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ABSTRACT: 

3D point cloud of mosaic tesserae is used by heritage researchers, restorers and archaeologists for digital investigations. Information 

extraction, pattern analysis and semantic assignment are necessary to complement the geometric information. Automated processes 

that can speed up the task are highly sought after, especially new supervised approaches. However, the availability of labelled data 

necessary for training supervised learning models is a significant constraint. This paper introduces Tesserae3D, a 3D point cloud 

benchmark dataset for training and evaluating machine learning models, applied to mosaic tesserae segmentation. It is a publicly 

available, very high density and coloured dataset, accompanied by a standard multi-class semantic segmentation baseline. It consists 

of about 502 million points and contains 11 semantic classes covering a wide range of tesserae types. We propose a semantic 

segmentation baseline building on radiometric and covariance features fed to ensemble learning methods. The results delineate an 

achievable 89% F1-score and are made available under https://github.com/akharroubi/Tesserae3D, providing a simple interface to 

improve the score based on feedback from the research community. 

1. INTRODUCTION

Mosaics are decorative art formed by individual entities called 

tesserae. They are usually of cubic or irregular shape and made 

of stone, glass, ceramics, metal, or other organic material. These 

are then assembled using mortar to obtain patterns or figures. As 

the majority of the mosaics of interest are very old, dating 

thousands of years (like the mosaic of Germigny-des-Prés which 

dates from the end of the 8-9th century), the digitization of these 

masterpieces permits to represents the base element for 

documentation, preservation, and valorisation (Adami et al., 

2018; Ajioka and Hori, 2014; Doria and Picchio, 2020; Placa et 

al., 2020). In architecture, mosaics are used to decorate soils, 

walls, or ceilings, including non-flat surfaces which makes 

specific 3D capture techniques central to their description. Then, 

segmentation -on which specialists ground their studies through 

manual operation, visual interpretation and manual drawing 

(Benyoussef, 2008)- comes to individualize each tessera to attach 

key information. This is mainly its shape and colour, its 

composition and material, its place of origin, its dating and state 

of conservation. This delineates a strong need to speed up the 

extraction and interpretation of individual tesserae, which is 

challenging and fascinating giving their uniqueness. 

We propose to extend the few existing mosaic segmentation 

approaches, specifically over 3D point clouds.  Existing research 

on the topic is carried solely on 2D image coupled with machine 

learning algorithms (Felicetti et al., 2018), or over 3D point 

clouds but using rule-based deterministic approaches (Florent 
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Poux et al., 2017) due to a lack of existing labelled dataset. To 

the best of our knowledge, there is no open access dataset 

benchmark for mosaic tesserae semantic segmentation or other 

tasks. To overcome the above limitations, this paper proposes a 

manually labelled dataset called Tesserae3D as illustrated in 

Figure. 1.  

Figure. 1 Part of our dataset: point cloud in RGB colours (top), 

labelled point cloud (bottom) (The code colour is conserved for 

the rest of the illustrations) 
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To briefly summarize, the main contributions of this work are:  

 A point-wise labelled mosaic tesserae point cloud dataset 

for semantic segmentation. 

 A standard baseline for segmentation using random forest 

and gradient boosting multi-classifier. 

The rest of the paper is organized as follows: Section 2 presents 

a description of existing works about mosaics segmentation. 

Section 3 describes the objectives and the segmentation baseline. 

Section 4 gives details about the Tesserae3D dataset and its 

specificities. Section 5 presents results, and section 6 discuss 

experimental results and draw future works for this field of 

research. The conclusion is presented in Section 7. 

 

2. RELATED WORKS 

In cultural and architectural heritage, digitalization is an 

important tool, and an effective way for documentation, 

preservation, interpretation (Adami et al., 2018; Doria and 

Picchio, 2020), and visualization (Kharroubi et al., 2019, 2020). 

It became necessary when dealing with rare and unique 

masterpieces as mosaics. Mosaics digitization has the purpose of 

producing digital copies of these pieces called 'digital replica' 

which allows specialists to carry out studies, comparison, and 

digital investigations in a non-destructive manner. Furthermore, 

it serves as a record of their state of conservation. 

 

An important advance in terms of laser scanner and 

photogrammetry for reality capture was made possible for 

specialists for this objective. But, apart from the acquisition of 

3D models, actions like segmentation, information extraction, 

and detection of tesserae remain manual or automatic based only 

on 2D images. Early work for automatic detection of tesserae 

(Benyoussef, 2008) proposes a tessella-oriented strategy whose 

first step consists of isolating tesserae from its cemented network 

by computing the watershed transformation of a criterion image 

generated to exhibit the cement network as watershed crests. 

Then a simple k-means algorithm is used to classify tesserae and 

segment mosaic images with more accuracy than with a pixel-

oriented strategy. Additionally, they propose a method to 

automatically get the main directional guidelines of mosaics by 

estimating tesserae orientation. In (Bartoli et al., 2017), for the 

same purpose which is tesserae detection, the authors presented 

a completely unsupervised approach. It consists of a deformable 

model to overlap the mosaic and adapt to the actual shape of each 

tessera, using Genetic Algorithms which evolves a fixed-size set 

of candidate segmentation according to a multi-objective 

optimization algorithm. 

 

Felicetti et al., (2018) used U-Net deep learning approaches for 

tesserae segmentation using 2D images. Their method shows 

high accuracy and better generalization to segment mosaic floor 

tesserae of the church of S. Stephen in Umm ar-Rasas, a Jordan 

archaeological site. In recent works, the same authors proposed 

for the same study site a Mo.Se algorithm (Mosaic 

Segmentation). It uses a deep cascading learning network for 

automatic segmentation coupled with images processing 

techniques (Hierarchical Watershed Algorithm) for refinement, 

to obtain a vector representation of the mosaic. Their goal was to 

manage results in a geodatabase for understanding the evolution 

of the iconographic repertoire (Felicetti et al., 2021). Fenu et al., 

(2020) also proposed to use a deep learning technique based on 

U-Net that proved to be effective in segmentation tasks. It’s a 

convolutional neural network, to perform segmentation of the 

mosaic images so that each segmented region precisely matches 

a tessera of the mosaic and processes the image at the pixel level. 

Recent research trends using learning-based methods have seen 

a transfer from 2D (image-based) to 3D (point clouds) semantic 

segmentation, with architecture such as PointNet (Qi et al., 

2017), KPConv (Thomas et al., 2019), and RandLA-Net (Hu et 

al., 2020). Other works on mosaic segmentation using 3D point 

cloud has tried to get around the lack of training data by adapting 

an unsupervised clustering process for segmentation, and a 

reasoning ontology for classification of tesserae using user-

specified rules (F. Poux et al., 2017a, 2017b). However, for 

mosaic segmentation using supervised approaches, there is, to 

our knowledge, no existing open access point clouds dataset. The 

latter is one of the key elements to build performant, 

generalizable, and at-scale machine learning models. 

 

3. OBJECTIVES  

Given a set of 3D points describing the geometry and colour of a 

tessera, we want to infer one individual class label per point. We 

provide a baseline method that is meant to represent a typical 

approach robustly used for the task (Figure 2). We follow a 

paradigm of covariance feature extraction at multiple scales (3.1), 

then a feature selection step (Erreur ! Source du renvoi 

introuvable.) followed by multi-class classification with a 

Random Forest (RF) and Gradient Boosting (GB) classifiers 

(3.3). 

 

 
Figure 2. Global workflow for point clouds semantic 

segmentation using Ensemble methods. 

Point cloud 

Manual  

Annotation 

Ensemble 

Methods  

(3.3) 

 

Training 

Predictive Model 

Classification 

output 

Prediction 

Unseen data 

Features 
 Extraction (3.1) 

and selection (3.2) 

 

Training set 

Random forest 

Gradient 

boosting 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2021-121-2021 | © Author(s) 2021. CC BY 4.0 License.

 
122



 

3.1 Feature extraction 

Classification is based on the abstraction of data into coherent 

indicators and feature descriptors that can describe the essential 

information, both geometric and radiometric, to enable accurate 

processing and analysis. This challenge remains highly 

contextual because it aims to detect relevant objects in a specific 

context (small tesserae separated by very similar mortar joints). 

So, it is necessary to understand which descriptors should be used 

to recognize an object composed of several points with attributes 

in a scene.  

  

We followed a feature extraction process based on the work of 

(Weinmann et al., 2015), which proposes a general workflow to 

classify 3D scenes based on the geometric feature. After the 

recovery of different local neighbourhoods (E.g. a spherical 

neighbourhood NS, 1mm, where the sphere is centred at point Xi 

and has a radius of 1 mm), we extracted geometric features by 

considering the spatial arrangement of neighbouring points. 

Since the joints between the tesserae vary by 1 mm or more, we 

chose three small radii (1 mm, 2 mm and 3 mm) in order not to 

lose the structure of neighbourhoods and to have a representative 

geometric feature of context. 

 

3.2 Feature selection using random forest 

The objective of feature selection is to reduce the potential 

redundant features and noise, speed up the calculations, and 

identify a small set of discriminative features that can still 

achieve a good predictive performance. We use the Embedded 

selection method (tree-based strategy) considered in the RF 

classifier (Pedregosa et al., 2011). It calculates feature 

importance using node impurities in each decision tree, and the 

final feature importance is the average of all decision tree feature 

importance. Then, we select the most important features, at a 

specific radius, using the training set. Selected ones are presented 

in Figure 3 and categorized as:   

 Radiometric features: Red, Blue, Green, and the average of 

the three. 

 Covariance features: To describe the geometric distribution 

of the points and highlight the discontinuities between the 

tesserae, we chose surface density, linearity, planarity, and 

Omnivariance.  

 

3.3 Explicit feature classifiers 

While within standard supervised machine learning approaches 

(Random Forest classifier, Gradient Boosting classifier, Support 

Vector Machine classifier, Bayesian Discriminant Analysis 

classifier), the choice of features depends primarily on the 

operator, deep learning methods can learn features on their own, 

as part of the process of training on a huge set of data. This ability 

to learn is considered one of the main causes of the rapid 

progression of benchmark classification results, such as PointNet 

(Qi et al., 2017), PointNet++  improvements and KPConv 

(Thomas et al., 2019). However, deep learning uses neural 

networks with many hidden layers, powerful computing 

resources, and a large amount of annotated data. In this regard, 

the availability or not of the data may increase or limit the 

application of deep learning approaches. As in our case of studies 

in which, we know the relevant characteristics and we search for 

explainability. We chose random forest and gradient boosting 

models (Pedregosa et al., 2011). Which provide in general a good 

predictive performance, low overfitting, and easy interpretability, 

with a reasonable annotated dataset (Becker et al., 2018) (in our 

case 30% of the dataset is annotated).  

 

 

 
Figure 3. RGB colours, average RGB, the geometric feature 

and its considered spherical neighbourhood: surface density 

(r=2 mm), linearity (2 mm), Omnivariance (3 mm), planarity 

(2mm) (from top to bottom and from left to right) 

 

The random forest classifier uses bagging as an ensemble method 

and a decision tree as an individual model. The set of trees is 

referred to as a forest. Bagging implies selecting samples from 

the training subset and trains the trees representing individual 

classifier. Internal cross-validation technique, using the Gini 

index, measures the performance of RF and selects the best 

ensemble through voting. A recent comparison of several 

respective classifiers relying on different learning principles 

reveals that a Random Forest classifier provides a good trade-off 

between classification accuracy and computational efficiency 

(Weinmann et al., 2015). 

 

Gradient boosting is another type of machine learning boosting 

multiclassifier. It relies on the intuition that the best possible next 

model, when combined with previous models, minimizes the 

overall prediction error. While the training stage is parallel for 

bagging (i.e. each model is built independently), boosting builds 

the new learner in a sequential way. 

 

4. TESSERAE3D DATASET 

4.1 Case study  

The village of Germigny-des-Prés (Loiret, France) holds one of 

the oldest church in France dating from the beginning of the end 

of the 8-9th century (Caillet J.-P., 2016; Sapin, 2019). Theodulf, 

close counsellor to Emperor Charlemagne, bishop of Orléans and 

abbot of Fleury possessed there a villa that he transformed and 

where he built an oratory that became the current church of the 

village (Freeman and Meyvaert, 2001) (Figure 4).  

 

In the eastern apse, mosaics were discovered under plasters in the 

19th century. One of the vaults representing the Ark of the 

Covenant passing the river Jordan was restored. Two cherubs 

stand on the ark. They are surrounded by two angels with wings 

crossed. Between these, a hand goes down from even. It is 

interpreted as the hand of God as illustrated in Figure 5. The 

mosaics of the arches under the vault are smaller, and they 

pictured floral motifs that were not restored (Croutelle, 2019). 
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Besides their rich iconographic and cultural contents, these 

mosaics are a unique opportunity to study this form of art as well 

as the material of the small cubes that form them. Indeed, most 

of the tesserae are made of glass that is not often preserved in an 

archaeological context, and that remains rare for this period. 

Though this material is of prime interest for historical sciences 

because, during the Late Antiquity and early Middle Ages, it was 

made in the eastern Mediterranean, and it can give clue for the 

exchanges and long-distance contacts that have existed. 

 

  

Figure 4. Area of interest in perspective view (left), localization 

of the mosaic in the front apse of the oratory (right) 

 
 

Figure 5. Point clouds, a realistic view from the bottom 

 

The mosaic of Germigny-des-Prés is composed of tesserae from 

different materials, sizes and periods. Some of the tesserae were 

immediately recognized as a production of the 19th century, such 

as the golden squares or others very regular cubes cut 

mechanically. Tesserae were also made of glazed ceramic that 

did not exist in the Carolingian period (Van Wersch et al., 2019). 

 

4.2 Dataset description 

Tesserae3D is a mosaic tesserae 3D point cloud dataset acquired 

by a phase-based calibrated terrestrial laser scanner merged with 

dense image matching. We used scan data from a Leica P30 

scanner, acquired from one position high enough using an 

extended mounted tribrach, the scan point cloud was composed 

of 87.5 million points (scan only). Indeed, data fusion which 

consists to“combines data from multiple sources to improve the 

potential values and interpretation performances of the source 

data, and to produce a high-quality visible representation of the 

data” (Zhang, 2010) prove to be essentials in this case to enhance 

the density of point cloud. Pictures were taken with a camera, 

type Canon EOS 5D Mark III with a full-frame sensor and a 35 

mm camera lens. For implementing the so-called Multi-View 

Stereo method, an amount of  2.058 shots was captured, with 

5760 * 3840 pixels in RAW. They were used to obtain a more 

dense 3D point cloud of all tesserae. This dataset covers 

approximately 9.3 m² (F. Poux et al., 2017a) and consists of 

approximately 502 million points (fusion results between scan 

and dense 3d reconstruction from images) which represents an 

average density of 54 million pts/m² as illustrated in Figure 6.  

 

 

Figure 6. 1 cm x 1cm tessera with high density after the fusion 

of laser data with dense image matching. 

The point cloud is classified in 10 labelled tessera type (plus one 

for mortar, and one for unclassified parts) and contains 7 

attributes which are: 

 (X, Y, Z): Position of each point recorded in local 

coordinates (in meters). 

 (R, G, B): Natural colour reflectance of red, green, blue of 

each point as an integer from 0 to 255. 

 Label: class of each point, recorded as an integer [0,11] 

 

The dataset is divided into 10 sections, and each section is saved 

separately in .txt and .laz files. These are available at 

https://github.com/akharroubi/Tesserae3D for visualization and 

download. In Figure 7 we illustrate an overview of the 

approximate boundary of each section. 

 

 
 

 

Figure 7.  Labelled parts with different colour for each class 

(top), Overview of the approximate boundary of each section 

(bottom)  
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4.3 Data annotation 

Ground truth annotation is performed at the point level, where 

each point is manually assigned a corresponding class of tesserae 

(to not bias annotation by any algorithm use).  An unclassified 

label is used to only focus the evaluation on the portion of the 

point cloud that has been classified only, which represent until 

now 30% of the total mosaic. The manual annotation is 

performed using the segment tool within the open-source 

software Cloud Compare (CloudCompare, v2.11, 2020). After 

manual segmentation, a class index is associated with every 

category of the point clouds. 

 

While this annotation is done manually, we have taken care that 

it is as faithful to reality as possible. The quality control of the 

annotation was based on the verification and checking by an 

expert in archaeology and heritage. But, it is always subject to 

human error which is considered minimal after the quality 

control. This time-consuming operation takes in terms of time on 

average a duration of 25 seconds for each tessera, caused by 

challenges and difficulties related to the: 

 

 Missing tesserae part (metal cover). 

 The shape of deteriorated and altered tesserae. 

 Eroded and Disaggregated tesserae. 

 Colour of tesserae; due to the materials used and their age, 

the ancient tesserae are generally characterized by pastel 

colours with low contrast. 

 

4.4 Classes description  

A classification for the census of the main types of tesserae 

present on the mosaic was made based on the expertise of the 

archaeologist as well as on the sweep of all the mosaic to identify 

these types of tesserae visually on properties which are mainly: 

the colour, the type of material between glass, ceramic and stone, 

the shape and the size. 

 

Firstly, 18 classes of tesserae (Figure 8) were identified based on 

these criteria. Visually and with a light source, it is easier to 

distinguish almost all the tesserae mainly because we know each 

one and its area of existence on the mosaic. But on the point 

cloud, it is more difficult to distinguish between tesserae that 

have the same hue (e.g. light-blue tesserae, white, beige and 

silver ones). Therefore we adopted 10 main classes which include 

tesserae of similar properties as follows (for each class, we 

present the tesserae which belong to it). The unclassified class 

includes all parts that are not yet segmented but will be included 

as the manual segmentation progresses.  

 

To have a comprehensive view on the distribution of each type 

of tesserae in the present dataset, we summarize in the following 

Figure 9 the number of points by each class (this concerns the 

data segmented up to the moment, so the unclassified class 

contains by default the rest of the points). 

 

 
Figure 8. Census of all types of tesserae present on the mosaic 

of Germigny-des-Prés ©Line Van Wersch (2019) 
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Figure 9. Complete data set – Label distribution (by thousand) 

(some code colour as Figure. 1) 

The numbers in Figure 9 will change and be updated. But due to 

the time taken by this time-consuming operation and due to the 

meticulous system for segmentation quality control, the rest of 

the segmentation of all sections will be published soon and 

updated on the same data link. 

 

5. BASELINE RESULTS 

To create a simple baseline, we used 3D covariance-based 

feature. The feature vectors of the training set (80% of the 

dataset) were fed into the classifiers (RF and GB), and then the 

trained model of each classifier was obtained. For both RF and 

GR we used a list of [50, 100, 150, and 200] trees, and we chose 

finally the 200 trees option and a learning rate of 0.1 for GR, 

which give the higher F1-score. After that, the test set (20% of 

the dataset) features were transmitted to the trained models, and 

the prediction labels of each point were output. Finally, the 

classification results are evaluated using the performance metrics 

in Table 2 and qualitative results in unseen data for prediction 

are presented in Figure 11. 

 

5.1 Evaluation metrics and quantitative results  

Semantic segmentation performance assessment was carried out 

by providing fundamental performance metrics: precision, recall 

(1), F1-score and the Jaccard index (2). 

Pr = TP/(TP + FP)      ;    Re = TP/(TP + FN) (1)
 

F1 = 2*(Pr*Re)/(Pr + Re)   ;    Ji = TP/(TP + FP + FN) (2) 

 

Where  TP = True Positives 

 FP = False Positives 

 FN = False Negatives 

 TN = True Negatives 

 Pr = Precision 

 Re = Recall  

 Ji = Jaccard index or Intersection over Union (IoU) 

 F1 = F1-Score 

 

The performance metrics are summarized in the table below as 

well as the time for training (Table 1). We used a weighted 

averaging, for each class, we calculate metrics and find their 

average weighted by support (the number of true instances for 

each class). This alters “macro” to account for class unbalance. 

To emphasize that, in this study, results are for baseline 

illustration purpose mainly, and better results could be potentially 

achieved with further tuning. The experiments are conducted on 

a workstation running Microsoft Windows 10 (×64) with Intel ® 

Core ™ i7-8700, 6 Cores, 32 GB Random Access Memory 

(RAM), and we used Scikit-learn (python library) (Pedregosa et 

al., 2011). 

 

Classifier Precision (%) Recall (%) Ji (%) F1 (%) T. Time 

RF 86.1 86.1 76.0 86.1 2237s 

GB 89.3 89.3 78.5 89.3 4948s 

Table 1. Metrics summary for RF and GB classifiers 

With unbalanced classes (which is our case), it is easy to get high-

performance metrics without making useful predictions 

(especially for small class). So, precision or F1-score as an 

evaluation metric alone is improperly suited if the class labels are 

uniformly distributed. Thus, in the case of unbalanced classes, we 

recommend confusion-matrix as a good practice for summarizing 

the performance of a classification algorithm. In Table 2 each 

column represents the number predicted to belong to the class, 

while each row represents the true number that belongs to the 

class (Pedregosa et al., 2011). And for each intersection, we 

provide two normalized values (in percentage), the first one for 

RF and the second for GB. 
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Table 2. Normalized confusion matrix (in %) for RF classifier 

(first value), GB classifier (seconde one) 

 

Variable importance assessment is another interesting aspect to 

study when applying data mining techniques. Even if the 

predictors are chosen to be able to better characterize the data 

without redundancy, we highlighted caveats: someone can have 

similar and likely collinear information. To see which variable 

have bigger importance, we compute the corresponding 

reduction of predictive accuracy when the studied variable is not 

used on top. In RF, the Gini importance index is defined as the 

averaged Gini decrease in node impurities over all trees in the 

forest. As we identified, the most important predictors were RGB 

channels and Surface density, illustrated in Figure 10. This 

shows the importance of 3D geometric feature over 2D feature 

(RGB). 
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Figure 10. Variable importance obtained by RF classifier. 

 

 

   

 

Figure 11. Qualitative results: From top to bottom; raw point 

cloud, prediction results (using RF).  

 

6. DISCUSSIONS 

Benchmarks provided in open access research have always been 

a major contribution to the scientific community, making it 

possible to compare models to advance machine learning 

methods and to discern their limitations to reinforce them. With 

the dataset presented in this paper, we aim to participate in 

bridging the gap of the large lack in training data point clouds for 

complexes and specifics cases. The goal is to reveal the full 

potential of machine learning models in the semantic 

segmentation of decorative art and especially mosaics. 

 

Our method has shown good performance in terms of 

effectiveness and efficiency. But, the classification quality was 

evaluated based on point-wise metrics, which reveal many 

limitations in our approach such as inhomogeneous classification 

results. In this experiments gradient boosting shows better 

performance than random forest but takes more time for training. 

Thus, in the results related to the importance of features, it is clear 

that geometric features do not have large importance compared 

to radiometric features. Except, the characteristic related to the 

density, since a type of tesserae, because of their reflectance 

related to the component material, are denser than other types of 

tesserae. This result can be explained by the fact that the mosaic 

is a flat and continuous surface and does not present big 

variability in its surface. 

To overcome these limitations many directions will be studied in 

future works of: 

 Create a tessera-based segmentation:  segment-based metrics 

are more descriptive, as they can provide an overall picture 

of the segmentation (giving a qualitative ratio of each class), 

considering the number of objects and not points.  

 Make available an instance segmentation dataset where each 

tessera is individually separated, with tessera-based 

evaluation metrics.  

 Integrate the results of mosaic segmentation in Augmented 

and Virtual Reality applications (Kharroubi et al., 2020, 

2019). To allow immersive visualization and interaction with 

the different types of tesserae by specialists. 

 

7. CONCLUSION 

In this paper, we presented Tesserae3D, a new 3d point clouds 

dataset for semantic segmentation of mosaic tesserae. 

Furthermore, we investigated two standard machine learning 

algorithms. Geometric features of point clouds produced at multi 

scales and radiometric feature were used for classification. 

Results show that gradient boosting (with an F1-score= 0.893, 

Ji=0.785) outperform random forest (with an F1-score= 0.861, 

Ji=0.760). Dataset and code of used algorithms for classification 

are available under https://github.com/akharroubi/Tesserae3D. 
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