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ABSTRACT: 

 

Near-continuously acquired terrestrial laser scanning (TLS) data contains valuable information on natural surface dynamics. An 

important step in geographic analyses is to detect different types of changes that can be observed in a scene. For this, spatiotemporal 

segmentation is a time series-based method of surface change analysis that removes the need to select analysis periods, providing so-

called 4D objects-by-change (4D-OBCs). This involves higher computational effort than pairwise change detection, and efforts scale 

with (i) the temporal density of input data and (ii) the (variable) spatial extent of delineated changes. These two factors determine the 

cost and number of Dynamic Time Warping distance calculations to be performed for deriving the metric of time series similarity. We 

investigate how a reduction of the spatial and temporal resolution of input data influences the delineation of twelve erosion and 

accumulation forms, using an hourly five-month TLS time series of a sandy beach. We compare the spatial extent of 4D-OBCs obtained 

at reduced spatial (1.0 m to 15.0 m with 0.5 m steps) and temporal (2 h to 96 h with 2 h steps) resolution to the result from highest-

resolution data. Many change delineations achieve acceptable performance with ranges of ±10 % to ±100 % in delineated object area, 

depending on the spatial extent of the respective change form. We suggest a locally adaptive approach to identify poor performance at 

certain resolution levels for the integration in a hierarchical approach. Consequently, the spatial delineation could be performed at high 

accuracy for specific target changes in a second iteration. This will allow more efficient 3D change analysis towards near-realtime, 

online TLS-based observation of natural surface changes. 

 

 

1. INTRODUCTION 

Time series of 3D point clouds are increasingly used for the 

observation of natural surface changes (Eitel et al., 2016). 

Automatic terrestrial laser scanning (TLS) from a fixed location 

enables to generate 3D time series of a topographic scene at high 

spatial and temporal resolution over long periods (e.g. Campos et 

al., 2021; O’Dea et al., 2019; Williams et al., 2018). One 

important reason for high-frequency acquisition is that induced 

surface alterations may be temporary, and hence missed or 

misinterpreted when using larger observation intervals (Anders 

et al., 2019). This applies particularly in settings where processes 

do not occur in a dominant and uniform direction, as with 

gravitational mass movements of a landslide or rockfalls (e.g., 

Kromer et al., 2017; Williams et al., 2018). An illustrative 

example of highly complex change dynamics is vegetation 

monitoring, where the movement of leaves and branches through 

wind or periodic circadian movement of trees can be captured by 

high-frequency TLS (Campos et al., 2021; Zlinsky et al., 2017). 

For the example of coastal monitoring, the observation of a sandy 

beach by permanent TLS enables to capture dynamic sediment 

transport through wind, waves, and anthropogenic modifications 

at centimetre scales over time spans of few hours to weeks up to 

seasonal or annual periods (O’Dea et al., 2019; Vos et al., 2017). 

                                                                 
*  Corresponding author 

 

Dynamic morphologic forms such as a sand bar typically build 

up on a beach over several days of accumulation, and are eroded 

some time later, depending for example on the occurrence of high 

wave energy events, such as storms. In recent years, topographic 

data acquired by laser scanning has been increasingly used in the 

analysis of sandy beaches to localise morphologic forms and 

expand insights on sediment volume changes and transport 

processes (e.g. Corbì et al., 2018; de Vries et al., 2017; Le Mauff 

et al., 2018). 

Accumulation or erosion forms can be detected in 3D time series 

as morphologic surface changes by performing pairwise 

comparisons of the topography between two epochs. Pairwise 

surface comparison is typically performed by differencing digital 

elevation models or via point cloud distance computation 

(Girardeau-Montaut et al., 2005; James et al., 2012; Lague et al., 

2013). In landscape settings where distinct morphologic features 

are available, dynamics can be derived by detecting objects or 

characteristic features in the scene and assessing their changes in 

location, geometry, or size between epochs (e.g. Mayr et al., 

2017; Shen et al., 2017). Features in the morphology of a scene 

can further be used with image correlation and range flow 

methods to derive 3D movement of a surface (e.g. Fey et al., 

2015; Ghuffar et al., 2013).  
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An alternative to these approaches of change analysis is required 

for the smooth surface morphology of sandy beach environments, 

where object- or feature-based methods are not suitable. Pairwise 

surface comparison is constrained by the need to select analysis 

periods, as the timing and duration of sediment transport 

processes is unknown. 

These constraints are removed by our method of spatiotemporal 

segmentation, which extends change detection along the 

temporal domain of geographic point cloud time series (Anders 

et al., 2020). In this method, surface changes induced by 

temporary accumulation and erosion are detected in the time 

series at a location. Subsequently, change forms are spatially 

delineated with respect to their similarity of surface change 

history. The result of spatiotemporal segmentation are so-called 

4D objects-by-change (4D-OBCs) which represent the spatial 

extent of surface changes over the period of their existence. This 

method is not dependent on a selection of analysis periods or on 

the definition of spatial and temporal properties of changes, such 

as their magnitude, spatial extent, duration, or change rate 

(Anders et al., 2021). 

The domain of surface change properties that can be observed 

within time series is generally determined by the resolution 

settings of data acquisition, according to the Nyquist–Shannon 

sampling theorem (Shannon, 1949). The spatial and temporal 

resolution of automatic TLS are best chosen to match the 

properties of the smallest-scale and shortest-term expected 

surface changes, within the limits of measurement uncertainty. In 

consequence, the acquisition frequency will likely be higher than 

necessary for many changes that occur at lower change rates or 

persist over longer time spans than the shortest-term changes in 

the scene. This abundance in data can be regarded as beneficial 

for exploiting the rich information on surface dynamics that 

acquired 3D time series contain. The drawback of incorporating 

the full temporal domain in change analysis, though, is a strong 

increase in computational cost. The balance between data volume 

and computational effort is gaining importance when considering 

online processing, which could be conducted directly on the laser 

scanner or on field computers. 

Considering the acquisition strategy of automatic near-

continuous TLS, 3D time series may be temporally oversampled, 

i.e. be much more temporally dense than required for a full 

spatiotemporal segmentation. A less detailed representation of 

change histories might hence be sufficient to extract surface 

changes which are covered by a high number of epochs relative 

to their change rate and duration.  

The applied method performs spatial delineation of surface 

changes via region growing using time series similarity as 

homogeneity criterion. Time series similarity is derived as 

Dynamic Time Warping (DTW) distance (Berndt & Clifford, 

1994). We use the approximate FastDTW algorithm (Salvador & 

Chan, 2007; Tanida, 2019), which has a linear increase in 

computational cost with the number of epochs. Furthermore, the 

number of DTW distance computations that need to be performed 

during region growing is determined by the number of spatial 

locations, which depends on the spatial extent of the change form 

and spatial resolution of the input data.  

We therefore investigate the influence of reduced temporal and 

spatial resolutions of a high-frequency 3D time series on time 

series-based change analysis for target changes with different 

properties of duration, spatial extent, and magnitude. The 

following research questions are examined: 

 

1) What is the influence on the spatial delineation of 4D-OBCs 

when reducing (i) the temporal and (ii) the spatial resolution 

of input data during spatiotemporal segmentation? 

2) How does the influence of reduced resolutions relate to the 

spatial and temporal properties of detected surface changes? 

If there is a relation between properties of detected changes and 

performance of spatiotemporal segmentation with reduced input 

data resolutions, it may be possible to incorporate this reduction 

in a hierarchical approach to analyse full 3D time series. This 

would allow to extract surface changes much more efficiently 

with similar accuracy than is currently possible.  

 

 

2. DATA AND METHODS 

We examine the influence of spatial and temporal data 

resolutions on change analysis by performing spatiotemporal 

segmentation on input data with different degrees of reduced 

resolutions. In the following subsections, we present the dataset 

of our use case (Section 2.1) and the method of spatiotemporal 

segmentation (Section 2.2). Subsequently, we explain our 

analysis approach (Section 2.3), which is schematically 

illustrated in Figure 1. 

 

 

Figure 1. Experimental design to investigate the influence of 

reduced spatial and temporal resolutions regarding the spatial 

object extent resulting from region growing, compared to the 

results obtained at original resolution of the input data. The 

analysis is part of the workflow of spatiotemporal segmentation 

using a 3D tensor of surface change values to extract 4D 

objects-by-change, i.e. change forms in local areas with similar 

surface change history. 

 

2.1 Dataset 

We use a time series of TLS point clouds acquired at a beach site 

in The Netherlands from an elevated position on a hotel building 

at hourly intervals over a period of five months (~3000 epochs of 

around 3 million laser points each). The TLS instrument is a 

Riegl VZ-2000, which scanned the underlying beach scene at 

ranges of 100 m to 600 m with a precision of 5 mm at 150 m 

range (Riegl LMS GmbH, 2015). An extensive description of the 

time series acquisition and TLS data properties is given by Vos 

et al. (2017) and Anders et al. (2019).  

Within the observation period, a large number of temporary 

change forms were captured, which were induced by sand 

transport through wind and waves, as well as anthropogenic 

modifications. An example of an accumulation form is given with 

the sand bar in Figure 2. 
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Figure 2. (a) Surface height change on the beach in a five-week 

period with a sand bar as notable accumulation form (blue 

rectangle marks bounding box). (b) History of height change at 

a location within the spatial extent of the sand bar (location 

marked by star in a). The dashed line in b designates the epoch 

of 2017-02-20 corresponding to the surface change map in a.  

 

Surface change is quantified for each epoch as point cloud 

distance to the first epoch in the time series using the M3C2 

algorithm (Lague et al., 2013). Point cloud distance computation 

is performed for 2D locations (“core points” in the M3C2) in a 

regular grid with a spacing of 0.5 m. The M3C2 assumes locally 

planar surfaces at each location. From this, we derive strictly 

vertical changes, i.e. local height increase and decrease, by 

setting the direction of analysis (normal vector) to be parallel to 

the z-axis and using a neighbourhood radius of 1.0 m for 

averaging surface positions. This creates a 3D tensor that 

contains derived surface change values at each spatial location in 

the scene for every epoch along the temporal domain (Fig. 2). 

This structured dataset provides the input for the spatiotemporal 

segmentation method, which is described in the subsequent 

section. 

 

2.2 Spatiotemporal Segmentation and Selected 4D-OBCs 

We use spatiotemporal segmentation as time series-based method 

of change analysis following Anders et al. (2021). In the first 

step, the method detects periods of temporary surface changes in 

the time series of a 2D location. In the second step, these periods 

of surface change at a location are grouped spatially in a region 

growing segmentation regarding neighbouring locations with a 

similar history of surface change. 

For the first step of temporal change detection, change points in 

the time series are determined based on changes in the median of 

surface change values using a sliding window of one week. The 

end point of a temporary change form is determined by 

maximizing the normalized volume of surface change values 

along the time series from detected change points as start points. 

This provides the period of a detected change form at a 2D 

location. Subsequent region growing is performed using the 

initial 2D location as seed and time series similarity as 

homogeneity criterion. Time series similarity is derived as DTW 

distance between the time series of neighbouring locations 

compared to the reference time series at the seed location (Anders 

et al., 2020). 

To account for the large ranges of magnitudes and durations in 

the detected changes, DTW distance values are normalized 

regarding the maximum possible distance to the reference time 

series. From this, the DTW distance threshold to constrain the 

region growing is determined locally adapted to each detected 

change. This is achieved by performing the region growing for a 

set of strict to loose thresholds in parallel. The final 4D-OBC is 

selected at the threshold with lowest increase in segment size, 

which maximizes segment sizes while avoiding leakage (Anders 

et al., 2021). 

A full spatiotemporal segmentation of the 3D time series used in 

our analysis yields over 2,000 4D-OBCs (cf. Anders et al., 2021). 

Extracted changes are temporary accumulation and erosion forms 

on the beach, which typically exist over periods of days to weeks. 

For the analysis of reduced resolutions, we select twelve 4D-

OBCs representing six accumulation and six erosion forms, 

respectively (Fig. 3). Their spatial and temporal change 

properties range from 6 days to 5 weeks in duration, 0.1 m to 

2.8 m in magnitude, and 18 m² to 3,000 m² in spatial extent 

(Fig. 4). 

 

 

Figure 3. (a) Spatial extent in the scene and (b) change history 

for twelve 4D objects-by-change that are used for analysis of 

spatiotemporal segmentation with reduced resolutions. 

 

 

Figure 4. Spatial and temporal change properties of twelve 4D 

objects-by-change that are used for analysis of spatiotemporal 

segmentation with reduced resolutions. 
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2.3 Evaluation of Reduced Resolutions 

The influence of temporal and spatial resolutions on the 

extraction of 4D-OBCs is examined by repeating the region 

growing on input data with iteratively increased intervals 

between epochs and increased spacing between 2D locations. 

Accordingly, only every nth epoch in the 3D tensor of hourly 

surface change is used to reduce the temporal resolution, with n 

being multiples of the highest resolution of 1 h, in 17 resolutions 

from 2 h to 96 h. Only every mth location in x- and y-direction, 

respectively, is used to reduce the spatial resolution, with m being 

multiples of the highest resolution of 0.5 m, in 16 resolutions 

from 1.0 m to 15.0 m. With reduced temporal resolution, we use 

the data only at highest spatial resolution, and vice versa. 

The performance for all 33 resolutions of either temporally or 

spatially reduced input resolutions is assessed regarding the 

resulting spatial extent of the delineated object. The spatial 

extents of the 4D-OBCs acquired at the highest spatial and 

temporal resolution provide the reference. 

Finally, the deviation of spatial extents of the derived 4D-OBCs 

for reduced resolutions is examined with respect to the change 

properties of the respective objects, namely duration and 

magnitude (Fig. 4). This will disclose a potential relation 

between properties of a detected change and required input 

resolutions for segmentation, which may be used to decrease the 

computational cost of full change analysis in 3D time series. 

 

 

3. RESULTS 

We present the results by first assessing the overall deviation of 

spatial extents for reduced temporal and spatial resolutions 

(Section 3.1). The performance of spatiotemporal segmentation 

regarding individual 4D-OBCs is examined and related to their 

change properties in Section 3.2. In Section 3.3, we provide 

runtimes for the region growing depending on input data 

resolutions.  

 

 

Figure 5. Deviation of spatial extent delineated by region 

growing for decreasing temporal resolution compared to the 

reference objects obtained at highest input data resolutions. (a) 

Full range of deviations, and (b) close-up to bounds of 100 %. 

Boxes on x-axis labels mark changes in the reduction interval.  

 

3.1 Deviation of spatial extents for reduced data resolutions 

Performing the spatiotemporal segmentation of 4D-OBCs at 

reduced temporal resolutions yields spatial extents with average 

deviations between -6 % and +7 % for resolutions from 2 h to 

96 h (Fig. 5). Apart from single outliers, a notable increase in 

deviations begins at a temporal resolution of 30 h, compared to 

the next-higher resolution of 24 h (Fig. 5b). This could indicate a 

critical level for the change forms examined in this paper, which 

is assessed in Section 3.3 regarding properties of individual 4D-

OBCs. 

For reduced spatial resolutions, the variability of deviations is 

high for all resolution steps across the range from 1.0 m to 

15.0 m. Spatial extents yield average deviations between +13 % 

and +260 % (Fig. 6). Strong overestimations are caused by 

extreme increases in the delineated extent of single objects (cf. 

Section 3.2). 

 

 

Figure 6. Deviation of spatial extent delineated by region 

growing for decreasing spatial resolution compared to the 

reference objects obtained at highest input data resolutions 

(0.5 m). (a) Full range of deviations, and (b) close-up to bounds 

of 100 %. Boxes on x-axis labels mark changes in the reduction 

interval. 

 

A remaining proportion of general over- and underestimation of 

spatial extents can be explained by the coarser grid resolutions of 

the 3D tensor. These lead to slightly larger extents at the coarser 

object borders with each step of reduced resolution, even if the 

delineation agrees well with the highest reference resolution. The 

same can occur for underestimation of the spatial extent, 

depending if the change signal is preserved during spatial 

subsampling of border locations to coarser resolutions. The effect 

is proportionally larger for change forms with smaller extent or 

complex shapes. 

The result for an example 4D-OBC is visualized in Figure 7. This 

erosion form is caused by anthropogenic works, where sand was 

removed from rectangular patches to build up pavilions for the 

summer season on the beach, visible in the strong height increase 

following the detected change (Fig. 7b). 

 

3.2 Segmentation performance using reduced data 

resolutions in relation to individual change forms 

Reduced data resolutions have varying influence on the 

performance of spatial delineation for different 4D-OBCs. To 

assess the influence of reduced temporal resolutions, we separate 

the 4D-OBCs into three groups T1-T3 that show similar 

behaviour and scales of deviation in spatial extents (Fig. 8). 

The first group (T1, Fig. 8a) yields deviations in spatial extent 

fluctuating over ±10 % to partially ±100 % throughout all 

temporal resolution steps. Deviations for these 4D-OBCs can be 

explained by the effect of coarser temporal data resolutions. The 

surface change history is either less distinct compared to the 

surrounding area, which may lead to more locations being 

segmented as similar. On the other hand, smoothing of change 

values in neighbouring locations compared to the distinctively 

detected change at the seed location will lead to fewer locations 

being segmented. 
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Figure 7. Results for an example 4D object-by-change using 

reduced spatial resolutions of 2.0 m and 5.0 m. The location on 

the beach is depicted in the map (a; rectangle marks extent of d 

and e). The change period is marked by arrow heads in the time 

series of change values at the seed location (b). Spatial 

delineations for different input resolutions (c) deviate from the 

reference by -7 % for 2.0 m and -20 % for 5.0 m resolution. The 

purple cross below subfigure b depicts the marker used for the 

object in subsequent figures. Maps of height changes show the 

delineated change form at reduced resolutions (d and e). 

  

Group T2 (Fig. 8b) yields deviations of spatial extents below 

±10 % down to a temporal resolution of 24 h. At lower temporal 

resolutions, these 4D-OBCs deviate up to ±100 %, which 

indicates that the surface change history is not represented 

sufficiently in the time series anymore with respect to the surface 

change signals surrounding the change form. This same effect 

can be observed for 4D-OBCs in group T3 (Fig. 8c) with much 

larger negative and positive deviations (up to 1,000 %), which is 

visualized for an example object in Figure 9. The change form 

represents erosion induced by natural sediment transport 

followed by sudden accumulation due to anthropogenic 

relocation of sand volumes. 

For assessing the influence of reduced spatial resolution, we 

separate the 4D-OBCs into another set of groups S1-S3 with 

similar behaviour and scales of deviation in spatial extents 

(Fig. 10). These show a much stronger variability of spatial 

extents for single objects, with deviations fluctuating between 

±100 % even for small resolution reductions (S1 and S2, Fig. 10a 

and b). An enormous increase in spatial extent by up to 1,000 % 

occurs when reducing the spatial resolution of two specific 4D-

OBCs (S3, Fig. 10c), which show a similarly poor performance 

for reduced temporal resolutions (cf. Fig. 8c). 

 

 

Figure 8. Relation of reduced temporal resolution to deviations 

in spatial extent compared to the reference objects obtained at 

highest input data resolutions. 4D objects-by-change are 

separated into three groups of similar scales and deviation 

behaviour (a-c). Note that the scales of y-axes are logarithmic, 

and only linear between -1 % and +1 %. Properties of 

individual objects are shown with distinct markers in d.  

 

Comparing the results for all individual 4D-OBCs to their change 

properties (Fig. 8d) indicates that performance of reduced data 

resolutions is not solely and directly linked to the magnitude or 

duration of detected changes. Considering those objects with 

strongly over- or underestimated spatial extents, the main 

difference to objects with good performance is how distinct the 

surface change history is in relation to the surrounding surface, 

at each version of reduced spatial or temporal resolution. 

Consequently, the segmentation performance in terms of 

deviation of spatial extents is high for the morphometrically 
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distinct changes caused by anthropogenic works even for heavily 

reduced resolutions (cf. Fig. 7).  

For more subtle and smooth changes in the surface morphology, 

as is the case for gradual sediment transport, the delineation is 

more sensitive towards growing into adjacent locations that 

experience small or no surface change (cf. Fig. 9). The time 

series similarity will then be very high regarding the normalized 

DTW distance if the detected surface change at the seed location 

is of comparably low magnitude and long duration. 

 

 

Figure 9. Results for an example 4D object-by-change using 

the reference and a reduced temporal resolution of 24 h. The 

change period is marked by arrow heads in the time series of 

height changes at the seed location (a). The height change map 

(b) shows the bounding boxes of the delineated change form at 

the two temporal resolutions. An extreme increase in spatial 

extent (715 %) occurs at reduced resolution, as the change 

history of the detected change is not represented completely in 

the lower-resolution time series. The blue triangle below 

subfigure b depicts the marker used for the object in other 

figures. 

  

3.3 Relation of runtimes to reduction of input data 

resolutions 

Regarding the objective to decrease the computational cost of 

time series-based change analysis of 3D time series, the relation 

of runtimes to reduced data resolutions (Fig. 11) fits the 

expectation of linear runtime reductions (Section 1). Reducing 

data resolutions decreases the cost and number of DTW distance 

calculations during region growing for reduced temporal and 

spatial resolution, respectively. For example, for the erosion form 

in Figure 9 of 780 m² area, region growing at highest input 

resolution takes around 300 seconds (on a standard desktop 

computer). By reducing the temporal resolution to 6 h, the 

runtime is reduced to 59 s, with +18.7 % deviation in spatial 

extent. Occurrences of strong runtime increases at reduced 

resolution are caused for single 4D-OBCs by increases in the 

segmented spatial extent. These increases are linked to the poor 

performance of spatial delineation for the respective objects (cf. 

Fig. 8 and 10). 

 

 

Figure 10. Relation of reduced spatial resolution to deviations 

in spatial extent compared to the reference objects obtained at 

highest input data resolutions (1 h and 0.5 m). 4D objects-by-

change are separated into three groups of similar scales and 

deviation behaviour (a-c) for illustration purposes. Note that the 

scales of y-axes are logarithmic, and only linear between -1 % 

and +1 %. Distinct colours and markers designate individual 

objects, which are shown by their properties in Figure 8d. 

 

 

Figure 11. Relation of reduced (a) temporal and (b) spatial 

resolution to runtime for spatial delineation of individual 4D 

objects-by-change (each designated by distinct colour). 

Runtime values are runtimes of region growing on a standard 

desktop computer. 
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4. DISCUSSION 

Our results show that a reduction of input data resolutions is 

possible without strongly affecting the result for many of the 

detected changes. Deviations in spatial delineation are low when 

comparing the area of the objects to the highest-resolution 

reference with around ±10 % to ±100 %, depending on the spatial 

extent of the detected change form. For reduced spatial 

resolution, deviations may be even larger at good performance, 

as large proportions of deviation can be attributed to border 

effects with more coarsely represented spatial object extents. The 

involved loss in spatial detail could be reduced by making use of 

more intelligent sampling strategies, which preserve the distinct 

change signals during spatial subsampling of grid locations. 

Preserving epochs that make surface change histories particularly 

distinct, such as sudden height increases or decreases, could 

further be integrated by thinning out time series targeted to each 

detected surface change. We expect that this mitigates the effect 

of smoothed surface change history causing the extent of a 

detected change form to blend into the surrounding area. 

Overall, it needs to be noted that we assess the delineation 

performance down to very coarse resolutions (96 h and 15.0 m) 

compared to the reference resolution (1 h and 0.5 m) and 

properties of the target change forms. Reducing resolutions by 

factor 4 (e.g. 2.0 m spatial resolution) to factor 12 (e.g., 12 h 

temporal resolution) would achieve an accuracy that is likely 

acceptable for many applications, with a deviation of ±10 % in 

spatial extent for most 4D-OBCs (cf. Fig. 8 and 10), while 

reducing runtimes by a factor of 10 (cf. Fig. 11). 

Introducing such overall performance decrease in spatial 

delineation by reducing data resolutions may even be generally 

acceptable for the first step of change analysis, where surface 

changes are detected across space and time and coarsely 

extracted as 4D-OBCs. A more exact spatial extent can then be 

delineated in a second step of region growing at highest 

resolutions, maybe restricted to specific target changes 

depending on the application and research question. 

A simple relation between change properties and requirements to 

input data resolutions does not become evident from our analysis. 

Nonetheless, a practical approach could make use of reduced 

resolutions after seed detection by performing the region growing 

for a set of resolutions in parallel. From our investigation, we find 

that there is no constant decrease of performance in spatial 

delineation with decreasing resolution. Many cases of poor 

performance of individual 4D-OBCs exhibit a high variability of 

deviations to the reference for iteratively decreased resolutions 

(cf. Fig. 8 and 10). The possibility to reduce input data 

resolutions with acceptable performance of results could 

therefore be assessed regarding changes in resulting segment 

sizes. Based on this information, the appropriate resolution per 

change form could be selected, subsequently. A similar approach 

was shown to perform well for determining the locally adaptive 

DTW distance threshold used for region growing in the method 

(Anders et al., 2021). When making use of parallel computing, 

this does not necessarily increase runtimes. Region growing of 

strongly oversized objects at lower resolutions takes much longer 

runtimes than delineating objects correctly at higher resolutions 

(cf. Fig. 11). In these cases, the growing can be aborted once the 

result of a higher resolution with smaller, more confidently 

delineated spatial extent is available. 

 

 

5. CONCLUSION 

In this paper, we propose the reduction of input data resolutions 

for time series-based change analysis using a method of 

spatiotemporal segmentation. Many change delineations at 

reduced temporal or spatial resolution achieve acceptable 

performance. Depending on the spatial extent and shape of the 

respective change form, deviations in area range from ±10 % to 

±100 % compared to the reference extracted at the highest 

available resolution. A large variability in performance resulted 

particularly from reducing the spatial resolution. 

The investigated 4D objects-by-change did not reveal a 

systematic relation of segmentation performance at reduced 

resolutions with respect to properties of the detected changes, 

such as magnitude or duration of surface change. Results rather 

indicate an important link to the distinctiveness of surrounding 

surface change histories.  

Spatiotemporal segmentation enables to extract changes of 

variable spatial and temporal properties from 3D time series at a 

high detection rate, by incorporating the full temporal domain 

and using an efficient input data structure with the 3D tensor of 

surface change values. To integrate reduced resolutions in the 

method, we suggest a locally adaptive approach based on parallel 

computing at multiple resolutions. While decreased data 

resolutions in this step lead to further coarsening of the acquired 

3D time series information, the original high-resolution data is 

still available for the interpretation of extracted surface changes 

and all subsequent analyses. Integrating adaptively reduced data 

resolutions would extend efficiency in a hierarchical approach to 

change analysis. In the future, this may allow to analyse 3D time 

series in near-realtime and to incorporate the information in 

online adaptive TLS-based monitoring. 
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