

3.3 Transparent Visualization Method

This section introduces a transparent visualization method
called the stochastic point-based rendering. Its details will
be provided in Section.3.3.1, showing how a fused transparent
visualization was achieved with the photogrammetry scanning
point cloud of visible parts and the reconstructed point cloud
of the hidden reliefs. Section.3.3.2 describes the fused visu-
alization procedure for applying this method to multiple point
clouds.

3.3.1 The Stochastic Point-based Rendering: The pro-

posed stochastic point-based rendering is a transparent visualiz-
ation method based on a stochastic algorithm without the need

for depth sorting.
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Figure 4. The stochastic point-based rendering.

The procedure of the stochastic point-based rendering method
can be divided into three steps as shown in Fig. 4:

e Step 1: Prepare multiple subgroups of point clouds from
original point clouds, each of which describes an equival-
ent but statistically independent surface. The point density
of each group should be the same. The number of sub-
groups is denoted as L.

e Step 2: For each group in STEP 1, project its constituent
3D points onto the image plane to create an intermediate
image. In the projection process, the point occlusion is
considered per pixel. A total of L intermediate images are
obtained.

e Step 3: Average the L intermediate images created in
STEP 2 to make the final transparent image.

According to the above steps, in this method, parameter L con-
trols image quality because it represents the number of aver-
aged intermediate images. Besides, the opacity control of point
clouds is not based on any depth-sorting procedures. Consider
that s is the point sectional area whose image overlaps only one
pixel and S is the area of the local surface segment that con-
tains n points in total, then surface opacity in each local surface
segment takes the following value:

a:l_(1—i)" 5)
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According to Eq. 5, by tuning the local number of points, n
can control local surface opacity «. By applying point-number
adjustment, n, the chosen « can be realized. The set of points is
uniformly eliminated to a small one in case of an unexpectedly
large n. On the other hand, in the case of a small n, the number
of points can be increased by creating a proper number of cop-
ies of randomly selected points so there is no need to add new
points to the raw point cloud data. In this case, if parameter L is
set to be large enough, each copy will approximately belong to
a different subgroup created in STEP 2. Generally, parameter L
is set to a few hundred of subgroups.

3.3.2 Fused Visualization of Multiple Point Clouds: In
the case of fused visualization of multiple point clouds, the pro-
posed stochastic point-based rendering provides a straightfor-
ward solution. After the point-number adjustment is applied to
each point cloud, visualization can be achieved by simply mer-
ging the results.

e Step 1: Before executing the four steps of the stochastic
point-based rendering, choose a user-defined value of opa-
city « for each point cloud.

e Step 2: The point-number adjustment procedure is applied
to realize the chosen a.

e Step 3: By merging the adjusted point clouds, a unified
point cloud can be created.

Therefore, to emphasize a specified point cloud, higher opacity
values can be assigned before executing the stochastic point-
based rendering procedure.

4. EXPERIMENTS

This section introduces the relief data set used to evaluate the
method proposed in Section.4.1. The details of the implement-
ation of the proposed method will be described in Section.4.2,
whereas the quantitative and qualitative results obtained by the
proposed model will be explained in Section.4.3.

4.1 Relief Data Set

As explained in Section.3, the input of the proposed network are
pairs of monocular photos and depth maps. As the original data
is point cloud data, 3D coordinates and color information had
to be separated into a monocular photo and the corresponding
depth map. The intensity in the depth map was calculated from
the value of the axis Z by a linear transformation. Intensity was
set in the range of 0 to 255. In a specified point cloud of a relief,
if the maximum value of the axis Z is Z,,q, and the minimum
value of the axis Z is Z,,in, the intensity d in the depth map
follows Eq. 6:

Z — Zmin
= ——FF— X2
d Z’maz - Zmzn X 255 (6)

Following the above equation, 11 pairs of monocular photos
and depth maps were made. To train the deep estimation neural
network, these large-resolution images were cut into 4,087 pairs
of image patches. The following data augmentation methods
were applied to the data set: rotation, flips, noise, and blurry.
The final data set contained 44,957 pairs of monocular photos
and corresponding depth maps which were 11 times the quant-
ity of the origin.

4.2 Implementation Details

TensorFlow (Abadi et al., 2016) was used for the implementa-
tion of the proposed network. The model was trained on a single
NVIDIA GeForce GTX 1080Ti with 12 GB of GPU memory.
The weights of the blue parts in the proposed network were ini-
tialized by ResNet pre-trained on the image classification data
set. Besides, the weights of the green parts were randomly ini-
tialized. The probability of dropout layers added at the end of
both blue and green parts was set to 0.5. The model was trained
using an Adam optimizer with a learning rate of 0.001. The
model was trained on the relief data set with a batch size of
four for approximately 100 epochs.

4.3 Architecture Evaluation

As described in Section. 1, the reliefs which need reconstruction
belong to a section called Karmavibhangga. Out of the 160
Karmavibhangga reliefs, there are four reliefs on the southeast
temple wall that have remained visible and the other 156 reliefs
were buried under the stones. To evaluate the proposed method,
one relief from the visible four panels of the Karmavibhangga
was chosen for the quantitative and qualitative experiments (see
Fig. 5). Although the parts that need reconstruction are the
hidden reliefs buried by stones, it was impossible to measure
their accuracy directly due to the unavailable ground truth. It is
a concession but also a sensible choice to evaluate the proposed
model on the visible parts instead of the hidden parts.

The results of the quantitative analysis are shown in Tab. 1. 2D
and 3D error metrics were applied to measure the accuracy of
the proposed method. First, as the reconstructed point clouds
are based on the depth prediction, to evaluate the accuracy of
the predicted depth map, 2D error metrics were applied. The
ratio of pixels correctly labeled in predicted depth map is calcu-
lated by a1, @2 and a3 (Eigen et al., 2014). As the depth value
is always positive or zero (in the range of 0 to 255) with highly
skewed distribution which makes the symmetric loss function
such as RMSE not applicable enough, a logarithmic transform-
ation (RMSElog) is applied to obtain a less skewed distribu-
tion. Second, to evaluate the real distance (into meters) the
study also measured the 3D distance between the reconstruc-
ted point clouds and the ground truth. The 3D cloud-to-cloud
distance between each corresponding point was calculated and
visualized in a heat map. The cloud-to-cloud distance repres-
ents the real error because the point clouds were reconstructed
into the real size of Borobudur reliefs. For comparison experi-
ments, these error metrics were applied to the proposed method
and the study of (Pan et al., 2018).

As shown in Tab. 1, we here compare the result of the proposed
method (Exp2) to the previous work (Expl) which is proposed
in (Pan et al., 2018). For the 2D predicted depth maps, the pro-
posed method based on ResNet has been substantially improved
for each error metric applied. The relief which was chosen as

Error metrics Expl Exp2
al <1.25 0.25047 0.47393
Higher is better | a2 < 1.25% [ 0.45433 | 0.77222
2D a3 <1.25° | 0.60945 | 0.88119
Lower is better RMSE 10.24803 | 10.07052
RMSElog 041194 0.25000
3D c2c distance (in meters) 0.01498m | 0.00890m

Table 1. Quantitative comparison results.
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Figure 5. Depth estimation result.

test data is shown in Fig. 5, along with the ground truth and res-
ults of comparative experiments. As the input of the neural net-
work is fixed to 304 x 228, the test image is cut into patches for
depth estimation. The most meaningful results are also presen-
ted in Fig. 6. The study in (Pan et al., 2018) uses multi-scale
architecture to combine global and local information. While a
shallow sub-network provides sharper boundaries, a lot of noise
also appears in the final output. As shown in the depth map, the
intensity in the output in (Pan et al., 2018) is unstable. In the
case of the proposed method, the deeper architecture and re-
sidual operation provide a much better prediction result. The
value of the intensity is stable, which means that the value of
the intensity within a small area is approximately equal. In the
background of the relief, when the method of (Pan et al., 2018)
fails as a lot of areas turn to intense bright, the result of the
proposed method remains smooth and correct.

The reconstructed point cloud provides a 3D understanding
with the correct depth feel of the relief, as shown on the top of
Fig. 7. Besides, the distances of each of its points relative to the
ground truth were computed in meters. The mean distance ob-
tained by the proposed method between the reconstructed point
cloud and the ground truth point cloud was approximately 0.008
m, as shown in Tab. 1. Compared to 0.015 m provided in the
work of (Pan et al., 2018), it is approximately a one-half reduc-
tion. As the real Borobudur relief is 2.7m wide, 0.92m high and
15cm in depth, the accuracy of the proposed method is approx-
imately 95%. The error distance of each point is visualized in
the heat map shown in the middle of Fig. 7. As the color turns
from blue to red, the error distance increases. The accuracy of
human figures is the highest, as they are mostly covered with
blue. Moreover, the error distance of almost all points is lower
than 0.01 m, while only a few points reached an error distance
greater than 0.02 m.

monaocular
photo

ground
truth

result of proposed
Pan et al,, 2018 method

Figure 6. Patch-wise depth estimation result.
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Figure 7. Reconstruction result (test data).
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Figure 8. The fused transparent visualization result of the southeast temple wall in Borobudur. The opaque rendering result is shown
on the top while the fused transparent visualization result is shown on the bottom. The reconstructed part is inside the red circle. The
high resolution see-through image of this part is shown in Fig. 10.

5. RESULTS

This section presents the reconstruction point cloud of the hid-
den reliefs. Note that it is not possible to perform any quantitat-
ive analysis on the reconstructed model due to the unavailabil-
ity of the ground truth. As the point cloud is reconstructed from
a single gray-scale monocular photo (see Fig. 1), the number
of points is equal to image resolution. Fig. 9 shows a recon-
structed relief in Karmavibhangga indexed by number 18. This
relief is buried under the stone wall which just next to one side
of the southeast corner in the Borobudur temple. The recon-
structed point cloud contains 1,663,488 points and the color of
each point follows the intensity in the old monocular photo. The
relief was reconstructed using the trained network within a few
seconds and the surroundings were manually added to approach
its original appearance.

After the reconstruction, the reconstructed data were combined
with the photogrammetry scanning data of the southeast temple
corner by merging them into the same coordinates.

Then

Figure 9. Reconstruction result from the old photo.

Figure 10. Fused transparent visualization result (zoomed in).

the stochastic point-based rendering was applied to both point
clouds. Based on different density of the point clouds, the opa-
city o was set to 0.8 for the photogrammetry scanning data and
0.2 for the reconstructed point cloud. The fused transparent
visualization result is shown in Fig. 8. With the proposed
method, it is possible to see through the stone wall and fig-
ure out the 3D appearance of the hidden relief. The proposed
method provides high-quality see-through imaging as shown
in Fig. 10. In the case of large-scale cultural heritage, the
stochastic point-based rendering provides transparent visualiz-
ation at an interactive speed, which is very important for further
application in virtual reality or in walk-through displays.

6. CONCLUSIONS

This work presented an efficient method for fused transpar-
ent visualization of incomplete cultural heritage based on a
monocular depth estimation neural network and stochastic
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point-based rendering. Given a monocular photo, the pro-
posed method can efficiently reconstruct 3D surface points and
provide transparent visualization with proper depth feel in a few
seconds. The proposed depth estimation neural network is a
single-scale fully convolutional neural network that follows the
ResNet-50. This architecture provides a deeper network for fur-
ther feature extraction and a larger resolution of the output.

For the purposes of the evaluation of the method and its ap-
plicability, the proposed method was applied to the Borobudur
temple. The hidden Karmavibhangga reliefs were reconstruc-
ted into point clouds and a fused transparent visualization was
achieved with the photogrammetry scanning point cloud data
of the southeast temple corner and the reconstructed data of the
hidden Karmavibhangga reliefs. As a result of the quantitative
and qualitative experiments, the accuracy of the reconstructed
point clouds is 95%, which is an increase of a 5% increase of
the study in (Pan et al., 2018). The fused transparent visualiz-
ation provides a 3D understanding with the correct depth feel
of the original appearance of the Borobudur temple before its
restoration in 1890.
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