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ABSTRACT:

Image classification is one of the main drivers of the rapid developments in deep learning with convolutional neural networks for
computer vision. So is the analogous task of scene classification in remote sensing. However, in contrast to the computer vision
community that has long been using well-established, large-scale standard datasets to train and benchmark high-capacity models, the
remote sensing community still largely relies on relatively small and often application-dependend datasets, thus lacking comparability.
With this paper, we present a classification-oriented conversion of the SEN12MS dataset. Using that, we provide results for several
baseline models based on two standard CNN architectures and different input data configurations. Our results support the benchmarking
of remote sensing image classification and provide insights to the benefit of multi-spectral data and multi-sensor data fusion over
conventional RGB imagery.

1. INTRODUCTION

One of the most crucial preconditions for the development of
machine learning models for the interpretation of remote sens-
ing data is the availability of annotated datasets. While well-
established shallow learning approaches were usually trained on
small datasets, modern deep learning requires large-scale data to
reach the desired generalization performance. In computer vi-
sion, the great success of deep learning was largely driven by the
desire to solve the image classification problem, i.e. assigning
one or more labels to a given photograph. For this purpose, many
researchers have relied on the ImageNet database (Deng et al.,
2009), which contains millions of annotated images. In remote
sensing, the same task is often called scene classification, which
similarly aims at assigning one or more labels to a remote sensing
image, i.e., a scene. As (Cheng et al., 2020) summarizes, there
has also been a lot of progress in this field in recent years, with a
growing number of dedicated datasets (cf. Tab. 1). As can be seen
from this non-complete selection, most datasets built for remote
sensing image classification deal with high-resolution aerial im-
agery, usually providing three or four spectral channels (RGB, or
RGB plus near-infrared). Only EuroSat and BigEarthNet provide
spaceborne multi-spectral imagery, with So2Sat LCZ42 being the
only existing scene classification dataset covering the other large
data modality – synthetic aperture radar (SAR) data1. Combining
all points, i.e. dataset size, availability of more than just a sin-
gle sensor modality, and versatility, it becomes obvious that most
existing datasets lack the power to train generic, region-agnostic
models exploiting multi-sensor information.

With this paper, we present the conversion of the SEN12MS dataset
to the image classification purpose as well as a couple of baseline
models including their evaluation. Since SEN12MS is – in terms
of spatial coverage and sensor modalities – significantly larger
than all other available datasets, and sampled in a more versa-
tile manner, this will enhance the possibility to benchmark future
model developments in a transparent way, and to pre-train remote

1After this paper was accepted for publication at ISPRS Congress
2021, it came to the authors’ attention that BigEarthNet in the mean-
time was extended by BigEarthNet-S1, a collection of Sentinel-1 images
corresponding to the Sentinel-2 images contained in the original dataset.
Thus, now another multi-modal scene classification dataset exists.

sensing-specific models that can later be fine-tuned to individual
problems and user needs.

2. SEN12MS FOR IMAGE CLASSIFICATION

In this section, the SEN12MS dataset in its new image classifi-
cation variant is described. All resources, most notably labels or
pre-trained baseline models, can be downloaded from
https://github.com/schmitt-muc/SEN12MS in an open ac-
cess manner. The goal of both the repository and this paper is to
support the establishment of standardized benchmarks for better
comparability in the field.

2.1 The original SEN12MS Dataset

The SEN12MS dataset (Schmitt et al., 2019) was published in
2019 and contains 180,662 so-called patches, which are distributed
across the world and all seasons. For each of those patches,
the dataset provides, at a pixel sampling of 10m and a size of
256× 256 pixels,

• a Sentinel-1 SAR image with two polarimetric channels (VV,
VH)

• a Sentinel-2 optical image with 13 multi-spectral channels

• four different land cover maps following different classifi-
cation schemes.

The SEN12MS dataset was designed having the following key
features in mind:

• Its main distinction from other deep learning-oriented datasets
was (and is) its focus on multi-sensor data fusion. Instead of
containing only optical imagery, SEN12MS provides both
SAR and multi-spectral optical data to cover the most rele-
vant modalities in remote sensing.

• Instead of being sampled over a single study area or a geo-
graphical region of limited extent (e.g. individual countries
or continents) the data of SEN12MS is sampled from all
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Table 1: Non-exhaustive list of datasets for remote sensing image classification
Dataset Data Type Number of Images Image Size Reference

UC-Merced Aerial RGB 2,100 256× 256 (Yang and Newsam, 2010)
WHU-RS19 Aerial RGB 1,005 600× 600 (Xia et al., 2010)
SIRI-WHU Aerial RGB 2,400 200× 200 (Zhao et al., 2016)
NWPU-RESISC45 Aerial RGB 31,500 256× 256 (Cheng et al., 2017)
AID Aerial RGB 10,000 600× 600 (Xia et al., 2017)
PatternNet Aerial RGB 30,400 256× 256 (Zhou et al., 2018)
EuroSat Satellite multi-spectral 27, 000 64× 64 (Helber et al., 2019)
BigEarthNet Satellite multi-spectral 590,326 120× 120 (Sumbul et al., 2019)
So2Sat LCZ42 Satellite multi-sensor 400,673 32× 32 (Zhu et al., 2020)

SEN12MS Satellite multi-sensor 180,662 256 × 256 (Schmitt et al., 2019)

inhabited continents. This makes the dataset unique with re-
gard to the possibility to train generalizing models that are
comparably agnostic with respect to target scenes.

• In contrast to its predecessor, the SEN1-2 dataset, all images
contained in SEN12MS come as geotiffs, i.e. they include
geolocalization information. On the one hand, this informa-
tion can be used as an additional input feature (c.f. Uber’s
CoordConv solution (Liu et al., 2018)). On the other hand,
it can be used to pair the SEN12MS data with external geo-
data.

• By providing dense – albeit coarse – land cover labels for
each patch, semantic segmentation for land cover classifica-
tion was intended to be one of the main application areas of
the dataset.

Since its publication, SEN12MS has been used in many stud-
ies on deep learning applied to multi-sensor remote sensing im-
agery. Examples include image-to-image translation (Abady et
al., 2020, Yuan et al., 2020) and land cover mapping with focuses
put on weakly supervised learning (Schmitt et al., 2020, Yu et al.,
2020), model generalization (Hu et al., 2020), and meta-learning
(Rußwurm et al., 2020). This shows the dataset’s potential for
both application-oriented as well as methodical research.

2.2 Creation of Scene Labels from Dense Labels

The original SEN12MS dataset contains four different schemes
of MODIS-derived land cover labels. From those schemes, the
IGBP scheme (see, e.g., (Sulla-Menashe et al., 2019)) was cho-
sen as background for the conversion into a classification dataset.
This was done because the IGBP scheme features rather generic
classes, including both natural and urban environments with a
moderate level of semantic granularity. The other, LCCS-based,
classification schemes, in contrast are less generic and over-focus
on different topics of interest, e.g. land use or surface hydrology.
As already proposed by (Yokoya et al., 2020), the 17 original
IGBP classes were converted to the simplified IGBP scheme (cf.
Table 2) to ensure comparability to other land cover schemes such
as FROM-GLC10 (Gong et al., 2019), and to mitigate the class
imbalance of SEN12MS to some extent.

For the generation of single-label scene annotations, simply the
land cover class corresponding to the mode of the pixel-based
land cover distribution in that scene was used. For the genera-
tion of multi-label scene annotations, the histogram of land cover
appearances within a scene was converted to a probability distri-
bution. Then, to remove visually underrepresented classes, only
classes with a probability larger than 10% were kept. An illus-
tration of some example images including their single-label and
multi-label scene annotations is provided in Fig. 1.

2.3 Dataset Statistics

The class distribution of the different label representations is sum-
marized in Fig. 2. It can be seen that the dataset is fairly im-
balanced, with the classes Savanna, Croplands, and Grassland
being very frequent and classes such as Wetlands, Barren, and
Water being comparably underrepresented. The class Snow/Ice
can basically be considered as non-existing in SEN12MS. Due
to the generally uniform spatial sampling of the SEN12MS data,
this imbalanced class distribution is a representation of the natu-
ral imbalance of the real world, but should be considered when
the data is used for the training and evaluation of machine learn-
ing models.

While (Sulla-Menashe et al., 2019) provides a rough estimate
of the accuracy of the original, global IGBP land cover map at
500 m GSD – namely 67% –, there is no accuracy assessment of
the upsampled IGBP maps provided as dense annotations in the
original SEN12MS dataset. So, to provide a better intuition of
the accuracy of the single-label and multi-label scene annotations
presented with this paper, we have randomly selected 600 patches
for human annotation. This human annotation was conducted by
visual inspection of the corresponding high-resolution aerial im-
agery in Google Earth. While this form of evaluation suffers from
a certain subjectivity and the difficulty of distinguishing some
land cover classes visually, it still serves the purpose to gain a
better feeling for the label quality, if the numbers provided in
Tab. 3 are taken with a grain of salt. In this evaluation, a single
human label was given to each patch, and Top-1 accuracy refers
to the case in which the MODIS-derived single-label scene anno-
tation matches this human label, whereas Top-3 accuracy refers to
the case in which one of the top-3 multi-label scene annotations
matches this human label. As can be seen, the average accuracy
is somewhere around 80%, which is significantly better than the
original accuracy of the global IGBP land cover map. This is,
of course, caused by the simplification of the IGBP scheme, as
well as the reduction to just few scene labels instead of coarse-
resolution pixel-wise annotations.

3. BASELINE MODELS FOR SINGLE-LABEL AND
MULTI-LABEL SCENE CLASSIFICATION

To provide the community with both baseline models and results,
we have selected two well-established convolutional neural net-
work (CNN) architectures for image classification: ResNet and
DenseNet. The architectures and the necessary adaptations and
settings are shortly described in the following.

3.1 ResNet

The ResNet architecture (He et al., 2016) was designed to miti-
gate the problem of vanishing gradients, which tended to appear
for very deep CNNs before. This is realized by the introduction
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Table 2: The simplified IGBP land cover classification scheme.
IGBP
Class
Number

IGBP Class Name
Simplified
Class
Number

Simplified
Class Name Description Color

1 Evergreen Needleleaf Forest

1 Forest Lands covered by woody vegetation at > 60%
and height exceeding 2 m 009900

2 Evergreen Broadleaf Forest
3 Deciduous Needleleaf Forest
4 Deciduous Broadleaf Forest
5 Mixed Forest

6 Closed Shrublands 2 Shrubland Lands with shrub canopy cover > 10% and
< 2 m tall c6b0447 Open Shrublands

8 Woody Savannas 3 Savanna Lands with understory systems, and with forest
cover between 10% and 60% and > 2 m tall fbff139 Savanna

10 Grasslands 4 Grassland Herbaceous lands with < 10% trees/shrubs b6ff05

11 Permanent Wetlands 5 Wetlands Lands with a permanent mixture of water and
herbaceous or woody vegetation 27ff87

12 Croplands 6 Croplands Lands covered with temporary crops followed
by harvest and a bare soil period c24f4414 Cropland / Natural Vegetation Mosaics

13 Urban and Built-up Lands 7 Urban/Built-
up

Land covered by buildings and other man-made
structures a5a5a5

15 Permanent Snow and Ice 8 Snow/Ice Lands under snow/ice cover throughout the year 69fff8

16 Barren 9 Barren Lands with exposed soil, sand, rocks f9ffa4

17 Water Bodies 10 Water Oceans, seas, lakes, reservoirs, and rivers 1c0dff

Barren Croplands Urban/Built-Up
Forest

Croplands Urban/Built-Up
Savanna
Wetlands

Savanna

Figure 1: Some randomly selected samples from the SEN12MS dataset, including simplified IGBP land cover annotations on scene
level. First row: Sentinel-1 (VV backscatter). Second row: Sentinel-2 (RGB). The main class of the scene is set in bold, additional
classes in the multi-label case are set in regular font.

of so-called shortcut connections, i.e. instead of learning a di-
rect mapping from input to output layer, the shortcut connection
skips one or more layers by passing the original input through the
network without modifications. Then, the network learns resid-
ual mappings with respect to this input. In this work, we used a
ResNet50, i.e. a variant with a depth of 50 layers.

3.2 DenseNet

The DenseNet architecture (Huang et al., 2017) is based on the
finding that CNNs can be deeper, more accurate and efficient to
train if they contain shorter connections between layers close to
the input and layers close to the output. Thus, DenseNets di-
rectly connect each layer to every other layer in order to ensure

maximum information flow between layers in the network. Dif-
ferent to ResNets, the features are not combined through summa-
tion; instead, they are concatenated. In this work, we employ a
DenseNet121 with a depth of 121 layers.

3.3 Training Details

Both models were trained using binary cross entropy with logit
loss for multi-label classification. To keep everything simple, op-
timization was performed with an Adam optimizer, a learning rate
of 0.001, a decay rate of 10−5, and a batch size of 64.

In order to evaluate the usefulness of different input data config-
urations, separate models were trained for the following cases:
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(a) (b)

Figure 2: Class occurrences in the different formats of the SEN12MS dataset. (a) Training split, (b) hold-out testing split. Note that the
number of Barren samples in the dense and the multi-label variant of the test set is actually not zero, but very small in comparison to
the other classes.

Table 3: Validation of the Scene Labels with Respect to Human
Annotation

Class Number Top-1 Acc. Top-3 Acc.

Forest 66 80.3% 97.0%
Shrubland 26 46.2% 73.1%
Savanna 106 88.7% 95.3%
Grassland 64 68.8% 73.4%
Wetlands 3 66.7% 66.7%
Croplands 162 73.5% 84.6%
Urban/Built-Up 90 80.0% 93.3%
Snow/Ice - - -
Barren 39 92.3% 94.9%
Water 44 97.7% 97.7%

Average 67 77.1% 86.2%

• S2 RGB: Sentinel-2 RGB data only (as a computer vision-
like baseline)

• S2 MS: all 10 surface-related spectral channels of Sentinel-
2

• S1+S2: Sentinel-1 dual-polarimetric data plus the 10 surface-
related channels of Sentinel-2

Each model was trained from scratch on the official SEN12MS
training split with early stopping based on a validation set ran-
domly selected from the training set.

4. BENCHMARK RESULTS

Figure 3 illustrates multi-label prediction results for three exam-
ple patches. Table 4 contains a summary of accuracy metrics for
the multi-label classification results. The F1 score is the harmonic
mean of the precision and recall metrics, i.e.

F1 = 2
p · r
p+ r

, (1)

where the precision p is the fraction of correct predictions per all
predictions of a certain class, and the recall r is the fraction of
correct predictions per all appearances of a class in the reference
annotations.

From the results, different insights can be drawn:

• There is generally not a huge difference between the two
baseline CNN architectures. This is particularly interesting,
because both models are of significantly different depths.
Thus, this provides a hint towards the hypothesis that the
achievable predictive power is more limited by the training
data than by the model capacity.

• Overall, the weakest performances are achieved for those
models that take only optical RGB imagery as input. How-
ever, a measurable improvement is observed when multi-
spectral data is used, with even more improvement provided
by the data fusion-based model that exploits both optical and
SAR data. This suggests that spectral diversity is of high im-
portance in remote sensing-based land cover mapping and
confirms once more that there is a significant difference be-
tween the analysis of conventional photographs and remote
sensing imagery.

• While SAR-optical data fusion is helpful on average, for
some classes, e.g. Shrubland, Wetlands, and Croplands it
does not seem to be very helpful. This indicates that observation-
level fusion based on a simple channel concatenation is not
enough and more sophisticated fusion strategies, e.g. with
sensor-dependent CNN streams, are needed.

• Due to the reduction of dense labels to scene labels, the Bar-
ren class is underrepresented – there are only 29 patches
carrying a Barren label in the multi-label test dataset. This
renders the results for the Barren class insecure. It is still in-
teresting to note that for both CNN architectures, data fusion
provides the best result for this class, while multi-spectral
imagery yields the worst result – even worse than RGB only.
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ResNet50 DenseNet121 Reference

Savanna
Wetlands
Water

Savanna
Wetlands
Water

Savanna
Wetlands
Water

Savanna
Urban/Built-up

Savanna
Croplands

Savanna

Urban/Built-up Urban/Built-up Urban/Built-up

Figure 3: Multi-label predictions for three example patches using the S1+S2 input data configuration. The second example is partic-
ularly noteworthy: While the reference denotes the patch as pure Savanna, the models add finer information by recognizing urban or
cropland structures, respectively.

Table 4: F1 scores for the different models in the multi-label case.
ResNet50 DenseNet121

Class Number S2 RGB S2 MS S1+S2 S2 RGB S2 MS S1+S2

Forest 3529 60.9 69.3 70.6 65.4 68.9 70.6
Shrubland 1611 56.0 50.2 50.2 58.3 43.2 45.0
Savanna 9276 79.3 78.5 79.9 76.7 80.2 85.4
Grassland 5171 50.5 58.4 64.5 50.9 57.4 60.0
Wetlands 523 11.0 62.6 55.8 26.5 53.7 55.9
Croplands 4511 63.4 66.9 64.3 66.3 59.1 63.2
Urban/Built-Up 2235 82.8 82.6 84.1 84.1 84.9 83.1
Snow/Ice - - - - - - -
Barren 29 1.3 0.0 11.5 8.0 0.6 8.7
Water 919 70.4 93.0 93.7 69.8 93.8 93.7

Average F1 Score 52.9 62.4 63.9 56.2 60.2 62.8
Overall F1 Score 66.5 69.9 71.4 66.9 68.9 72.0

• As already discussed in (Schmitt et al., 2020), the IGBP-
based Savanna label can be problematic: The MODIS-derived
reference considers the scene of the second example in Fig. 3
as Savanna, although it visually seems to rather be a mix-
ture of built-up structures and croplands. Interestingly, both
baseline models are able to identify those classes (i.e. Urban
/ Built-Up for ResNet50 and Croplands for DenseNet121) –
albeit not both at the same time, and without removing the
Savanna class.

All in all, the achieved accuracies are of the same order of mag-
nitude as the accuracies reported by (Sumbul et al., 2019) for the
BigEarthNet dataset. While SEN12MS and BigEarthNet are not
directly comparable (as SEN12MS is more versatile and contains
Sentinel-1 SAR imagery, but also uses a simpler class scheme),
this indicates the usability of SEN12MS for the training and eval-
uation of scene classification models. Besides, the fact that achiev-
able accuracies on both datasets are similar, this suggests a certain
saturation for off-the-shelf image classification models for remote
sensing scene classification. Investigating this further would be
an interesting future research direction.

5. SUMMARY & CONCLUSION

With this paper, we have presented the SEN12MS dataset re-
purposed for remote sensing image classification. To achieve this,
the original land cover annotations, which are provided at a reso-
lution of 500 m and a pixel spacing of 10 m, are converted to both
single-label and multi-label annotations. Based on a randomized
validation of 600 patches by a human expert, an average accuracy
of about 80% was estimated. Using the dataset and two standard
CNN image classification architectures, we have trained and eval-
uated several baseline models, which can serve as a baseline for
future developments and provide insight to the benefit of using
multi-sensor and multi-spectral data over plain RGB imagery.
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