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ABSTRACT:

The ability to identify erroneous depth estimates is of fundamental interest. Information regarding the aleatoric uncertainty of depth
estimates can be, for example, used to support the process of depth reconstruction itself. Consequently, various methods for the
estimation of aleatoric uncertainty in the context of dense stereo matching have been presented in recent years, with deep learning-
based approaches being particularly popular. Among these deep learning-based methods, probabilistic strategies are increasingly
attracting interest, because the estimated uncertainty can be quantified in pixels or in metric units due to the consideration of
real error distributions. However, existing probabilistic methods usually assume a unimodal distribution to describe the error
distribution while simply neglecting cases in real-world scenarios that could violate this assumption. To overcome this limitation, we
propose two novel mixed probability models consisting of Laplacian and Uniform distributions for the task of aleatoric uncertainty
estimation. In this way, we explicitly address commonly challenging regions in the context of dense stereo matching and outlier
measurements, respectively. To allow a fair comparison, we adapt a common neural network architecture to investigate the effects
of the different uncertainty models. In an extensive evaluation using two datasets and two common dense stereo matching methods,
the proposed methods demonstrate state-of-the-art accuracy.

1. INTRODUCTION

Depth estimation from images, i.e., reconstructing the per-pixel
distance between a scene and a camera, is a classical task in
photogrammetry as well as in computer vision. It has many ap-
plications in practice, including fields of autonomous vehicles
and UAVs. It also serves as a foundation to support other photo-
grammetric computer vision problems, such as 3D reconstruc-
tion and object detection. As a central step of depth estima-
tion in any photogrammetric 3D reconstruction, the core task of
dense stereo matching is the determination of pixel correspond-
ences for all pixels in an image pair. It is challenging to achieve
this objective robustly in real-world scenarios due to a variety of
problems, such as occlusions, thin structures and large weakly
textured areas, e.g. in the sky or caused by over-exposure. Con-
sequently, the accuracy of the estimated depth information may
be affected, making it crucial to be able to assess how trust-
worthy this information is.

To address the task of uncertainty quantification in the context
of dense stereo matching, in this work, we focus on the estim-
ation of aleatoric uncertainty. From the perspective of dense
stereo matching, aleatoric uncertainty accounts for effects such
as sensor noise, occlusion, depth discontinuities and match-
ing ambiguities caused by texture-less areas or repetitive pat-
terns (Mehltretter and Heipke, 2021). In the literature, a variety
of different deep learning-based approaches to estimate aleat-
oric uncertainty have been proposed in recent years demonstrat-
ing convincing results. Among them, two types of strategies are
especially popular: confidence-based and probabilistic-based.
Confidence-based methods predict a score between zero and
one for each pixel, which indicates the trust that is put in a
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pixel’s depth estimate and can be learned as a binary class prob-
ability of a depth estimate being correct or incorrect (Hu and
Mordohai, 2012). In contrast, probabilistic methods assume a
certain probability distribution for aleatoric uncertainty which
is optimised during training maximising the likelihood (Kend-
all and Gal, 2017). While this approach requires more detailed
knowledge on the real error distribution, contrary to the concept
of confidence-based methods, it allows to additionally quantify
the uncertainty in pixels or in metric units. These probabilistic
methods usually assume a unimodal distribution, considering
the error distribution as a Gaussian (Kendall and Gal, 2017) or
a Laplacian distribution (Mehltretter and Heipke, 2021). How-
ever, this is not always the case in the context of dense stereo
matching and does especially not account for outlier measure-
ments or commonly challenging regions, such as texture-less
regions, occlusions and depth discontinuities.

To overcome these limitations, we propose two novel mixed
probability models for aleatoric uncertainty estimation, using
different combinations of a Laplacian and a Uniform distribu-
tions under varying assumptions. We evaluate our proposed
methods together with the state-of-the-art probabilistic aleatoric
uncertainty model, i.e., Laplacian model, on two different data-
sets, containing outdoor and indoor scenes, respectively. For
a fair comparison, the Cost Volume Analysis Network (CVA-
Net) (Mehltretter and Heipke, 2021) is adapted to investigate
the differences and effects of these three uncertainty models.
Thus, the main contributions of this work are:

• A geometry-aware probabilistic aleatoric uncertainty
model that explicitly models regions that are challenging
in the context of dense stereo matching.

• A mixture probabilistic aleatoric uncertainty model expli-
citly considering outlier measurements.
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• An adaption of the CVA-Net architecture for the proposed
uncertainty models. In addition, the network architecture
is optimised to accelerate the training procedure.

2. RELATED WORK

As the ability to reliably detect failures of a stereo algorithm
is fundamental, many approaches have been proposed in re-
cent years to estimate the uncertainty of disparity assignments.
At first, hand-crafted metrics were designed to quantify aleat-
oric uncertainty, such as Peak Ratio (PKR), which is designed
based on the properties of the cost curve, and Left Right Dif-
ference (LRD), which considers the consistency between the
left and the right disparity maps. A good overview of the com-
monly used hand-crafted metrics is given in (Hu and Mordohai,
2012). Similar to other computer vision fields, more and more
approaches based on deep learning (Poggi and Mattoccia, 2016;
Mehltretter and Heipke, 2019; Kendall and Gal, 2017) and other
machine learning techniques (Sun et al., 2017; Batsos et al.,
2018) have been proposed in the literature. While a majority
of these deep learning-based uncertainty estimation methods,
operate on extracted patches from disparity maps only (Poggi
and Mattoccia, 2016) or additionally take the RGB reference
image into account (Fu et al., 2019), Mehltretter and Heipke
(2019) utilise the information contained in the 3D cost volume.
Such a cost volume is an intermediate representation present in
most dense stereo matching algorithms which typically contains
additional information compared to disparity maps. Benefiting
from this additional information, cost volume-based approaches
have demonstrated to allow a more accurate estimation of the
uncertainty.

While plenty of literature exists focusing on various types of
features, modelling the aleatoric uncertainty has received sig-
nificantly less attention. Among these uncertainty estimation
methods, the confidence-based strategy is most popular (Fu et
al., 2019; Tosi et al., 2018). Driven by the fact that, in contrast
to depth, ground truth is typically not available for the asso-
ciated uncertainty in the form of the type and parameters of a
particular distribution, uncertainty prediction has to be learned
implicitly by assuming a specific uncertainty model. For this
purpose, confidence-based methods predict a score per pixel
between zero and one, representing the trust on the correspond-
ing depth estimate, and thus, can be learned as a binary class
probability of a depth estimate being correct or incorrect. An-
other strategy for aleatoric uncertainty estimation that recently
has received increasing attention is the probabilistic one. In
contrast to confidence-based methods, probabilistic methods
assume a probabilistic model, commonly in form of a certain
probability distribution, for the aleatoric uncertainty (Kendall
and Gal, 2017; Mehltretter and Heipke, 2021). In this con-
text, the depth and the associated uncertainty are considered as
the mean and variance (or standard deviation) of the presumed
model, respectively. With the reference depth being used as
observation, these models can be trained with the objective of
maximising the likelihood. Since this approach is based on the
real error distribution, the uncertainty can be additionally quan-
tified in pixels or in metric units.

In all of these probabilistic methods, only a unimodal distri-
bution is used to model the aleatoric uncertainty, considering
the error distribution as a Gaussian (Kendall and Gal, 2017)
or a Laplacian distribution (Poggi et al., 2020; Mehltretter and
Heipke, 2021). However, this is not always the case in the con-
text of dense stereo matching, especially in real-world scenarios

this assumption is violated by outlier measurements or by com-
monly challenging regions, such as occlusion, texture-less re-
gions and depth discontinuities. Simply neglecting these cases
leads to an over-simplification that may reduce the accuracy of
the estimated aleatoric uncertainty.

3. METHODOLOGY

To adjust the probabilistic strategy of aleatoric uncertainty es-
timation in the context of dense stereo matching to better fit
to the characteristics of real-world scenarios, we propose two
novel uncertainty models based on two different assumptions,
which are discussed in detail in Section 3.2. For the purpose
of a fair comparison of different uncertainty models, i.e. avoid-
ing the impacts coming from the disparity estimation process or
different network architectures used to carry out the task of un-
certainty prediction, we test all variants using the same neural
network architecture, which focuses only on the uncertainty es-
timation process. In detail, this architecture (briefly outlined in
Section 3.1) utilises cost volumes as input, which are the result
of the cost computation step of an arbitrary dense stereo match-
ing approach carried out on an epipolar rectified image pair.

3.1 Basic Architecture

Showing convincing results for the task of aleatoric uncertainty
estimation in (Mehltretter and Heipke, 2019, 2021), the archi-
tecture of the Cost Volume Analysis Network (CVA-Net) is util-
ised to evaluate our subsequently proposed probabilistic uncer-
tainty models. This network consists of three major processing
steps: First, a three-dimensional cost volume extract is merged
to a single 1D feature vector, using 3D convolutional layers.
To keep a good trade-off between the amount of information
available to the network and the degree of smoothing within the
resulting uncertainty map, we follow (Mehltretter and Heipke,
2021), setting the size of such extract to 13×13×192. In the
second step, the resulting 1D feature vector is further processed
using 3D convolutional layers to derive high-level features char-
acterising the cost volume extract. Based on the extracted fea-
tures, two fully-connected layers, which are implemented in a
convolutional manner, are then utilised to predict an uncertainty
value in the last step.

While CVA-Net demonstrates convincing results, the usage of
3D instead of 2D convolutional layers leads to a significantly
higher computational effort, decelerating the training process
greatly. To mitigate this effect while maintaining comparable
results, the kernel size of the 3D convolutional filters in the
first part is changed from 3×3×3 to 5×5×5. In this way, the
amount of necessary floating point operations (FLOPs) in the
forward pass of the network is reduced by about 20%. Due to
the decrease of the FLOPs and the number of sequential layers
in the first part, the training procedure of the modified network
is accelerated by about 60%. After observing comparable or
in some cases even superior results, the first fully-connected
layer is substituted by a global average pooling layer (Lin et
al., 2014). In such a way, the number of trainable paramet-
ers from the original fully-connected layer can be reduced and
consequently, the potential of over-fitting to the training data is
reduced. A detailed layer-by-layer definition of the modified
architecture can be found in Table 1.

3.2 Probabilistic Uncertainty Models

Disparity estimation from stereo images is commonly learned
in a supervised manner. However, reference data for the asso-
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Layer Description Output Tensor
Dimensions

Input Cost Volume Extract 13×13×192
Neighbourhood Fusion

1 3D conv., 5×5×5, 32 filters 9×9×188
2 3D conv., 5×5×5, 32 filters 5×5×184
3 3D conv., 5×5×5, 32 filters 1×1×180

Depth Processing
4 3D conv., 1×1×8, 32 filters, zero pad. 1×1×180
5 3D conv., 1×1×16, 32 filters, zero pad. 1×1×180
6 3D conv., 1×1×32, 32 filters, zero pad. 1×1×180
7-13 3D conv., 1×1×64, 32 filters, zero pad. 1×1×180

Uncertainty Estimation
14 Global average pooling, linear act., no BN 1×1×32
15 3D conv., 1×1×1, 1 filter, linear act., no BN 1×1×1

Table 1. Summary of the modified CVA-Net architecture. Un-
less otherwise specified, each layer is followed by batch norm-
alisation (BN) and a ReLU non-linearity. (Adapted from (Mehl-
tretter and Heipke, 2021).)

ciated uncertainty, i.e. type and parameterisation of a particular
probability distribution, is typically not available. Neverthe-
less, to be able to learn the task of uncertainty estimation, it
is common to assume a specific uncertainty model, allowing
to implicitly learn uncertainty from the deviations between es-
timated and ground truth disparity. First, the Laplacian model,
considering the real error to be unimodally distributed, is re-
viewed in Section 3.2.1, before two novel probabilistic models
are proposed in Sections 3.2.2 and 3.2.3, taking challenging re-
gions of real-world scenarios and outlier measurements expli-
citly into account. Besides different loss functions, also minor
adjustments of the final network layer may be necessary to al-
low the prediction of varying numbers and types of values used
to parameterise these uncertainty models, explained in detail in
the respective paragraphs.

3.2.1 Laplacian Model Under the assumption that the un-
certainty contained in the data can be described with a spe-
cific probability distribution, the parameters of this distribution
can be inferred by maximising the likelihood (Kendall and Gal,
2017). Similar to (Mehltretter and Heipke, 2021), we consider
the disparity d estimated in advance and the predicted aleatoric
uncertainty σ as the mean and standard deviation used to para-
meterise a Laplacian distribution. In this context, the ground
truth disparity d̂ is used as observation. In this way, aleatoric
uncertainty can be learned without the need for a reference of
the uncertainty. By formulating the objective of this method as
the negative log likelihood of the Laplacian distribution as,

− log p(d̂i | di) ∝
√
2

σi
|di − d̂i|+ log(σi), (1)

we enable the use of optimisation techniques commonly em-
ployed to train neural networks. To make the training proced-
ure numerically more stable and to prevent the loss function
from being divided by zero, s = log(σ) is substituted in the
loss function to predict the log standard deviation, as proposed
by Kendall and Gal (2017). Finally, the loss function of the
Laplacian model is defined as:

LLaplacian =
1

N

N∑
i=1

√
2

exp(si)
|di − d̂i|+ si, (2)

where N is the number of training samples with known ground
truth disparity.
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Figure 1. Illustration of the underlying assumptions of the
proposed geometry-aware model. On the left, the right image
of a stereo pair with a correct point match in a texture-less region
and matching area in an occlued region are shown in blue and
green, respectively. The considered search space is highlighted
in red. On the right, the corresponding probability distributions
over the considered disparity range are shown. The histograms
of the two cases, shown in blue and green, are approximated by
Uniform distributions, shown in red and black.

This model has already proven its suitability in the context
of aleatoric uncertainty estimation for dense stereo match-
ing (Mehltretter and Heipke, 2021) and will therefore be used
as baseline in this work.

3.2.2 Geometry-aware Model The previously described
variant models the uncertainty contained in the data using a
Laplacian distribution. Assuming a unimodal error distribution
for each pixel, the mode of such a distribution is designed to
match with a unique and distinct global minimum in the corres-
ponding cost curve over the whole disparity range. However,
this assumption is often not valid for all pixels in an image, due
to the geometry or appearance of the depicted scene.

In the context of dense stereo matching, a commonly challen-
ging scenario is the presence of texture-less regions. A typical
behaviour for pixel in such non- or weakly textured regions is
the occurrence of a wide and flat minimum in the cost curve,
causing a wide and flat maximum in the corresponding prob-
ability density function. This maximum can be described by a
range of (almost) uniform probability with a length correspond-
ing to the width of the non-textured region (cf. Fig. 1). Similar
to texture-less regions, also pixels in occluded regions, where
some parts of a scene are not visible in one of the images of
a stereo pair, may cause deviations from the assumption of a
unimodal probability density function. Because pixels in these
regions do not have a correspondence, occluded pixels are often
characterised by the absence of a distinct global minimum, but
multiple local minima within an individual disparity interval in
the corresponding cost curve. To better quantify the associated
uncertainty for these pixels, such a disparity interval should be
kept as tight as possible, containing only pixels which belong
to the same object as the occluded one (cf. Fig. 1). In this
work, we assume that all disparities in such an interval have the
same probability to be correct. Note that this is a strong sim-
plification, since a uniform probability density function can not
represent such local minima of a cost curve properly. To over-
come this limitation, a multimodal probability density function,
for example, described as Gaussian mixture model, would need
to be employed to describe the characteristics contained in these
regions. However, this is beyond the scope of the present work
and is subject of further investigations.

As both, texture-less and occluded regions, are assumed to
be uniformly distributed in specific intervals in the probabil-
ity density function, a Laplacian distribution is not sufficient
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to model the uncertainty in these areas. Consequently, we use a
Uniform distribution with a predictive interval in our geometry-
aware variant to model the uncertainty in these “hard” regions.
Equal to the Laplacian variant described in Section 3.2.1, we
consider the estimated disparity d as the mean of a Laplacian
distribution and as the centre of an interval with Uniform dis-
tribution, respectively. To achieve maximal probability, the
ground truth disparity d̂ needs to be included in the interval
[d− r, d+ r], where r denotes the half interval length, without
motivating the network to predict unreasonable large intervals.
Thus, we maximise the likelihood with respect to the ground
truth disparity d̂ in these “hard” regions, by minimising the dif-
ference between the predictive half interval length r and the
absolute error of disparity estimation |d− d̂|.

Considering the relationship r =
√
3σ between the half inter-

val length r and the standard deviation σ of a Uniform distri-
bution, we use the Huber loss (Huber, 1981), which combines
the advantages of L1-loss (steady gradients for large values x)
and L2-loss (less oscillation during updates when x is small),
to state the optimisation objective for the “hard” regions:

LU =

{
0.5x2 if |x| ≤ γ
γ|x| − 0.5γ2 otherwise,

(3)

in which x = |di − d̂i| −
√
3σi. In this work, we set γ to 1, as

commonly done in the literature (Mangasarian and Musicant,
2000; Girshick, 2015).

The cost curves of pixels located in none of the previously men-
tioned regions are usually characterised by a distinct global
minimum. This allows to reliably determine the correct pixel
correspondence in most cases and thus leads to a lower un-
certainty. Consequently, equal to the first variant, we use the
Laplacian distribution to describe the uncertainty for pixels loc-
ated in these “good” regions:

LL =

√
2

exp(si)
|di − d̂i|+ si. (4)

For the purpose of consistency, we also substitute s = log(σ)
for the objective of “hard” regions, so that our network is
trained to predict the log standard deviation for both types of
regions and probability distributions. We therefore define the
loss function of the geometry-aware variant as:

LGeometry =
1

N

N∑
i=1

ĉi · LL + (1− ĉi) · LU , (5)

where ĉ denotes a binary parameter that is computed accord-
ing to (Scharstein and Szeliski, 2002) and discussed in detail in
Section 4.2. A pixel i gets assigned ĉi = 1 if it is located in a
“good” region and 0 otherwise.

As the model described by Equation 5 does not learn to expli-
citly predict the type of region a pixel is assigned to, the ground
truth region mask ĉ would be required in the test phase to allow
a proper interpretation of the predicted uncertainty. However,
because the determination of occluded regions requires ground
truth disparities, the model in its current form is not applicable
to real-world applications. To overcome this limitation, we ex-
tend the loss function with a binary cross-entropy term H(c, ĉ),
allowing the model to also learn the prediction of the region
mask c. Thus, the loss function of the real-world applicable

geometry-aware variant becomes:

LGeometry* =
1

N

N∑
i=1

ĉi · LL + (1− ĉi) · LU +H(ci, ĉi), (6)

H(ci, ĉi) = −ĉi · log(ci)− (1− ĉi) · log(1− ci). (7)

3.2.3 Mixture Model While commonly challenging re-
gions in the context of dense stereo matching are explicitly ad-
dressed in our geometry-aware model, we treat aleatoric un-
certainty from the perspective of measurement reliability in our
mixture model presented in this section. According to Vogiatzis
and Hernandez (2011) and Pizzoli et al. (2014), a depth sensor
produces two types of measurement: (1) a good measurement
that is unimodally distributed around the correct depth or (2) an
outlier measurement that is drawn from a Uniform distribution
defined on a certain interval. Similar to the geometry-aware
model (see Sec. 3.2.2), we assume a Laplacian distribution for
good measurements and a Uniform distribution with a predict-
ive interval for outlier measurements. Thus, from the perspect-
ive of measurement reliability, aleatoric uncertainty can be de-
scribed as a mixture of a Laplacian and a Uniform distribution
assigned a probability α and 1− α, respectively.

Using the same optimisation objectives for both types of dis-
tributions as in Section 3.2.2, the loss function of our mixture
model is defined as:

LMixture =
1

N

N∑
i=1

αi · LL + (1− αi) · LU , (8)

where the inlier probability α is predicted by the network, to-
gether with the log standard deviations of the Laplacian dis-
tribution sL and the Uniform distribution sU . The number of
output nodes in the network architecture is therefore increased
to three in this variant. To impose positive values and to ensure
that the inlier and outlier probabilities sum up to one, a softmax
transformation is applied to the α-node.

In summary, this variant can be viewed as an extension of our
geometry-aware model. In case that the inlier probability α is
predicted as 1 and 0 for “good” and “hard” regions respectively,
both variants are equal (cf. Eq. 5 and Eq. 8). However, due to
the differences between the binary region parameter c in the
geometry-aware model and the inlier probability α in the mix-
ture model, the meaning of both variants is rather different.

4. EXPERIMENTAL SETUP

In order to investigate the influence of the different uncertainty
models (cf. Sec. 3.2), we train and evaluate these three models
on three different datasets (discussed in detail in Section 4.1) as
well as on cost volumes computed by two popular stereo match-
ing methods: Census-based block matching (with a support re-
gion size of 5×5) (Zabih and Woodfill, 1994) and MC-CNN
fast (Zbontar et al., 2016). For the evaluation, we use two met-
rics that are described in Section 4.4. To allow a fair compar-
ison, all examined methods have been trained on the same data
using the same network architecture, following the procedure
described in Section 4.3.

4.1 Datasets

In this work, three datasets, namely KITTI 2012 (Geiger et al.,
2012), KITTI 2015 (Menze and Geiger, 2015) and Middlebury
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v3 (Scharstein et al., 2014) are used for the experiments. The
KITTI datasets consist of challenging and varied road scenes
captured from a moving vehicle. Ground truth disparity maps
for training and evaluation are obtained from LIDAR data with
disparities for about 30% of the pixels. In contrast to the KITTI
datasets, the Middlebury dataset contains 15 image pairs show-
ing various indoor scenes captured with a static stereo set-up
and provides dense and highly accurate ground truth disparity
maps based on structured light.

4.2 Binary Region Masks

For the training procedure of the geometry-aware uncertainty
model discussed in Section 3.2.2, binary region masks are
needed, which indicate with 1 and 0, respectively, whether a
pixel is located in a “good” or a “hard” region. Since the ground
truth disparity maps of the KITTI datasets are not dense, masks
for depth discontinuities cannot be computed accurately. In this
work, we therefore consider texture-less regions and occluded
areas as “hard” regions with the following definitions:

• Texture-less regions: regions in which the squared hori-
zontal intensity gradient averaged over a 3×3 window is
smaller than 4.0 (Scharstein and Szeliski, 2002).

• Occluded areas: occlusion can be determined from ground
truth disparity maps directly, but the corresponding masks
are also already provided as part of all three datasets.

Pixels located in none of these two types of “hard” regions are
in turn labelled as “good”.

4.3 Training Procedure

Following the description in (Mehltretter and Heipke, 2021), we
train the three uncertainty models on the first 20 training image
pairs of the KITTI 2012 dataset (Geiger et al., 2012) and use
three additional image pairs for validation. As input for the net-
work, tensors of size 13×13×192 are extracted from normal-
ised cost volumes corresponding to the left image of each pair.
The values contained in these cost volumes are normalised to
[0, 1] using min-max normalisation. Every extract is centred on
a pixel with available ground truth disparity. 128 of such ex-
tracts are bundled to one mini-batch and fed to the network per
forward pass during training.

We initialise the convolutional layers with normal distributions
N (0, 0.0025) and use the Adam optimiser (Kingma and Ba,
2015) with its parameters set to their default values. The
learning rate is set to 10−4. To enforce generalisation, dro-
pout (Srivastava et al., 2014) is applied to the global average
pooling layer (layer 14, cf. Tab. 1) with a rate of 0.5. The train-
ing procedure is stopped, if the validation loss did not decrease
in three consecutive epochs and the weights showing the lowest
validation loss are used for testing. Thus, we trained the mod-
ified CVA-Net for 20, 17 and 19 epochs for the Laplacian, the
geometry-aware 1 and the mixture model, respectively.

4.4 Metrics

The first metric we use to evaluate the methodology presented
in this paper, is the Area Under the Curve (AUC), originally

1 If not otherwise specified, in this paper the term geometry-aware model
refers to the model predicting uncertainty only.

proposed by Hu and Mordohai (2012) to evaluate different con-
fidence estimation methods. In this context, a Receiver Oper-
ating Characteristic (ROC) curve, for which the AUC is com-
puted, represents the error rate as a function of the percentage
of pixels sampled from a disparity map in order of increasing
uncertainty. The error rate is defined as the percentage of pixels
with a disparity error smaller than 3 pixels or 5% of the ground
truth disparities (Menze and Geiger, 2015). The optimal AUC
depends only on the overall error ε of a disparity map:

AUCopt =

∫ 1

1−ε

p− (1− ε)
p

dp

= ε+ (1− ε)ln(1− ε),
(9)

where p is the percentage of pixels sampled from a disparity
map. The closer the AUC of an uncertainty map gets to the
optimal value, the higher the accuracy.

The downside of the AUC metric is that it only considers the
ratio of correct disparity estimates and the relative order of the
estimated uncertainty values, while it simply neglects the ac-
tual magnitude of the estimated uncertainty and thus also the
relation between this estimates and the real disparity error. To
overcome this limitation, we therefore use the correlation coef-
ficient between the absolute disparity error and the estimated
uncertainty as an additional metric to evaluate the uncertainty
models discussed. The higher the correlation, the better the un-
certainty can be quantified.

4.5 Evaluation Procedure

To ensure a clear separation of training and test data, we evalu-
ate the three uncertainty models, which are trained on the KITTI
2012 dataset, on the KITTI 2015 and Middlebury v3 datasets.
According to (Mehltretter and Heipke, 2021), the depth of the
input cost volume for the network is set to 192 pixels and the
image resolution is halved during testing, as long as the max-
imum disparity exceeds 192. Thus, the cost volumes of the
Middlebury dataset correspond to images with one quarter of
the original resolution, whereas on the KITTI 2015 dataset,
cost volumes correspond to images in the original resolution.
Moreover, since the geometry-aware model assumes different
uncertainty models for “good” and “hard” regions within a
scene, respectively, we distinguish between these two types of
regions in our complete evaluation to allow a fair comparison.

5. RESULTS

In this section, the results of two different sets of experiments
are analysed and discussed. First, we investigate the applicab-
ility and compare the two variants of the proposed geometry-
aware model introduced in Section 3.2.2. Subsequently, the
ideal geometry-aware variant, i.e. the geometry-aware model
with “perfect” region assignments, and the proposed mixture
variant are compared against the state-of-the-art Laplacian vari-
ant in Section 5.2, in order to verify the validity of the proposed
uncertainty models.

5.1 Analysis of the Geometry-aware Approach

To verify the applicability of the geometry-aware approach in
real-world applications, the variant with region mask prediction
is first compared with the ideal variant, which has “perfect” re-
gion assignments for all pixels, using the correlation coefficient.
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Correlation
coefficient

Geometry Geometry*
good hard good hard

KITTI 2015 Menze and Geiger (2015)
Census-BM 0.84 0.80 0.83 0.80
MC-CNN 0.73 0.73 0.69 0.72

Middlebury v3 Scharstein et al. (2014)
Census-BM 0.82 0.81 0.79 0.78
MC-CNN 0.71 0.78 0.70 0.75

Table 2. Comparison of the two variants of the proposed
geometry-aware model based on the correlation coefficient.
The model marked with an asterisk jointly predicts an uncertainty
map and a region mask, whereas the second variant predicts un-
certainty values only. The results are based on the first 100 im-
ages of the KITTI 2015 dataset and all images of the Middlebury
v3 dataset, except for the configuration MC-CNN + Middlebury
v3. Due to a noticeable domain gap for this configuration, we
fine-tune the network on the first 4 images and test on the last 10
images of the Middlebury v3 dataset.

As shown in Table 2, the variant with region mask prediction
(marked with an asterisk) shows a slight deterioration of the
uncertainty quantification, but the results are still comparable
to those of the ideal variant. These differences are probably due
to the increased complexity of the learning task caused by the
additional consideration of the cross-entropy term in the loss
function.

For a further investigation, the region masks predicted by the
variant marked with an asterisk are evaluated using the over-
all accuracy (ACC), the true positive rate (TPR) and the true
negative rate (TNR), with TPR and TNR describing the pro-
portions of pixels that are correctly assigned to the “good” and
“hard” regions, respectively. As shown in Table 3, the propor-
tion of correctly assigned pixels is clearly higher in “good” re-
gions than in “hard” ones in almost all configurations evaluated.
Due to a noticeable domain gap for the configuration MC-CNN
+ Middlebury v3, the network is fine-tuned (see Tab. 2 for de-
tails) resulting in a TNR higher than the TPR for this configur-
ation. This effect is probably caused by the higher percentage
of “hard” samples in the Middlebury v3 dataset compared to
the KITTI 2012 dataset, which is used to train all other vari-
ants and in which the majority of pixels are assigned to “good”
regions. Consequently, the region mask prediction seems to
be very sensitive to the imbalanced occurrence of classes in
the training data. Addressing this class imbalance problem, a
weighted cross-entropy term could be utilised to prevent the
network from learning to preferably predict the more frequent
class. Moreover, because the computation of the texture-less re-
gion masks is solely based on the stereo images which are also
available during testing, these masks can be computed before-
hand and do not need to be predicted by the network. Con-
sequently, the region classification would be reduced to the
identification of occluded pixels, which simplifies the learn-
ing task. Together with the prior knowledge with respect to
the texture-less regions, the overall accuracy of the mask pre-
diction is expected to be further improved. To conclude, the
geometry-aware approach has shown its potential and applicab-
ility to real-world applications. However, further investigations
are required that will be carried out in future work.

5.2 Uncertainty Model Evaluation

To verify the validity of the approaches proposed earlier in this
work (see Sec. 3.2), the ideal geometry-aware and the mixture

[%] KITTI 2015 Middlebury v3
ACC TPR TNR ACC TPR TNR

Census-BM 80.69 89.94 59.26 74.99 89.92 62.85
MC-CNN 84.07 91.10 67.78 78.34 69.09 85.85

Table 3. Accuracy (ACC), true positive rate (TPR) and true
negative rate (TNR) of the region mask predictions of the
real-world applicable geometry-aware model. The TPR and
TNR measure the proportions of pixels that are correctly assigned
to the “good” and “hard” regions, respectively. For details on the
evaluation procedure, please refer to Table 2.
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(b) ROC curves for “hard” regions

Figure 2. ROC curves for the first 100 images of the KITTI
2015 dataset and Census-based block matching. The closer
the curve of an uncertainty model reaches the optimal curve, the
higher the accuracy. The areas under these curves correspond to
the AUC values in Table 4a.

variant are first analysed along with the state-of-the-art Lapla-
cian variant with respect to the AUC metric (see Sec. 4.4). As
shown in Table 4a, the AUC values of “hard” regions are always
significantly larger than the values of “good” regions, indicating
the higher error rate of “hard” regions, which can also be seen
in the ROC curves (cf. Fig. 2). This observation confirms that
these “hard” regions are especially challenging for dense stereo
matching procedures, which is the fundamental motivation for
our geometry-aware uncertainty model that explicitly accounts
for these regions. On the other hand, the differences among
the three uncertainty models with respect to the AUC values
shown in Table 4a are not distinct. On all evaluated combina-
tions of disparity methods and datasets the results of the three
models are relatively similar. While the same can be observed
in Figure 2, it can also be seen that our geometry-aware model
performs slightly better in detecting erroneous depth estimates
in the region of medium density and a bit worse in the region of
low density compared to the Laplacian baseline.

As already mentioned in Section 4.4, the AUC metric neglects
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avg. AUC Opt. Laplacian Geometry Mixture
= 10−2× good hard good hard good hard good hard

KITTI 2015 Menze and Geiger (2015)
Census-BM 5.69 22.13 7.94 28.05 7.92 27.83 8.10 27.96
MC-CNN 1.06 7.19 2.19 10.35 2.40 11.04 2.27 10.27

Middlebury v3 Scharstein et al. (2014)
Census-BM 1.66 14.26 3.38 18.70 3.68 18.89 3.70 18.87
MC-CNN 0.51 8.94 1.51 12.03 1.44 11.59 1.36 12.09

(a) AUC comparison. The values represent the AUC×10−2, whereas the
smaller the values, the better, while Opt. is the best achievable value (cf.
Sec. 4.4).

Correlation
coefficient

Laplacian Geometry Mixture
good hard good hard good hard

KITTI 2015 Menze and Geiger (2015)
Census-BM 0.74 0.72 0.84 0.80 0.78 0.77
MC-CNN 0.70 0.70 0.73 0.73 0.71 0.70

Middlebury v3 Scharstein et al. (2014)
Census-BM 0.73 0.71 0.82 0.81 0.79 0.79
MC-CNN 0.68 0.71 0.71 0.78 0.70 0.74

(b) Correlation coefficient comparison, measuring the
correlation between the absolute disparity error and the
estimated uncertainty. The bigger the values, the better.

Table 4. Comparison of the three uncertainty models. For details on the evaluation procedure, please refer to Table 2. While the
three uncertainty models have only minor differences based on the AUC metric, the proposed geometry-aware model exceeds other
models by a wide margin considering the correlation coefficient metric.
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(a) Laplacian model
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(c) Mixture model

Figure 3. Absolute error uncertainty relation. The results are based on the first 100 images of the KITTI 2015 dataset using cost
volumes computed with Census-based block matching. From top to bottom, the “good” and the “hard” regions are shown. The
logarithmic colour scale encodes the percentage of pixels showing the respective error and estimated standard deviation (SD).

the relation between the error magnitude and the predicted un-
certainty by only considering the ability to separate correct from
incorrect disparity assignments, which limits its expressiveness.
Thus, we additionally investigate the relation between the abso-
lute disparity error of a pixel and the corresponding predicted
uncertainty using the correlation coefficient. Analysing the cor-
relation coefficients presented in Table 4b, it can be seen that
the two uncertainty models proposed in this work outperform
the state-of-the-art Laplacian model in all configurations evalu-
ated. Especially the geometry-aware model exceeds the Lapla-
cian one by a wide margin, which can also be seen in Figure 3:
While the heatmaps of the Laplacian and the mixture model are
more dispersed for both “good” and “hard” regions, the results
of the geometry-aware model shows significantly stronger cor-
relations between the absolute disparity error and the predicted
uncertainty. This supports our assumption regarding occluded
and texture-less regions and demonstrates the benefit of addi-
tionally introducing a Uniform distribution to the loss term.

Figure 3 further shows that the Laplacian model tends to as-
sign small uncertainties to pixels with a large disparity error,
especially visible for the “hard” regions. An example illustrat-

ing this case is shown in Figure 4: In the “hard” regions, the
Laplacian model underestimates the uncertainty clearly for the
non-textured areas on the wall especially visible in the Census-
based uncertainty maps. The same behaviour can be observed
for the occluded area behind the right computer (highlighted by
a green arrow) in the uncertainty maps for both disparity meth-
ods. On the other hand, the Laplacian model also tends to as-
sign large uncertainties to pixels with a disparity error between
0 and 50 pixels, which is not the case for the two models pro-
posed in this work (see Fig. 3). An example of this behaviour
can be seen in the Census-based uncertainty maps correspond-
ing to hard regions shown in Figure 5: Compared to the other
models and the error map, the Laplacian model generates rel-
atively noisy uncertainty estimates in the areas of the door and
back of the car containing some extremely high values.

According to the “good” regions in Figure 4, it can be seen that
the uncertainties of pixels located at object boundaries (high-
lighted by a red arrow) are less accurate for all uncertainty mod-
els and for both disparity methods. This problem is caused by
two potential reasons: First, the KITTI dataset, which was used
for training, provides a sparse ground truth for the disparities
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(a) Reference images (b) Error maps (c) Laplacian model (d) Geometry model (e) Mixture model

Figure 4. Qualitative uncertainty evaluation on the Middlebury v3 dataset. From top to bottom, the “good” and the “hard” regions
based on Census-BM and MC-CNN disparity methods are shown. The error and the uncertainty maps encode a high value in black
and a small one in white. Note that also pixels without ground truth disparities are displayed in white. To allow a clear illustration
of the spatial distribution of uncertainty, all uncertainty maps are normalised. In general, the proposed geometry model and mixture
model show superior results in the “hard” regions, e.g. in the areas highlighted by green arrows, while uncertainties close to depth
discontinuities (highlighted by red arrows) are less accurate for all three uncertainty models.

and our network is trained in a supervised manner, only us-
ing patches centred on pixels with known ground truth. Con-
sequently, edges in the disparity space caused by depth discon-
tinuities are rarely seen by the network during training. Second,
the assumed Laplacian or Laplace-Uniform mixture distribu-
tion is not suitable to describe the uncertainty related to depth
discontinuities properly. In this case, it may be beneficial to util-
ise a multimodal distribution for the estimation of uncertainty
at depth discontinuities. However, further investigations on that
topic are necessary and will be carried out in future work.

6. CONCLUSION

In the present work, we propose two novel mixed probabil-
ity models for the task of aleatoric uncertainty estimation in
the context of dense stereo matching. For this purpose, we
explicitly consider commonly challenging regions and outlier
measurements employing mixtures of a Laplacian and a Uni-
form distribution. We argue that real-world scenarios typically
violate the assumption of a unimodal distribution, commonly
assumed by probabilistic uncertainty models in the literature.
Thus, mixed probability models are better suited to describe the
uncertainty inherent in such scenarios. In our experiments, we
use the architecture of CVA-Net, which utilises cost volume as
input data, to investigate the effects of the proposed uncertainty
models. We evaluate the performance of these models on two
different datasets using cost volumes originating from two dif-
ferent dense stereo matching methods.

The results of the two proposed models demonstrate to be su-

perior compared to the unimodal baseline, which is especially
visible for occluded and texture-less areas of an image. How-
ever, the prediction of regions masks shows potential to be fur-
ther improved, for example, by addressing the problem of im-
balanced training data and the direct derivation of texture-less
regions from the reference image. Moreover, the results have
also shown that the two presented models as well as the baseline
are less accurate for pixels close to depth discontinuities. To
overcome this limitation, we plan to further investigate the pos-
sibilities of employing multimodal distributions, for example,
in form of a Gaussian mixture model, to improve the estimation
of aleatoric uncertainty in these areas.
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