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ABSTRACT: 

 

In this paper, we develop and implement end-to-end deep learning approaches to automatically detect two important types of 

structural failures, cracks and spalling, of buildings and bridges in extreme events such as major earthquakes. A total of 2,229 images 

were annotated, and are used to train and validate three newly developed Mask Regional Convolutional Neural Networks (Mask R-

CNNs). In addition, three sets of public images for different disasters were used to test the accuracy of these models. For detecting 

and marking these two types of structural failures, one of proposed methods can achieve an accuracy of 67.6% and 81.1%, 

respectively, on low- and high-resolution images collected from field investigations. The results demonstrate that it is feasible to use 

the proposed end-to-end method for automatically locating and segmenting the damage using 2D images which can help human 

experts in cases of disasters. 

 

 

1. INTRODUCTION 

Automation on Structural Damage Detection (SDD) and 

Structural Health Monitoring (SHM) is made possible with the 

rapid development of vision- and vibration-based technologies. 

The necessity of using them to assist human experts is to 

increase the accuracy, rapidness and efficiency of SSD and 

SHM while reducing the overall cost. With the successful 

application of deep learning methods on a wide range of 

problems, it is imperative to apply these techniques on SDD and 

SHM. Generally speaking, the application of deep learning on 

SDD and SHM requires an interdisciplinary team. These teams 

typically use low-cost sensors and autonomous platforms such 

as Unmanned Aerial Vehicles (UAVs) and Unmanned Ground 

Vehicles (UGVs) in field inspections for real-time inspection 

and monitoring. 

 

Detection and identification of structural damage can typically 

be performed by image segmentation and image classification. 

In case of classification, the goal is to identify the categories of 

structural attributes, such as material types (e.g., steel, concrete, 

masonry) or structural damage types (e.g., cracks, spalling, 

collapse) without locating the position of damage from images. 

On the other hand, the goal of image segmentation is to detect 

and mark damage in specific regions where each pixel in the 

image is labeled to denote types of material failures, such as 

cracks, spalling and other indicators of structural failures. 

Spalling refers to the concrete cover of the steel reinforcements 

or part of nonstructural and structural materials that was split 

and separated from the original materials. Cracks, on the other 

hand, are the phenomena of discontinuity of materials observed 

on the surface of them. 

 

Structural damage can appear in images in different ways and 

at various scales. Damage can span a larger or smaller extent, 

or even be invisible (Gao and Mosalam, 2018). In addition, the 
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image resolution may also cause problem for the same type of 

damage when the deep learning models are utilized to detect it 

(Bai et al., 2020b). Therefore, it is necessary to develop a 

robust end-to-end solution to segment structural damage 

automatically. Mask R-CNN has recently been successfully 

applied to instance segmentation in computer vision (Cai and 

Vasconcelos, 2019). Based on its success, this approach is 

adopted to segment damage so that the buildings and bridges 

can be continuously monitored. In particular, three variations of 

Mask R-CNN networks are proposed to detect two major types 

of structural damage, spalling and cracks, that works inde-

pendent of scale and image resolution. Publicly available image 

datasets collected from field investigations in recent large 

earthquakes are used to check the effectiveness of the models. 

 

2. RELATED WORK 

2.1 Deep learning with R-CNNs in image segmentation  

There are several major deep learning methods for image 

segmentation, including but not limited to Fully Convolutional 

Networks (FCNs), encoder-decoder models, multi-scale and 

pyramid networks, Regional Convolutional Neural Networks 

(R-CNNs), etc. Each approach has its own advantages, and 

some are typically used in benchmarking studies (Minaee et al., 

2020). 

 

Multiple convolutional layers are typically utilized as feature 

extractors while downsampling and then upsampling the data 

within sliding windows. Its efficiency has been shown to be low 

when FCNs are used. R-CNNs, on the other hand, can 

preprocess the input image to produce thousands of Region of 

Interests (RoIs) for feature extraction with FCNs. Furthermore, 

the R-CNN reduces the computational time compared to 

alternative approaches and improves the accuracy of 

segmentation. Its computational cost, however, is still high. To 

improve it, Fast R-CNN and Faster R-CNN have been 
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introduced and their structures are quite different from the 

conventional R-CNN (Ren et al., 2015). The former applies 

FCNs directly on the RoIs of the feature maps which comes 

after convolutional process on the original image. A network 

referred to as Region Proposal Network (RPN) on the feature 

maps is inserted to automatically produce the region proposal in 

the case of Faster R-CNN. Thus, it improves the speed and 

accuracy of prediction. But neither of these solutions are 

applicable to instance segmentation. He et al. (2017) proposed a 

benchmark network, Mask R-CNN, to predict the instance as 

well as its bounding box and class. Recently, several variations 

of Mask R-CNN were published where researchers use different 

backbone network architectures for feature extraction, some of 

which we adopted and developed for detecting spalling and 

cracks automatically in this paper. 

  

2.2 Spalling and cracks detection with deep learning 

Several researchers have adopted deep learning methods for 

detecting structural damage. Hoskere et al. (2018) illustrate an 

experiment with 23-layer ResNet and 9-layer VGG networks to 

classify and segment seven classes of structural damage, 

including cracks, spalling, exposed reinforcement, corrosion, 

fatigue cracks, asphalt cracks, and no damage. Ali et al. (2019) 

introduce Faster R-CNN for defect detection in historical 

masonry buildings with high resolution images. Kong and Li 

(2018) describe an application that detects and tracks the 

propagation of cracks in a steel girder in image streams. Atha et 

al. (2018) explain the difference between two CNN methods 

used in detecting metallic corrosion. Gao and Mosalam (2020) 

started the Phi-Net Challenge for collecting pictures of building 

structural failures in 2018. Their large dataset, which is also 

used in this paper, is suitable for training and testing different 

methods for structural damage detection at different scales (Bai 

et al., 2020b). 

 

Recent research in image segmentation have significantly ad-

vanced application of deep learning on structural damage 

detection. Yang et al. (2018) employed a hybrid network, 

composed of Holistically-Nested Edge Detection (HED) 

network and U-Net to detect cracks and spalling on concrete 

structures, and then reconstruct 3D model through Simultaneous 

Localization and Mapping (SLAM) for UAV images. Cha et al. 

(2018) applied Fast R-CNN on detecting five types of structural 

damage, including concrete cracks, steel corrosion of two levels 

(medium and high), bolt corrosion, and steel delamination. For 

this purpose, authors labelled 2,366 images with the size of 

500×375 for training. Attard et al. (2019) trained a Mask R-

CNN with 200 images to locate cracks on the concrete surface 

at pixel level. Kim and Cho (2019) used 376 images in their 

training data for Mask R-CNN to find the cracks on a concrete 

wall with high resolution cameras and utilized an additional 

image processing procedure on each bounding box to 

quantitatively measure the width of these cracks. Kalfarisi et al. 

(2020) introduced structured random forest edge detection into 

bounding boxes of a Faster R-CNN to detect cracks on 

infrastructures and compared it with the performance of Mask 

R-CNN. A total of 1,250 images were included in training and 

validation process with the size varying from 344×296 to 

1,024×796. These models are verified with images acquired 

from field inspections on structural members, including 

building walls, bridge columns, tunnel walls and roads. The 

results show that both approaches are robust for this task. 

Finally, they used photogrammetry software to construct a 3D 

reality mesh model so that the cracks can be visualized and 

quantified further. Mondal et al. (2020) used Faster R-CNN to 

automatically detect four common types of structural damage, 

including surface cracks, spalling (which includes facade 

spalling and concrete spalling), and severe damage with 

exposed rebars and severely buckled rebars, but they didn’t 

mark the enclosing regions of these damage. Instead, they used 

bounding boxes to give the scope of them. 

 

Based on conclusions drawn from the aforementioned papers, 

some researchers also have started to conduct their studies on 

defect detection, identification and localization. Some cited 

researchers prefer to only classify the structural damage as it 

does not require time-commitment for labeling the damage (Zha 

et al., 2019). As a result, the location and position of cracks on 

structural components or structures are unknown until a human 

expert manually checks and marks them out. Simplicity of 

annotation process makes these models to be trained with a 

large number of images which is not the case for segmentation 

networks that faces problems due to insufficient training 

samples. In order to inherit the advantage of classification 

networks, it is necessary to employ a segmentation network to 

locate the damage once various types of structural damage have 

been classified. 

 

In a recent study, a cascaded network that includes a ResNet 

and a U-Net to detect cracks (Bai et al., 2020b) is proposed. A 

152-layer ResNet which meets the accuracy requirements of 

identifying scene level, material types, and damage types, is 

applied at the first step. Even the severity of structural damage 

can be quantified by it (Zha et al., 2019). U-Net has been 

utilized in the second step to mark the damage region, such as 

cracks, at various image scales. Tests on public datasets have 

shown that the cascaded network improves the accuracy of the 

detection dramatically in larger scale detection tasks (Bai et al., 

2020b). The Cascaded network, however, take a long time to 

detect the cracks. Therefore, two end-to-end networks are 

introduced, such as one of Mask R-CNN with attention 

mechanism and Path Aggregation Network (PANet), and the 

other with a new backbone called High-resolution Network 

(HRNet) (Bai et al., 2020a). Tests for crack detection have 

shown that these new models can achieve an accuracy of 75.1% 

with 2,021 labeled images for training and validation. Both of 

the networks are used as the primary methods in this paper. 

Moreover, another method named Cascade Mask R-CNN (Cai 

and Vasconcelos, 2019) is also employed here. New training 

and validation images are curated for spalling and cracks 

detection.  

 

3. METHODOLOGY 

In this section, the dataset and the network structures we utilized 

are introduced along with the final architecture used to solve the 

problem at hand. These methods are chosen here because two of 

them have a good performance in our previous study (Bai et al., 

2020).  

3.1 Data preparation and augmentation 

In training process, a dataset similar to Common Objects in 

Context (COCO) is generated from the public sites and from 

Yang et al. (2018). The images in this dataset are labeled by the 

tool referred as the COCO Annotator (Brooks, 2019), in which 

the polygons are used to define the boundaries of the cracks and 

spalling and the closed region of these polygons are the damage 

in images. Some examples from this process are shown in 

Figure 1. In these labeled images, cracks, spalling and 

background are in yellow, green and purple, respectively. Size 

of the training and labeling images varies from 147×288 to 

4600×3070. By excluding steel structures, these surface cracks 
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on structural or nonstructural materials are at various scales, and 

the reinforcements may be exposed or not in spalling cases. 

 

In order to increase the training dataset, albumentation is 

employed for data augmentation. Buslaev et al. (2020) develop 

this method with pixel-level transformation and spatial 

transformation, including flipping, rotating, cropping, etc. 

Spatial transformation is adopted to preprocess our training data 

since it can change the input images, masks and bounding boxes 

simultaneously. 

     original                 label                  original                  label 

Figure 1. Some examples of training data. 

 

3.2 Mask R-CNN with Path Aggregation Network (PANet) 

and Spatial Attention Mechanisms 

He et al. (2017) proposed Mask R-CNN for instance 

segmentation, which is an extension of Faster R-CNN. A RPN 

is inserted onto feature maps to automatically produce RoIs, 

then a small FCN is applied on each RoI to segment the instance 

of objects with masks. In addition, different depth of ResNet 

and the Feature Pyramid Network (FPN) are combined to 

extract high-quality feature maps. Since Mask R-CNN is a 

benchmark for instance segmentation in image processing, 

many improvements have been made since its publication. The 

framework of Mask R-CNN is shown in Figure 2. Liu et al. 

(2018) improved Mask R-CNN by replacing FPN with PANet 

to improve performance. Because features of low layers in the 

pyramid can reach high layers by skip-connections and a 

technique called adaptive feature pooling can fuse all levels of 

features for each proposal, their proposed method achieves a 

higher accuracy when a modified approach on mask prediction 

is adjusted. Figure 3 shows the framework of PANet, which is 

in part used in our paper. Furthermore, we also introduce spatial 

attention mechanisms as suggested by Zhu et al. (2019) into our 

approach. The goal of this study is to facilitate the backbone of 

Mask R-CNN to extract more useful features in cracks and 

spalling detection. This method is called as APANet Mask R-

CNN in this paper. 

 
Figure 2. The Mask R-CNN framework for instance 

segmentation of structural damage. 

 

3.3 Mask R-CNN with High-resolution Network 

CNN can have a number of different backbones when applied 

for segmentation problem. For example, the original Mask 

RCNN uses a 101-layer ResNet as its backbone. But Sun et al. 

(2019) developed a new network named HRNet to extract 

features from an original image. Utilizing repeated multiscale 

fusions across these convolutional blocks, this network 

maintains high-resolution representations via inter-connections 

between high- and low-resolution convolutional modules within 

a parallel 

 

Figure 3. Illustration of the framework of PANet for SDD. (a) 

FPN backbone. (b) Bottom-up path augmentation. (c) Adaptive 

feature pooling. (d) Box branch. (e) Fully-connected fusion.  Pi 

and Ni are ith of the original pyramid layers and new feature 

layers, respectively. 

structure. As shown in Figure 4, there are four stages in HRNet. 

High-resolution features are kept until the end of convolutional 

operation, and low-resolution ones are added to each new stage. 

The connection between them may be the key for better feature 

extraction. In this paper, HRNet is employed as the backbone of 

another Mask R-CNN to detect the aforementioned two types of 

structural failures, spalling and cracks. This approach is named 

as HRNet Mask R-CNN for this study. 

 

3.4 Cascade Mask R-CNN 

Cascade Mask R-CNN solves the overfitting problem when a 

larger threshold used to compute Intersection of Union (IoU) 

and disproportion of the quality over the inference and training 

when Mask R-CNNs are used (Cai and Vasconcelos, 2019). The 

stages of object detection architecture are increased from two to 

four on processing object proposals after features are extracted 

by CNN from the original input image. For a typical Mask R-

CNN shown in Figure 5, H0 is the feature proposal network to 

produce massive proposals for each ROI and H1 is the RPN for 

automatically generating accurate candidate proposals. B, C and 

S respectively denote bounding box, class score and seg-

mentation branch. Cascade Mask R-CNN increases the stages to 

combine these candidate bounding boxes in previous stage and 

features are resampled from the feature map in the next step. 

There are different strategies to insert the regression process on 

segmenting the instances, but the final mask prediction is the 

result from the single segmentation branch of Figure 5(b) and 

5(c), and from three segmentation branches of Figure 5(d). 

Thus, position of bounding boxes and class scores can be kept 

consistent and the regions of the instances can be refined to be 

more accurate. This method focuses on improving the capability 

of the detector to find better candidate bounding boxes, class 

scores and mask predictions. 

 

4. IMPLEMENTATION 

In our study, we adopt the source codes of the Mask R-CNNs 

provided in MMDetection (Chen et al., 2019). There are some 

modifications including revising part of the program and 

finetuning parameters during the training and testing. The 

augmented images are provided to the modified models to train  
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and evaluate at first. The data from Phi-Net dataset (Gao and 

Mosalam, 2020), 2017 Pohang earthquake dataset (Sim et al., 

2018) and 2017 Mexico City earthquake dataset (Purdue 

University, 2018) at various scales are used to test the 

algorithm. In the training process, the hyperparameters are set 

as: learning rate is 0.002, momentum is 0.9 and decay rate of 

weights is 0.0001. The loss function for mask is cross-entropy 

and for bounding boxes is smooth L1. The training and testing 

for the model are executed with NVIDIA GeForce GTX 2080 

Super. Total number of epochs for training each model is set to 

100. Based on testing on our own data, all above parameters are 

finally selected after we compared and optimized them.  

 

4.1 Evaluation on the proposed models 

Considering that the labeled data of our training and validation 

are similar to COCO dataset, we follow the same standard 

metrics to evaluate our models based on our validation dataset. 

The results can be show in Table 1, AP (Average Precision) is 

based on IoU, different threshold values and various scales 

provide [AP50, AP75, AP, APS, APM, APL]. 
 

Mask AP (box) is reported here. Both Cascade Mask R-CNN 

and APANet Mask R-CNN employ 101-layer ResNet as 

backbone. HRNet Mask R-CNN uses four-stage high resolution 

networks. But the APs of these Mask R-CNNs on the validation 

data are very low (see Table 1 and 2), even though they are 

close. For damage detection, it is more important to identify and 

mark the damage as many and precisely as possible for large 

image datasets. 

 

In the following tests, the criterion for a valid prediction is 

defined as at least one of the structural failures, such as spalling 

and cracks, being inside a bounding box or mask, although 

sometimes there are several bounding boxes or masks in an 

image when the threshold is low. Metrics including recall, 

precision and total accuracy are used for evaluating the 

performance of these models: 

                                       (1) 

                                 (2) 

                   (3) 

where TP and TN are true positive and negative, FP and FN are 

false positive and negative, respectively. 

 

Methods AP AP50 AP75 APS APM APL 

Cascade Mask R-CNN 7.4 21.4 3.3 4.2 13.9 6.5 

APANet Mask R-CNN  6.3 21.3 1.7 4.9 9.0 7.1 

HRNet Mask R-CNN  5.9 19.9 2.1 5.0 6.9 6.8 

Table 1. Comparison on Mask R-CNNs with Validation Data 

for Cracks. 

 

Methods AP AP50 AP75 APS APM APL 

Cascade Mask R-CNN 20.3 39.0 19.2 1.2 16.7 23.2 

APANet Mask R-CNN  13.9 33.0 10.7 0.7 12.2 16.1 

HRNet Mask R-CNN  14.7 33.3 10.8 0.2 12.3 16.9 

Table 2. Comparison on Mask R-CNNs with Validation Data 

for Spalling. 

 

4.2 Tests on Phi-Net dataset (Gao and Mosalam, 2020) 

In the dataset, the following classes are annotated for eight 

tasks: 1) scene levels; 2) damaged or undamaged states; 3) 

spalling or nonspalling; 4) material types; 5) collapse modes; 6) 

component types: including beams, columns, walls and others; 

7) damage levels; 8) damage types. Totally, 36,413 images are 

collected in this dataset, but just for training and testing with 

classification. In addition, all images are low-resolution ones 

since the image size is uniformly resized as 224×224. From 

these images, we merged Task 3 which includes spalling and 

nonspalling cases and Task 8 which collects cracks and no 

cracks scenarios into a new testing dataset. The total number of 

the dataset is 5,853. The threshold for spalling and cracks being 

detected is set as 0.2 instead of 0.5 as most studies used. Figure 

6 shows the examples of successful prediction by three Mask R-

CNNs. In these overlaid images, the bounding boxes, and masks 

of spalling and cracks are in green, purple, and yellow colors, 

respectively. These colors have the same meaning in Figures 6, 

8, 7, and 9. 

 
Figure 4. Framework of high-resolution network (HRNet). There are four stages. The 1st stage consists of high-resolution 

convolutions. The 2nd (3rd, 4th) stage repeats two-resolution (three-resolution, four-resolution). 

 

 
Figure 5. Mask R-CNN (a) vs. three Cascade Mask R-CNN strategies for instance segmentation (b)-(d). “I” is input image, “conv” is 

backbone convolutions, “pool” is region-wise feature extraction, “H” is network head, “B” is bounding box, “C” is classification, and 

“S” denotes a segmentation branch. Note that the segmentation branches do not necessarily share heads with the detection branch. 
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Methods Accuracy Recall Precision 

Cascade Mask R-CNN 78.9% 70.7% 88.7% 

APANet Mask R-CNN  81.1% 84.8% 83.8% 

HRNet Mask R-CNN  58.6% 95.5% 57.7% 

Table 3. Predictions of Mask R-CNNs on Phi-Net dataset. 

 

From Table 3, it can be observed that the accuracy of Mask R- 

CNN + HRNet is quite low, but Cascade Mask R-CNN and 

APANet Mask R-CNN is higher over this low-resolution image 

dataset. Furthermore, both of them have a very high recall and 

precision. 

 

           (a)                     (b)                          (c)                       (d) 

Figure 6. Prediction of three Mask R-CNNs for Phi-Net dataset 

(Gao and Mosalam, 2020). (a), (b), (c), and (d) denote original 

image, overlaid image of Cascade, APANet, and HRNet Mask 

R-CNN, respectively. 

 

4.3 Tests on 2017 Mexico City earthquake dataset (Purdue 

University, 2018) 

In this dataset, there are 4,136 images with two image 

resolutions, 2740×3650 and 6000×4000. All of the images are 

taken by experts at Purdue University when they conducted the 

field investigation in Mexico City after a Richter magnitude 7.1 

earthquake in 2017. Figure 7 shows some examples of correct 

prediction from our models. 

 

The accuracy of APANet Mask R-CNN is higher than the 

others, and the accuracy of other two methods is close (see 

Table 4). The recall and precision of APANet Mask R-CNN and 

HRNet Mask R-CNN are above 73.0%, but the recall of 

Cascade Mask R-CNN is low. 

 

Methods Accuracy Recall Precision 

Cascade Mask R-CNN 69.4% 45.5% 90.9% 

APANet Mask R-CNN  74.7% 70.4% 85.7% 

HRNet Mask R-CNN  69.1% 73.5% 73.4% 

Table 4. Predictions of Mask R-CNNs on 2017 Mexico City 

earthquake dataset. 

 

4.4 Tests on 2017 Pohang earthquake dataset (Sim et al., 

2018) 

In this dataset, a research group supported by the American 

Concrete Institute (ACI) collected images during their 

inspection after an earthquake with the Richter magnitude of 5.2 

happened in Pohang of South Korea in 2017. The total number 

of images used for testing is 4,109, and their resolutions are 

2600×3890 and 5180×3460. Some examples of good predic-

tions are shown in Figure 8. The accuracy, recall and precision 

of three models are shown in Table 5.  

 
           (a)                     (b)                          (c)                       (d) 

Figure 7. Prediction of three Mask R-CNNs for 2017 Mexico 

City earthquake dataset (Purdue University, 2018). (a), (b), (c), 

and (d) denote original image, overlaid image of Cascade, 

APANet, and HRNet Mask R-CNN, respectively. 

 

Methods Accuracy Recall Precision 

Cascade Mask R-CNN 66.0% 37.3% 91.8% 

APANet Mask R-CNN  67.6% 57.6% 79.3% 

HRNet Mask R-CNN  68.1% 67.0% 75.6% 

Table 5. Predictions of Mask R-CNNs on 2017 Pohang 

earthquake dataset. 

In Table 5, the accuracy of these three models is close to each 

other. Cascade Mask R-CNN have the highest precision. but its 

recall is quite low. The precision for APANet Mask R-CNN is 

also higher than HRNet Mask R-CNN while its recall is lower 

than the later in this dataset. 

 

4.5 Failure cases 

It should be noted that these models have been distracted by the 

crack-like or spalling-like objects during the tests. The major 

reason is that the training data are insufficient to cover all kinds 

of scenes when spalling and cracks appeared on the structures or 

its components are captured by the cameras. It is also a common 

problem for training and testing deep learning methods of 

instance segmentation. Some examples of wrong prediction for 
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these three public datasets are shown in Figure 9. We associate 

the distractions as these: 1) wires or cables; 2) trees; 3) fences; 

4) shadow; 5) edges of windows, buildings or other artifact 

objects. 

 
           (a)               (b)                          (c)                       (d) 

Figure 8. Prediction of three Mask R-CNNs for 2017 Pohang 

earthquake dataset (Sim et al., 2018). (a), (b), (c), and (d) denote 

original image, overlaid image of Cascade, APANet, and 

HRNet Mask R-CNN, respectively. 

 

5. DISCUSSION 

With an aim to find an end-to-end framework to detect cracks 

and spalling automatically and accurately, three Mask R-CNNs 

have been evaluated on three different public image datasets 

collected in different extreme events. In our analysis, the 

followings are observed: 

 

1) Low resolution is commonly used with high-speed cameras 

whereas high resolution is standard for lower fps but high- 

quality data collection. Our testing results show that APANet 

Mask R-CNN can be a robust model to detect cracks and 

spalling with low- or high-definition images. 

 

2) The scale of the scene in the image is also another important 

factor affecting the success rate to detect the structural damage, 

namely spalling and cracks. The models have higher accuracy 

when the cameras are closer to the damage, but they fail when 

the damage, especially cracks, are viewed from far and become 

invisible if the camera and the damage are so distant. In 

addition, the false predictions are very common when there are 

many crack-like or spalling-like objects at large scales. It may 

be solved through collecting more similar images and labelling 

them for training. 

 

3) Compared to low resolution, implementation of these models 

takes longer time on high-resolution images. This is due to the 

increase in the number of pixel-wise processes with an increase 

1) Phi-Net datasets 

 

2) 2017 Mexico City earthquake dataset 

 

3) 2017 Pohang earthquake dataset 

 
           (a)               (b)                          (c)                       (d) 

Figure 9. Some examples of wrong predictions of three Mask 

R-CNNs for three public datasets. (a), (b), (c), and (d) denote 

original image, overlaid image of Cascade, APANet, and 

HRNet Mask R-CNN, respectively. 

 

in image size. We also found out that the masks of the models 

do not exactly fit the shapes and positions of these two types of 

structural damage in some cases. Furthermore, not every piece 

of cracks or spalling is marked separately. Exploring solutions 

for this problem is a future task. 

 

4) This paper is a good showcase to apply the latest instance 

segmentation networks on detecting SDD for field inves-

tigations. 

 

6. CONCLUSIONS 

In this study, we tested three different Mask R-CNN 

architectures for detecting and segmenting cracks and spalling. 

Our goal is to show that these frameworks can be used as an 

end-to-end solution for the task independent of damage scales 

or image resolutions, which cause issues for instance 

segmentation of structural damage like cracks and spalling. 

Although the damage to the buildings and bridges in affected 
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regions vary significantly in extreme events, the APANet Mask 

R-CNN was shown to achieve an accuracy above 67.6% for 

automatically detecting spalling and cracks on concrete and 

masonry structures. In the future, a more comprehensive dataset 

for better training will be made to quantify the damage and 

detect more types of structural failures while increasing the 

accuracy and precision of the damage position and boundary.  

 

The link for the training and validation data of this study is here: 

https://github.com/OSUPCVLab/CrSpEE. 
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