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ABSTRACT:

Due to the proliferation of Earth Observation programmes, information at different spatial, spectral and temporal resolution is
collected by means of various sensors (optical, radar, hyperspectral, LiDAR, etc.). Despite such abundance of information, it
is not always possible to obtain a complete coverage of the same area (especially for large ones) from all the different sensors
due to: (i) atmospheric conditions and/or (ii) acquisition cost. In this context of data (or modalities) misalignment, only part of
the area under consideration could be covered by the different sensors (modalities). Unfortunately, standard machine learning
approaches commonly employed in operational Earth monitoring systems require consistency between training and test data (i.e.,
they need to match the same information schema). Such a constraint limits the use of additional fruitful information, i.e., information
coming from a particular sensor that may be available at training but not at test time. Recently, a framework able to manage such
information misalignment between training and test information is proposed under the name of Generalized Knowledge Distillation
(GKD). With the aim to provide a proof of concept of GKD in the context of multi-source Earth Observation analysis, here we
provide a Generalized Knowledge Distillation framework for land use land cover mapping involving radar (Sentinel-1) and optical
(Sentinel-2) satellite image time series data (SITS). Considering that part of the optical information may not be available due to bad
atmospheric conditions, we make the assumption that radar SITS are always available (at both training and test time) while optical
SITS are only accessible when the model is learnt (i.e., it is considered as privileged information). Evaluations are carried out on a
real-world study area in the southwest of France, namely Dordogne, considering a mapping task involving seven different land use
land cover classes. Experimental results underline how the additional (privileged) information ameliorates the results of the radar
based classification with a main gain on the agricultural classes.

1. INTRODUCTION

Due to the proliferation of Earth Observation programmes, in-
formation at different spatial, spectral and temporal resolution
is collected by means of various sensors (optical, radar, hyper-
spectral, LiDAR, etc.) (Schmitt, Zhu, 2016). These different
and orthogonal sources of information can be used to charac-
terize and monitor the evolution of Earth surfaces with the aim
to better understand climate change effects (Huang et al., 2019)
and provide information on the current state of agricultural or
natural resources (Kolecka et al., 2018, Kussul et al., 2017, Gao
et al., 2018). Considering the huge amount of multi-source data
currently available, one of the main methodological research
question that arises today concerns the way to take advantages
from the complementarity of these information sources with the
goal to improve the reliability of modern monitoring and map-
ping systems (Schmitt, Zhu, 2016). In spite of all this inform-
ation, it is not always possible to obtain a complete coverage,
in terms of different sensors, of the same area (especially for
large ones) due to: (i) atmospheric conditions that may affect
the quality of the signal (Zhang et al., 2019) (i.e. clouds or
shadows for optical sensor) and/or (ii) the cost of certain types
of information (i.e. Very High Resolution, Hyperspectral or
LiDAR). In this context of data (or modalities) misalignment,
only part of the area under consideration is covered by the dif-
ferent sensors (modalities).

However, common machine learning techniques used to per-
∗Corresponding author

form Land Use Land Cover (LULC) mapping (e.g., Random
Forest, Support Vector Machine or Convolutional Neural Net-
works) make a consistency hypothesis between training and test
data in which the two sets need to match the same information
schema (Vapnik, Izmailov, 2015) (i.e. the same number of vari-
ables with the same semantic information). Such a constraint
can limit the use of additional information (i.e., that may be
possible to only exploit at training time) in order to learn and
calibrate LULC mapping approaches.

(Vapnik, Izmailov, 2015) introduces a machine learning set-
ting in which a predictive model can be trained by leveraging
privileged information that is not available at test time. The
proposed framework is named Learning Under Privileged In-
formation (LUPI). A generalization of such setting is proposed
in (Lopez-Paz et al., 2016) under the name of Generalized Know-
ledge Distillation (GKD). While such setting is gaining more
and more attention in the field of multi-source and multime-
dia signal processing (Lambert et al., 2018, Chen et al., 2017,
Hoffman et al., 2016, Yao et al., 2018), surprisingly, to the
best of our knowledge, the only work that makes a connec-
tion between the GKD setting and Earth Observation (EO) data
(Very High Resolution satellite image) analysis is presented
in (Kampffmeyer et al., 2018). In this work the authors pro-
pose to perform semantic segmentation of Very High Resolu-
tion (VHR) scenes with Digital Elevation Model as privileged
source of information for urban land cover mapping. Due to the
increasing availability of multi-source and multi-scale informa-
tion collected by an increasing number of spatial programmes,
we believe that there is large room for LUPI or GKD develop-
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Figure 1. Location of the Dordogne study site.

ments in the field of EO analysis. Such methods would facil-
itate the integration of additional (training) information, today
unexploited, to ameliorate machine learning based mapping and
monitoring systems.

With the aim to provide a proof of concept regarding the be-
nefits deriving from LUPI or GKD settings in the field of EO
analysis, we here propose a Generalized Knowledge Distilla-
tion framework to deal with Satellite Image Time Series (SITS)
of different nature. We focus on a LULC mapping task on a
particular study site, for which we dispose of both radar and op-
tical SITS (i.e. Sentinel-1 and Sentinel-2, respectively) at train-
ing time, while only radar SITS are accessible at inference/test.
In this case, the optical/Sentinel-2 (S2) SITS data constitutes
the privileged information while the radar/Sentinel-1 (S1) SITS
data is available at both training and test stages. Even though
such scenario focuses on a very specific case, it easily meets
real world circumstances, where it may happen that a portion of
the study site is constantly (or almost all the time) covered by
clouds or shadows. To the sake of evaluation, with the aim to in-
vestigate the behavior of our framework in a controlled environ-
ment, we set up such a scenario starting from a real-world study
site characterized by a complete information regarding both S1
and S2 SITS data. The analysis are conducted considering an
OBIA (Object-Based Image analysis) process since working at
object level instead of pixels has two main advantages: i) ob-
jects represent more representative and potentially feature-rich
pieces of information and ii) object based approaches facilitate
data analysis scale-up since, for the same area, the number of
objects is usually smaller than the number of pixels by several
order of magnitude (Ienco et al., 2019).

The paper is organized as follows: Section 2 introduces the
Dordogne study site involved in the experimental study; the
Generalized Knowledge Distillation framework to cope with
multi-source SITS data, named S1S2GKD, is described in Sec-
tion 3; the experimental evaluation and the obtained findings
are described in Section 4 while Section 5 concludes the work.

2. STUDY SITE

The analysis was carried out on a part of the Dordogne depart-
ment located in the southwest of France. The considered area
covers around 3 000 km2 (5 572 × 5 390 pixels) and is char-
acterized by an heterogeneous landscape. Figure 1 depicts the
study site.

2.1 Sentinel-1 Data

The radar dataset consists of 31 Sentinel-1 (S1) SITS acquired
between January and December 2016 in C-band Interferometric
Wide Swath (IW) mode with dual polarization (VV+VH). All
images, retrieved at level-1C Ground Range Detected (GRD)
from the PEPS platform 1, are radiometrically calibrated in backs-
catter values (decibels, dB) using parameters included in the
metadata file and then coregistered with the Sentinel-2 (see Sec-
tion 2.2) grid and orthorectified at the same 10-m spatial resol-
ution. Finally, a multitemporal filtering was applied to the time
series removing artefacts resulting from speckle effect.

2.2 Sentinel-2 Data

The optical data consists of a 23 Sentinel-2 (S2) SITS also ac-
quired between January and December 2016. All images are
retrieved from the THEIA pole platform 2 at level-2A top of
canopy (TOC) reflectance. Only 10-m spatial resolution bands
were considered (i.e. Blue, Green, Red and Near Infrared spec-
trum (resp. B2, B3, B4 and B8)).

To the sake of completeness, a preprocessing step was per-
formed over each band to replace cloudy observations as detec-
ted by the supplied cloud masks through a multi-temporal gap-
filling (Inglada et al., 2017). Cloudy pixel values were linearly
interpolated using the previous and following cloud-free dates.
Then, the Normalized Difference Vegetation Index (NDVI) (Rouse
et al., 1973) was calculated from the red (B4) and near infrared
bands (B8) for each date. NDVI was chosen as supplementary
optical descriptor since it describes the photosynthetic activity
and the metabolism intensity of the vegetation.

2.3 Field Data and Preprocessing

The field database was built from the Registre Parcellaire Graph-
ique (RPG) 3 for 2016 and visual interpretation of a SPOT6/7
image as well. The database (available in GIS vector format as a
collection of class attributed polygons) includes 8 597 polygons
distributed over 7 land cover classes. The per class details of the
ground truth data are reported in Table 1. To analyse SITS data
at object-level, the mean value of the pixels corresponding to
each polygon was calculated over all the timestamps in the time
series, resulting in 177 (31×2 for S1 + 23×5 for S2) variables
per object.

Class ID Class Label Num. of Objects

0 Urban 396
1 Crops 1457
2 Water 1113
3 Forest 2205
4 Moor 950
5 Orchards 1230
6 Vines 1246

TOTAL 8 597

Table 1. Characteristics of the Dordogne study site dataset.

3. GENERALIZED KNOWLEDGE DISTILLATION
FOR SENTINEL-1 / SENTINEL-2 SITS DATA

In this Section we describe our framework, named S1S2GKD,
capable to leverage additional optical information at training

1https://peps.cnes.fr/
2http://theia.cnes.fr
3RPG is part of the European Land Parcel Identification System

(LPIS), provided by the French Agency for services and payment
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time that will not be available when inference will be performed.
Our approach is based on recent developments in the field of
Learning Under Privileged Information (Vapnik, Izmailov, 2015)
(LUPI) as well as Knowledge Distillation (Cho, Hariharan, 2019).
Recently, (Lopez-Paz et al., 2016) has showed the interplay
between the two settings and the fact that they can be unified
under the name of Generalized Knowledge Distillation.

In our case, we have a training dataset Xtr = {(xtri , yi)}ni=1

where each sample (xtri ) is a spatial segment with associated
radar/S1 (Radi) and optical/S2 (Opti) SITS information (xtri =
(Radi, Opti)) on which we can learn a classification model
via the corresponding class label yi. We denote with C the
number of classes. On the other hand, due to possible atmo-
spheric (i.e. clouds or shadows) phenomena, the test dataset on
which the model will be deployed is defined asXte = {xtej }mi=j

where each sample (xtej ) is a spatial segment with only radar/S1
(Radj) SITS information (xtej = (Radj)). The goal is to pre-
dict the class label for each example xtej belonging to the test
set.

Standard machine learning techniques require that training and
test data match the same information schema (i.e. the same
number of variables with the same semantic information) and
they will discard the optical information available at training
time due to such limitation. Conversely, under the GKD set-
ting (Lopez-Paz et al., 2016), the optical information takes the
role of privileged information and it can be integrated in the
process to regularize and guide the learning of a model with the
aim to improve its generalization capabilities.
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Figure 2. The overview of the training procedure of S1S2GKD.
Firstly, (a) the multi-source CNN model (teacher network) is

trained leveraging both radar and optical SITS; successively (b)
a Multilayer Perceptron (student network) is trained considering

only radar SITS as input data and it is forced to imitate (or
distill) as much as possible the behavior of the multi-source

model considering both features extraction and softmax
decision. At test time, the student model will be deployed to
predict the class values of unlabeled samples defined only on

radar SITS.

Figure 2 shows the training procedure of the S1S2GKD frame-
work. The procedure consists of two main steps: (a) a multi-
source model is learnt from the whole set of data (optical and
radar SITS) and, successively, (b) a mono-source model is trained
considering only radar SITS as input and it is forced to imitate
as much as possible the behavior of the multi-source model.

The two models are learnt sequentially. Under the General-
ized Knowledge Distillation setting, we name the multi-source
model teacher while the mono-source model is named student
since the latter is forced to imitate (or distill) the knowledge
from the former (more informative) model. In our case, the
imitation (or distillation) process is achieved by constraining
both the extracted features and the model decisions of the stu-
dent model to be as much as possible similar to the ones of the
teacher model, in correspondence of the same inputs.

3.1 Teacher Model

According to the recent evaluation proposed in (Pelletier et al.,
2019), we leverage one dimensional Convolutional Neural Net-
work (CNN) to learn a multi-source discrimination model from
SITS data. In (Pelletier et al., 2019), the convolution is realized
on the time dimension in order to exploit the temporal informa-
tion provided by the satellite images sequence.

CNN S1/S2
Sentinel-1 Branch Sentinel-2 Branch

Conv(nf=128, k=5x1, s=1, act=ReLU) Conv(nf=128, k=5x1, s=1, act=ReLU)
Conv(nf=128, k=5x1, s=1, act=ReLU) Conv(nf=128, k=5x1, s=1, act=ReLU)
Conv(nf=256, k=3x1, s=1, act=ReLU) Conv(nf=256, k=3x1, s=1, act=ReLU)
Conv(nf=256, k=3x1, s=1, act=ReLU) Conv(nf=256, k=3x1, s=1, act=ReLU)
Conv(nf=256, k=3x1, s=1, act=ReLU) Conv(nf=256, k=3x1, s=1, act=ReLU)
Conv(nf=256, k=3x1, s=1, act=ReLU) Conv(nf=256, k=3x1, s=1, act=ReLU)
Conv(nf=512, k=3x1, s=1, act=ReLU) Conv(nf=512, k=3x1, s=1, act=ReLU)
Conv(nf=512, k=1x1, s=1, act=ReLU) Conv(nf=512, k=1x1, s=1, act=ReLU)
Conv(nf=512, k=1x1, s=1, act=ReLU) Conv(nf=512, k=1x1, s=1, act=ReLU)

GlobalAveragePooling GlobalAveragePooling
CONCAT

Table 2. CNN architecture of the multi-source (teacher) module.

The details of the CNN architecture for the multi-source ana-
lysis are reported in Table 2. Firstly, we can observe that the
architecture has two branches: one for the Radar/S1 and one
for the optical/S2 SITS. Secondly, we can note that the two
branches have the same structure. Successively, at the end of
each branch, the information is summarized via a Global Av-
erage Pooling (GAP) layer. The GAP layer aggregates each
feature maps via the average operator producing a layer with as
many neurons as the number of feature maps at the precedent
step. Finally, the outputs of the GAP layers are concatenated
to provide the feature extracted by the network from the multi-
source SITS data. Each branch of the CNN network has nine
convolutional (Conv(·)) layers defined via the number of filters
(nf ), the kernel size (k), the stride size (s) and the activation
function (act). In our case, we use as activation function the
standard Rectifier Linear Unit (ReLU) defined as: max(0, Z)
where Z is the results of the convolution between the incoming
information and the learnable weights. The result of each con-
volutional layer (Conv(·)) is also associated to a Batch Normal-
ization (BN ) and (DROPOUT ) layer with drop rate equals to
0.3 (DROPOUT (BN(Conv(·))) ).

The concatenated feature set (the output of theCONCAT layer)
is successively used as input for a classification module (the
Fully Connected module in Figure 2). The details of such
module are reported in Table 3.

Fully Connected
BN( FC(nn=512, act=ReLU) )
BN( FC(nn=512, act=ReLU) )

FC(nn=C, act=Linear)
Softmax

Table 3. Architectures of the Fully Connected Classification
module.
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The Fully Connected module has three Fully Connected (FC)
layers: the first two with a number of neurons (nn) equals to
512 and ReLU activation function while the last layer has lin-
ear activation function and as many neurons as the number of
classes C. Finally, a Softmax operation is applied to obtain a
kind of probability distribution over the set of possible classes.
As shown in Figure 2, the multi-source (teacher) network is
learnt end-to-end connecting theCNN S1/S2 module with the
Fully Connected one.

3.2 Student Model

For our student model, we use a simple Multilayer Perceptron
(MLP). The MLP network has recently demonstrated its abil-
ity to deal with object-based SITS classification (Gbodjo et al.,
2019). The MLP architecture we employ is summarized in
Table 4. The MLP involves four fully connected layers (FC):
three with ReLU activation function, Batch Normalization and
Dropout regularisations and a fourth layer without any activa-
tion function (simple linear combination of the input with the
learnable parameters). This choice is the common strategy ad-
opted for regression tasks (Lathuilière et al., 2018) since the
1 024 features obtained from the last MLP layer will also be
constrained to match the features of the teacher model (output-
ted by the concatenation layer). As depicted in Figure 2, the
MLP module is connected to a Fully Connected module in
order to build the mono-source (student) model.

Multilayer Perceptron
DROPOUT( BN( FC(nn=2048, act=ReLU) ) )
DROPOUT( BN( FC(nn=2048, act=ReLU) ) )
DROPOUT( BN( FC(nn=2048, act=ReLU) ) )

FC(nn=1024, act=Linear)

Table 4. Architectures of the Multilayer Perceptron (MLP)
module.

3.3 Learning and Distillation Strategy

To learn the parameters of the multi-source (teacher) model,
we employ the Cross-Entropy loss function (Lathuilière et al.,
2018) commonly employed for multi-class classification tasks
and defined as follows:

LossCE =

n∑
i=1

C∑
l=1

yil × log(ŷil) (1)

where yil is the value of the class l for the sample i (zero every-
where except for the class label associated to the sample i) and
ŷil is the value predicted by the model.

Regarding the mono-source (student) model, in addition to stand-
ard Cross-Entropy loss, we introduce two other loss functions
that allow the student model to imitate the teacher. The first one
is inspired by the work on Hallucination networks (Hoffman et
al., 2016), in which the features extracted by the student model
are constrained to be similar, as much as possible, to the fea-
tures extracted by the teacher model. This reconstruction loss
is defined as follows:

LossREC = ||sigmoid(fT )− sigmoid(fS)||22 (2)

where fT and fS are the teacher and the student features, re-
spectively and sigmoid(·) is the sigmoid activation function. In
our case, fT is the output of the CONCAT layer of the CNN
S1/S2 module described in Table 2 while fS is the output of
the last layer of the MLP module reported in Table 4.

The second loss function devoted to support the distillation pro-
cess is the Kullback-Leibler divergence between the predicted
output distribution of the teacher and the student (Hinton et al.,
2015) models. In (Hinton et al., 2015) the authors employ a
temperature scaling factor τ to smooth the last output layer of
the neural models before performing the softmax normaliza-
tion. Here, we set such scaling factor equals to 1. This loss
function is defined as follows:

LOSSKD = KL(SoftmaxT , SoftmaxS) (3)

where SoftmaxT and SoftmaxS are the outputs of the Soft-
max layer for the multi-source teacher and the mono-source
student networks, respectively. The objective of the LOSSKD

loss is to force the student model to imitate the output of the
teacher model with the aim to distill the teacher behavior into
the student network. The final loss function optimized by the
student network is the follows:

Lossstudent = α×LossCE+β×LossREC+γ×LossKD (4)

where α, β and γ are the hyperparameters associated to each
of the three basic loss functions and they are empirically set to
1.0, 1.0 and 10.0, respectively.

4. EXPERIMENTAL EVALUATION

In this section, we present and discuss the experimental results
obtained on the Dordogne study site introduced in Section 2.
We conduct several analyses in order to evaluate the benefits
deriving from the use of our framework, by comparing its per-
formances with standard competitors. The methods selected
as competitors are a Random Forest (RF ), a Multilayer Per-
ceptron (MLP ) and a Convolutional Neural Network (CNN )
classifier. For the MLP model, we leverage the one presented
in Table 4 coupled with the FullyConnected block described
in Table 3. For this competitor, we associate the last layer of
the architecture presented in Table 4 with a ReLU activation
function. For the CNN competitor, we leverage the Sentinel-1
Branch of the architecture presented in Table 2 in conjunction
with the FullyConnected block described in Table 3. Since
standard classification approaches require training and test data
are defined on exactly the same feature space, the three compet-
ing methods only consider Sentinel-1 SITS information during
the training phase.

Firstly, we evaluate the global behavior of the different approaches.
Secondly, we report per-class analysis to understand which land
covers classes benefit from the use of additional optical train-
ing information and, finally, we inspect the confusion matrices
produced by each approach.

4.1 Experimental Scenario

We remind the experimental scenario in which our analysis is
carried out. We assume that, at training time, we dispose of
both optical and radar SITS for a set of labeled samples but, at
the inference/test time, only radar SITS information is available
due to possible issues. Standard machine learning approaches,
usually employed in the remote sensing field, require that train-
ing and test samples may be defined on exactly the same set of
sources (same feature space). Here, differently from this stand-
ard assumption, we relax such constraint and we consider the
scenario in which radar (Sentinel-1) SITS information is avail-
able at both training and test time while optical (Sentinel-2)
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SITS information plays the role of privileged information, i.e.,
it is only available at training time.

4.2 Experimental Setting

To learn all the deep learning methods we use the Adam op-
timizer (Kingma, Ba, 2014) with a learning rate equal to 5 ×
10−5. The training process is conducted over 5 000 epochs
with a batch size equals to 32. On average, each train epoch
takes around a second. Considering our framework, S1S2GKD,
firstly the teacher classifier is learnt from both Sentinel-1 and
Sentinel-2 data and, successively, the student model is learnt to
mimic the teacher behavior considering only Sentinel-1 SITS
data.

We divide the dataset into three parts: training, validation and
test set with a proportion of 50%, 20% and 30% of the objects,
respectively. Training data are used to learn the model. The
model that achieves the best accuracy on the validation set is
subsequently employed to classify the test set. For theRF mod-
els, we optimize the model via the maximum depth of each tree
(in the range {20, 40, 60, 80, 100}) and the number of trees in
the forest (in the set {100, 200, 300, 400, 500}). Experiments
are carried out on a workstation with an Intel (R) Xeon (R) CPU
E5-2667 v4@3.20Ghz with 256 GB of RAM and four TITAN
X GPU. The assessment of the classification performances is
done considering global precision (Accuracy), F-Measure and
Kappa measures. For each evaluation metric, we report results
averaged over ten random splits performed with the previously
presented strategy.

4.3 General behavior

Table 5 reports the averaged results obtained for RF, MLP, CNN
and S1S2GKD on the Dordogne study site. Considering the av-
erage performances, we can observe that the proposed frame-
work outperforms all the competing approaches with a gain
varying from 4 to 1.30 points of F-Measure. This result shows
how integrating privileged information at the training stage is
beneficial for the classification process, even if such informa-
tion is not available when performing predictions.

F-Measure Kappa Accuracy
RF 62.23 ± 1.20 0.5624 ± 0.0120 64.14 ± 1.09
MLP 62.90 ± 1.42 0.5620 ± 0.0153 63.75 ± 1.33
CNN 59.17 ± 1.34 0.5213 ± 0.0118 60.53 ± 1.12
S1S2GKD 64.27 ± 1.43 0.5775 ± 0.0153 65.01 ± 1.34

Table 5. F-Measure, Kappa and Accuracy considering
S1S2GKD and different competing methods. (Average over ten

random splits)

In addition, the reported results are coherent with the results
of (Gbodjo et al., 2019) in which the MLP approach exhib-
its competitive performances w.r.t. standard machine learning
approaches usually employed to deal with land use land cover
mapping from SITS data.

4.4 Per-class analysis

Table 6 reports the per-class F-Measure obtained by all the meth-
ods involved in the evaluation. We can observe that S1S2GKD
achieves the best performances on all the classes except the Wa-
ter and Forest ones where MLP , that exploits only radar in-
formation at training time, behaves slightly better. Interestingly,
we can observe that many of the land cover classes on which

S1S2GKD outperforms its competitors are related to agricul-
tural land use: Crops, Orchards and Vines. Considering such
classes, we can note that S1S2GKD systematically gains more
than 2 points (on average) with a major increase (around 3.5
points of F-Measure) w.r.t. the corresponding version without
privileged information (MLP ), on the Crops class.

The monitoring and detection of such agricultural land cover
classes is generally performed through optical information. Pass-
ive sensors are well suited to monitor vegetation and biophys-
ical properties on the contrary of active (radar) sensors that are
more adapted to estimate structural or soil features (Marais-
Sicre et al., 2020). Forcing the model trained on only radar
data to mimic the behavior of a model learned from both radar
and optical makes possible to guide the former to learn source
correlations and it supports a better generalization on some par-
ticular classes on which it is known that optical sensor are more
effective. In addition, we can also see that S1S2GKD improves
the model performances (compared to the MLP counterparts)
considering Urbanized Area and Moor classes. We can sup-
pose that also in these cases the model takes advantage of the
radar/optical source correlation, and that the use of optical in-
formation at training time helps to regularise the model de-
cision. Surprisingly, the CNN approach achieves poor results
compared to all the other competing approaches. Our intuition
behind this phenomena is related to the available amount of
training data. Due to the limited number of labeled samples,
the CNN is probably not able to learn an effective weight con-
figuration that results in a good classification model.
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RF 57.39 65.05 66.08 73.78 24.49 55.37 71.74
MLP 60.08 62.34 66.12 74.2 32.7 56.41 70.47
CNN 54.49 61.8 61.13 73.44 25.42 50.63 64.62

S1S2GKD 61.99 65.98 66.08 73.5 35.01 58.45 72.57

Table 6. Per-Class F-measure for the Dordogne study site.
(Average over ten random splits)

4.5 Inspection of Confusion Matrices

Figure 3 depicts the confusion matrices of the Random Forest,
Multilayer Perceptron, Convolutional Neural Network and S1S2GKD,
respectively. We show the confusion matrices corresponding to
one of the ten random splits of the data associated to the study
site.

We can observe that the results depicted by the heat maps are
coherent with the average results previously reported. S1S2GKD
benefits from the use of optical information at training time to
marginally boost its performances on agricultural as well as
urban land cover classes. This can be observed on the first
part of the diagonal of Figure 3d, that is characterized by a
darker blue color w.r.t. the ones of the competing methods.
Comparing S1S2GKD with the other competitors, we underline
that our framework is able to reduce some confusions between
Crops and Water classes while the main confusions that hap-
pen between Forest and Moor as well as Orchards and Vines
cannot be completely recovered. Our framework can regular-
ize/guide the model learned from radar SITS via a kind of imit-
ation strategy w.r.t. a multi-source (teacher) model, but the final
classification model is still characterized by the advantages and
the limitations of the data that fed it. If the information to dis-
tinguish between some land cover classes is not present in the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-997-2020 | © Authors 2020. CC BY 4.0 License.

 
1001



(a) RF

(b) MLP

(c) CNN

(d) S1S2GKD

Figure 3. Confusion Matrices of the land cover classification
produced by (a) RF, (b) MLP, (c) CNN and (d) S1S2GKD on the

Dordogne study site.

radar time series, the model will not be able to discriminate
among them. On the other hand, the use of optical information
at training time can regularize and reduce some kind of confu-
sion (like the ones between Urban vs. Orchards and Orchards
vs. Vines that notably affect all the evaluated approaches except
S1S2GKD).

4.6 Discussion on Generalized Knowledge Distillation for
Earth Observation data

In the context of modern EO analysis, due to the increasing
number of spatial programmes and related orbital/aerial sensors,
multi-source data are constantly acquired. Unfortunately, the
acquisition of all the different programmes are not timely syn-
chronised and this results in incomplete spatial and temporal
coverage of a particular (large) area. In this context of multi-
source data abundance, the Generalized Knowledge Distillation
setting provides a methodological framework to effectively in-
tegrate additional information that cannot be exploited by stand-
ard machine learning approaches due to their structural intrinsic
constraints. In our work, we focus on a limited but real-world
scenario in which radar (Sentinel-1) and optical (Sentinel-2) are
exploited together to ameliorate a predictive model learnt only
on radar information. Beyond such a case that could appear
restricted, many other scenarios can arise. For instance, given
a study area, we can easily access to an optical (Sentinel-2)
SITS but, we can hardly obtain a Very High spatial Resolu-
tion (VHR) scene that covers the whole area. In this case GKD
can be deployed to integrate the partial VHR information we
dispose to support and ameliorate the analysis of optical SITS
data. In another scenario, the additional, expensive and lim-
ited information can be represented by hyperspectral data we
use in combination with VHR image to analyze and map urban
or general land use land cover classes. Finally, in the case of
airborne hyperspectral acquisition, we can acquire information
via a double camera system. If one of the two camera has some
failures, the information collected by the two cameras will not
be fully exploited due to heterogeneity in data acquisition. Such
illustrations are only some exemplars scenarios in which GKD
can be deployed, but many other will be soon available thanks
to the ongoing trend in Earth Observation Data acquisition. We
are convinced that, in the current (as well as in the near fu-
ture) Earth Observation context, more and more misaligned and
incomplete information will be available when a study area is
analyzed and the GKD framework constitutes a practical and
well founded tool to encompass the limitations of standard ma-
chine learning approaches to integrate additional (incomplete)
information in their learning process.

5. CONCLUSION

In this paper we have presented a machine learning framework,
based on Generalized Knowledge Distillation, to provide land
use land cover mapping from radar (Sentinel-1) SITS data when
additional optical (Sentinel-2) SITS information is only avail-
able at training time.

The proposed framework leverages recent advances in the do-
main of computer vision and signal processing to guide the
model learning. More in detail, the additional information is
firstly employed to learn a (teacher) multi-source model and,
successively, a mono-source (student) model is trained consid-
ering only radar SITS as input data and it is forced to imitate (or
distill) as much as possible the behavior of the teacher model.
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The experimental evaluation, carried out on a real-world study
area located in southwest of France, underlines the advantage
to integrate additional information during the training process
and it emphasizes that such additional knowledge is particularly
useful to ameliorate the model performance on urban as well as
agricultural land cover classes, in our case. As future work we
plan to leverage the Generalized Knowledge Distillation idea
considering other LULC mapping tasks involving multi-source
Earth Observation data such as: i) optical (Sentinel-2) SITS /
VHR images or ii) Hypersepctral/VHR imagery.
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