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ABSTRACT: 
 
RGB-D cameras are novel sensing systems that can rapidly provide accurate depth information for 3D perception, among which the 
type based on active stereo vision has been widely used. However, there are some problems exiting in use, such as the short 
measurement range and incomplete depth maps. This paper presents a robust and efficient matching algorithm based on semi-global 
matching to obtain more complete and accurate depth maps in real time. Considering characteristics of captured infrared speckle images, 
the Gaussian filter is performed firstly to restrain noise and enhance the relativity. It also adopts the idea of block matching for reliability, 
and a dynamic threshold selection of the block size is used to adapt to various situation. Moreover, several optimizations are applied 
to improve precision and reduce error. Through experiments on the Intel Realsense R200, the excellent capability of our proposed 
method is verified. 
 
 

1. INTRODUCTION 

Real-time and high-quality 3D space perception is a key 
technology for SLAM and AR (Endres and et al., 2013). In the 
current research, typical devices for 3D perception include RGB 
cameras, RGB-D cameras, and LiDAR. The RGB-D camera 
combines the advantages of LiDAR and RGB camera. It can 
quickly obtain high-quality geometric information and color 
information with low cost, thus has great research value and 
application potential, especially in indoor environments (Jiao and 
et al., 2017). There are several methods for RGB-D cameras to 
get depth maps. For example, Apple’s Prime Sense sensor uses 
structured light (SL) to implement scene perception technology 
(Boehm, 2014). The Kinect v2 released by Microsoft uses the 
time-of-flight (ToF) principle to obtain depth maps with a higher 
frame rate but a lower resolution (Foix and et al., 2011). Intel’s 
portable consumer-grade RGB-D cameras include the Intel R200 
(2015), D415 and D435 (2018), which are based on active stereo 
vision (ASV) for data acquisition and processing (Kuan and et al., 
2019). In particular, they are usually equipped with one NIR 
texture projector and a pair of NIR cameras and use stereo 
matching for depth estimation. They are widely used in robot 
navigation and positioning, indoor 3D Mapping and modelling 
because of their low cost and portability (Chen and et al., 2018). 
The binocular stereo matching module provided by Intel on the 
R200 is based on a local matching method (Keselman and et al., 
2017). In this way, it can match infrared stereo images at a higher 
frame rate. However, there are many pixels that cannot be 
matched effectively, which causes many holes and a short valid 
detection distance, thereby limiting its application scenarios. In 
practice, its valid detection distance is no more than 4m. 
 
In this paper, the infrared stereo image of R200 camera is used 
for experiment, and a stereo matching algorithm for infrared 
speckle image is proposed to improve the 3D space perception 
ability of RGB-D sensor based on active stereo vision technology, 
taking the deficiency of R200 into account.   

2. RELATED WORK 

Nowadays, the problem of getting high-quality depth maps 
through the stereo vision technique is one of the most actively 
studied problems in many applications. According to the 
different matching strategies, stereo matching algorithms can be 
simply divided into local methods and global methods. Local 
methods are based on correlation and can have high efficiency; 
therefore, they are suitable for real-time applications. Common 
local matching algorithms calculate disparity by comparing the 
information in the local window (Brown and et al., 2003.). They 
can perform pixelwise matching, so that they can obtain dense 
depth maps. However, there are often mismatches in the texture-
less area, and it is difficult to retain depth continuity, so it is 
unlikely to obtain accurate matching results. Common global 
methods that can achieve higher accuracy include Dynamic 
Programming (Veksler, 2005), Belief Propagation (Sun and et al., 
2003) and Graph Cut (Kolmogorov, 2001). They convert the 
matching problem into finding the global optimization of an 
energy function of the disparity image. However, they have much 
higher calculation cost and consume more memory during 
runtime, so that they are not suitable for real-time application. 
 
Considering the characteristics of above two methods, 
researchers propose a semi-global strategy (Hirschmuller, 2005) 
which combines the advantages of both methods. The SGM 
algorithm has attracted considerable attention of many 
researchers. It performs 2D global optimization by constraining 
the 1D path in multiple directions, and maintains higher 
efficiency while obtaining higher quality disparity images. Since 
it does not include all pixels in the calculation, its complexity is 
lower than global methods, which allows it to run in real time. In 
view of its superiority, there are many researches based upon it. 
Its modified algorithms like tSGM in SURE (Rothermel and et 
al., 2012) and SGBM (Yang and et al., 2020) have been proposed 
according to the different characteristics of different scenes. 
Moreover, SGM-Nets (Seki and Pollefeys, 2017) uses SGM in 
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combination with a neural network, which can greatly enhance 
the performance in many situations. 
 
While in practice, the problem on how to obtain high-quality 
disparity images with infrared speckle images in real time is not 
solved properly. Thereinto, the R200 is a representative RGB-D 
camera based on infrared speckle and stereo vision technology 
for the depth estimation of indoor scenes. The binocular stereo 
matching module provided by Intel on the R200 is based on a 
local matching method. In this way, it can match infrared stereo 
images at a higher frame rate.  
 
However, there are many pixels that cannot be matched 
effectively, which causes many holes and a short valid detection 
distance, thereby limiting its application scenarios. For this, we 
propose an advanced infrared stereo matching algorithm. 
Inspired by the work of Semi-Global Matching (SGM), a semi-
global strategy is adopted, in addition to improvement aimed at 
infrared the characteristics of speckle images. Experimental 
results are used to verify the validity and superiority of the 
method. 
 

3. METHODOLOGY 

3.1 R200′s Commercial Algorithm 

Local matching method is used for stereo matching in the R200. 
The R200 uses a Census cost function to compare left and right 
images. Thorough comparisons of photometric correlation 
methods showed the Census descriptor to be among the most 
robust in handling noisy environments (Hirschmuller and 
Scharstein, 2008). For a pixel in the match image, a Census 
transformation window with a size 7 × 7 is selected. Then a 0/1-
bit string for the Census transformation can be obtained (Lu and 
et al., 2014). In the same way, the bit string for the search point 
of the target image is obtained. Then, a 64-disparity search is 
performed, and costs are aggregated with a 7 × 7 box filter. The 
best-fit candidate is selected. Finally, after a subpixel refinement 
and a set of filters, the disparity image is obtained. 
  
3.2 Semi-Global Matching Algorithm 

The semi-global matching algorithm has its variant. In this paper, 
SGM with BT (Birchfield and Tomasi) (Hirschmuller, 2005) is 
selected as the comparative method, whose key steps include cost 
calculation, cost aggregation and disparity computation.  
 
In this algorithm, while pixelwise cost calculation is subject to 
interference from noise and other factors, an energy function that 
depends on the disparity image is defined to support smoothness 
by penalizing changes of neighbouring disparities, and the 
problem of matching is then transformed into finding the 
disparity image D that minimizes the energy function E(D). 
Researches show that the effective method to achieve 2D global 
optimization is to accumulate 1D matching costs from multiple 
directions. In this way, the aggregated cost can be calculated. 
Then, by selecting the disparity d that minimizes cost for each 
pixel, the disparity image can be obtained. At last, a subpixel 
interpolation will be performed to improve accuracy. 
Furthermore, as there are some matching errors, it uses filters to 
eliminate them. 
 
3.3 Our Proposed Algorithm 

As stated earlier, existing methods are based on different 
requirements and applications, and there are still some problems 
to solve. In order to achieve better matching of infrared images 

for more accurate 3D perception with RGB-D cameras based on 
ASV, an improved method is proposed in this paper. Based on 
the SGM algorithm, the semi-global matching strategy is adopted 
in ours. And there are several improvements aimed at 
characteristics of infrared speckle images. A detailed flowchart 
of our algorithm is presented in Figure 1. 
 
Because of the low power of the infrared projector of R200, the 
reflected infrared ray in many places in the scene is quite weak, 
which directly leads to texture-less regions of the infrared image 
(Zhu and Chang, 2019). Also, as the infrared light intensity can 
be affected by a variety of factors, for instance, the angle of 
incidence and distance, there are usually some noises in the 
image. To address these issues, Gaussian filtering is performed 
firstly after capturing two infrared stereo images. Gaussian 
filtering can not only reduce noises of the infrared images, but 
also can enhance the correlation of the stereo infrared images. As 
a result, abnormal value caused by noise is weakened and the 
correlation of texture-less regions is strengthened. Our 
experiments prove that after Gaussian filtering, the correlation 
coefficient between the two images can be increased by about 9%, 
and the mutual information can be increased by about 13%. 
 
The BT algorithm (Birchfield and Tomasi, 1999) is performed in 
cost calculation. The idea of block matching (Scharstein and 
Szeliski, 2002) is also adopted to merge the information of 
neighborhood pixels into the calculation, as the BT algorithm is 
a pixelwise method which is easily infected by noise and causes 
mismatches or errors. Through doing this, matching can be more 
robust. However, a fixed size block does not suit all 
circumstances. If the block size is too large, it will result in over-
smoothness and more calculation. And if too small, it may have 
little effect. Therefore, before cost calculation, the dynamic 
threshold selection of the block size based on mutual information 
is applied. In other word, the block size is selected according to 
the mutual information between the two Gaussian filter images. 
Then our algorithm adopts BT for cost calculation. The cost 
calculated by our algorithm includes two parts: one is the costs 
calculated from the gray value of the left and right images, the 
other is the costs calculated from the result of the left and right 
images through the horizontal Sobel operator (SobelX). 
Compared to the original BT, the second part of cost is to increase 
the similarity for better matching. 
 

 
Figure 1. A flow chart of our algorithm. 
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In cost aggregation, based on the idea of SGM, a global 
smoothness constraint is approximated by combining many 1D 
constraints. So, the stereo matching problem is transformed into 
searching the optimal solution of the energy function. In this way, 
the algorithm can output high-quality disparity images at a high 
frame rate, which allows it to be applied to real-time application 
scenarios. Then there are several optimization steps to fix up 
some problems in the preliminary disparity image, including 
uniqueness test, sub-pixel interpolation, left-right consistency 
check and point cloud growth. 
 
3.4 Stereo Depth 

The output of the stereo matching algorithm is a disparity map, 
which is not a depth map that can be directly used for 3D 
perception. It needs to convert the disparity value to the depth 
value. The basic principle is shown in Figure 2. Here f is the focal 
length of the camera, and B is the baseline of the left and right 
infrared cameras. The point P is an object point, and PL and PR 
are respectively the image points on the left and right images. xL 
and xR are respectively the x-coordinates of PL and PR. The depth 
z is the distance of the point P from the camera. 
 

 
Figure 2. A schematic diagram of binocular stereo vision. 

 
According to the principle of R200, the infrared speckle is first 
emitted by the infrared projector and irradiated on P, and then P 
is imaged in two infrared cameras on the left and right 
respectively. Ideally, the left and right camera focal lengths are 
equal, with only displacement on the x-axis and parallel main 
optical axis. Therefore, the imaging position of P in the two 
images is theoretically different only on the x-axis 
(corresponding to the x-axis in Figure 2), and the difference in its 
position is the disparity, denoted by d, and then L can be 
calculated. 
 

d = xL - xR (1) 
L = B - d (2) 

 
According to the Similar Principle of Triangle, the Formula (3) 
can be obtained. 
 

z
L

 = 
z + f

B
(3) 

 
By combining Formula (1) - (3), the depth z is computed, as 
shown in Formula (4). 
 

z = 
 f ·B

d
(4) 

 
The focal length f and baseline B in Formula (4) can be obtained 
by camera calibration, and the disparity d is calculated by stereo 
matching algorithm, thus the depth value can be computed. 
 

4. EXPERIMENTS 

4.1 Depth Maps of Different Matching Algorithms 

To validate the efficiency of proposed algorithms, three indoor 
scenes have been selected for evaluation, and each scene 
corresponds to a row in Figure 3. The R200’s commercial 
algorithm (RCA), SGM algorithm (SGM) and our algorithm are 
implemented for the comparative experiments. In Figure 3, the 
first column is the RGB images of three scenes. The second 
column is the infrared images acquired by the left infrared camera 
of the R200. And the practical effects of RCA, SGM and our 
algorithm are demonstrated in the third to fifth columns. Overall, 
from the visual effect of the depth maps of different methods, the 
depth maps obtained by our algorithm are the most complete 
compared to those of other methods, while those of RCA have 
the most holes and incomplete edges of objects. And the 
performance of the SGM is between RCA and our algorithm. 
 
The RCA is a local method. As shown in Figure 3, the RCA can 
achieve good matching results in texture-rich areas, like the desk 
in Figure 3’s scene (a), but does not work well in texture-less 
areas, like the floor in Figure 3’s scene (c). The direct cause of 
the lack of texture is the weak infrared brightness which is easily 
affected by many factors, such as too far distance, too large angle 
of incidence, specular reflection on the surface. Concretely, the 
left part of the wall in Figure 3’s scene (b) is far away from the 
camera and tends to reflect light easily, therefore, local reflection 
light is too weak and leads to indigent texture. Similar things exist 
in the floor in Figure 3’s scene (c). The texture in these areas is 
so weak that it is hard for RCA to perform accurate and complete 
indoor 3D perception. 
 

 
Figure 3. Comparison of results of different methods. (a–c) correspond to three scenes. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2021-107-2021 | © Author(s) 2021. CC BY 4.0 License.

 
109



 

 

In contrast, the advantage of semi-global matching is obvious. 
SGM constructs a global energy function by means of a semi-
global strategy for global optimization. That means that it takes 
into more pixels compared with RCA and can perform better than 
the RCA in texture-less areas, especially distant objects. So, 
SGM will no doubt have a longer detection range than RCA, 
which allows it to perform more comprehensive sensing. On the 
edges of objects with occlusion, the infrared speckle pattern may 
be incomplete or messy, so it is difficult to find right match and 
will lead to holes in the final depth map. 
 
The last column of Figure 3 shows the result of our algorithm. 
From Figure 3, it can be concluded that the overall visual effect 
of our algorithm is better than SGM. In depth maps of ours, more 
complete edges and less abnormal value can be seen. Both 
algorithms adopt the semi-global matching strategy, but several 
improved methods are applied in our algorithm for the shortages 
of SGM. First, considering the effects of noise, our algorithm 
uses Gaussian Filter to suppress noise, while increasing the 
similarity. Next, block matching is used to integrate the 
information in an image block for robustness. Such as the floor 
in the lower right section of scene (c) of Figure 3, our algorithm 
can perform well whereas there are some abnormal values 
produced by SGM. It's worth mentioning that dynamic threshold 
selection of parameters ensures our algorithm's adaptability. 
Finally, due to last several optimization steps, the quality of depth 
maps is improved. 
 
In order to evaluate these methods quantitatively, the error rate is 
used as the criterion. It should be noted that the error cannot be 
directly calculated due to the lack of standard datasets. Therefore, 
the error is captured by manual statistics. For the three scenarios 
in Figure 3, the error rates of depth information obtained by 
different algorithms are calculated, and the final result is shown 
in Figure 4. The error rate is normalized as the difference of error 
rates in different scenes can be an order of magnitude. The 
statistical data directly shows that among these three algorithms, 
SGM has the highest error rate, while our algorithm has the 
lowest. One of important reasons is that SGM lacks ways to 
eliminate wrong matching pixels. Therefore, errors occur 
especially at edges. As for our algorithm, the depth maps are 
smoother due to the usage of Gaussian Filter and block matching. 
Because there are more pixels used during matching, part of 
errors can be avoided. Moreover, the complexity of our algorithm 
and SGM is almost close. So, in general, our algorithm can 
provide completer depth data with a longer detection distance and 
higher accuracy in real time. 
 

 
Figure 4. The statistical results of three stereo matching 

algorithms’ error rates. 

 
4.2 Error Analysis of Depth Value 

The error of depth value is an important criterion to 
comprehensive evaluation of the effective detection distance and 
perception ability of stereo matching algorithms. Therefore, a test 
of the depth measurement errors is applied between RCA with 
the worst visual effect and our algorithm with the best visual 
effect. A white flat wall is used to test the precision of the two 
algorithms in the experiment. The distance between the R200 and 
the plane is changed by the caster. The step size is 300 mm, and 
the distance increases from about 700 mm, until the two 
algorithms cannot get effective depth data. In addition, due to the 
influence of camera position, pixel physical size and other factors, 
the results have some systematic errors, which can be corrected 
by linear regression. 
 
On the basis of Formula (4), the partial derivative of z with 
respect to d is calculated. Then, z is used to replace d in the 
formula to obtain the quantitative relationship between the error 
of depth value and the size of depth value. The mathematical 
expression is shown in Formula (5). 
 

|ϵz| = 
z2

f · B  · |ϵd| (5) 

 

 
Figure 5. The relative error of RCA and our algorithm 
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Here, given that errors in disparity space are usually constant for 
a stereo system, |ϵd| can be treated as a constant. Besides, f and B 
are also constant and can be obtained by camera calibration. In 
addition, due to the influence of factors such as camera placement 
and pixel physical size, the experimental results have certain 
systematic errors, which can be corrected by methods such as 
unary linear regression. Considering that the relative error can 
usually better reflect the credibility of measurements, its 
mathematic expression is derived here as shown in Formula (6). 
 

|ϵz|
z

 = 
|ϵd|
f · B

 · z (6) 

 
In Formula (6), |ϵd|, f and B are constant. It is inferred that the 
relative error is linear in z, so it can be fitted with a linear model. 
The results of the experiment are shown in Figure 5. 
 
As shown, both of the relative errors of two algorithms are no 
more than 1% within 2 m. When depth increases to 3 m, the 
relative error of RCA increases faster. At 5 m or more, RCA 
cannot get valid data. By contrast, our algorithm has better 
precision and its detection distance can reach to more than 7 m. 
As distance increases, light lessens and textures weaken. It is hard 
for RCA to make valid matches, and our algorithm can still match 
accurately by taking advantages of semi-global matching. 
Besides, the intensity of reflected infrared light frequently is 
variable,  which will lead to measurement errors. Because the 
semi-global method uses more pixel values during calculation, 
our algorithm can reduce the influence of the instability more 
effectively and obtain more accurate measurements, especially in 
the distance. 
 

5. CONCLUSION 

In this paper, we presented a novel infrared stereo matching 
algorithm to improve the stereo vision of the Intel stereoscopic 
RGB-D sensors. Targeted at the characteristics of infrared 
speckle images, our algorithm uses Gaussian Filter to resist noise, 
and adopts the semi-global strategy and block strategy with a 
dynamic threshold selection to enhance the quality of matching. 
It has been shown that, compared with the existing methods, our 
algorithm can obtain depth maps with greater integrity, higher 
quality and a longer detection range in real time. As this kind of 
improvement can expand the using scene of the existing 
hardware with higher quality data, this work will be valuable. 
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