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ABSTRACT:

Railroad environments are peculiar, as they combine dense urban areas, along with rural parts. They also display a very specific
spatial organization. In order to monitor a railway network a at country scale, LiDAR sensors can be equipped on a running train,
performing a full acquisition of the network. Then most processing steps are manually done. In this paper, we propose to improve
performances and production flow by creating a classification of the acquired data. However, there exists no public benchmark, and
little work on LiDAR data classification in railroad environments. Thus, we propose a weakly supervised method for the pointwise
classification of such data. We show that our method can be improved by using the `0-cut pursuit algorithm and regularize the noisy
pointwise classification on the produced segmentation. As production is envisaged in our context, we designed our implementation
such that it is computationally efficient. We evaluate our results against a manual classification, and show that our method can reach
a FScore of 0.96 with just a few samples of each class.

1. INTRODUCTION

Railway networks are widely developed in many countries, al-
lowing for fast and reliable people transportation, as well as
freight transportation. In order to serve entire countries, rail-
way network grew rapidly in the 20th century, culminating at
400000 kms for the US, 150000 kms in Russia, 64000 kms for
Germany or 42000 kms for France according to the Interna-
tional Union of Railways. Monitoring such network is costly
both in terms of time and money. This is the reason why the
automated monitoring of railway networks is such an important
yet complex task.

Usually, the monitoring of railway environments is divided in
several tasks, starting by the detection of the key elements in
railroad infrastructures. This can be done through camera-based
data (Banić et al., 2019), or LiDAR-based data (Stein et al.,
2016). Both sensors can be equipped on trains and used for
mapping railway networks. However, LiDAR sensors allow for
more detailed acquisitions, and do not suffer from light vari-
ations or distorsion. Also railway networks are composed of
both dense urban areas and rural or forested areas. LiDAR
sensors are able to adapt to all these types of environments and
LiDAR acquisitions are less sensitive to vegetation presence, as
laser beams can cross through the vegetation. Hence, LiDAR
sensors will be prefered for this study.

The detection of key elements along railway networks has already
been investigated. Many works focus on the detection of 1 type
of elements. For instance, Elberink et al. (2013); Lou et al.
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(2018) focus their study on track detection. Gézero and Antunes
(2019) proposed to detect all linear elements in LiDAR scans.
This includes rail tracks but also catenaries. Such object can be
detected with a classification approach based on a SVM, with
results regularized with a CRF (Jung et al., 2016). Arastounia
(2015) proposed to tackle the detection of linear elements in
rural areas by combining geometrical properties and topological
relationships in rail corridor. Some works also focus on the de-
tection of other elements, such as tunnels (Sánchez-Rodrı́guez
et al., 2018).

In our study, we propose to view the problem of infrastructure
detection in rail corridors as a classification problem, where
each point of a LiDAR acquisition belongs either to an object of
interest or to a dedicated class containing all objects not related
to railroad infrastructure. The classification task from LiDAR
point clouds has been thoroughly investigated (Weinmann et
al., 2015; Vicari et al., 2019), with promising algorithms, es-
pecially in urban areas. However, there exists only a few stud-
ies on the classification of all key elements in rail corridors
(Arastounia, 2012). Also, most of these works focus only on
urban scenes (Arastounia and Oude Elberink, 2016) or rural
areas (Arastounia, 2015) but not both. For a more extensive
review on the automated detection of railroad infrastructures
from LiDAR data, we refer the reader to the work of Soilán et
al. (2019).

Recently, deep-learning approaches such as SPG (Landrieu and
Simonovsky, 2018) or SegCloud (Tchapmi et al., 2017) achieved
really promising results. However, training a deep learning al-
gorithm would require a large dataset of annotations in railway
environments. Such ground truth will be costly both in terms of
time and money to produce and at the time of this paper, there
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is exists no data publicly available. Hence, we restrict our study
to classification algorithms that work with little ground truth.

The Random Forest algorithm (Breiman, 2001) is able to ad-
dress the problem of classifying large 3D point clouds with
a minimal ground truth. It has already been used for clas-
sifying LiDAR point clouds in urban scenes (Chehata et al.,
2009; Niemeyer et al., 2013) as well as forested areas (Shen
and Cao, 2017). However, LiDAR scans are noisy and have
irregular density, and we fear that it may decrease the classific-
ation quality. Hence, as advocated by Lim and Suter (2009) and
Shapovalov et al. (2010), we propose to improve the results of
a noisy pointwise classification by running a pre-segmentation
algorithm. Niemeyer et al. (2016) propose to use a CRF as
a post-processing step. Similar approach has been investig-
ated in rail environments, with promising results, but only for
specific objects, such as wires (Chen et al., 2019). Recently,
Guinard and Landrieu (2017) used the `0-cut pursuit algorithm
as a pre-segmentation step to improve classification results in
urban areas.

Following the approach of Guinard and Landrieu (2017), we
design a weakly supervised approach for classifying LiDAR
point clouds in railroad environments. We also investigate the
use of different regularization methods to improve classification
results. We start by presenting the geometric descriptors used as
input for the classification. Then, we present the classification
framework. The third technical part is focused on the regulariz-
ation approaches used for improving classification results. Last
we present some experiments done on real world data.

2. DESCRIPTORS COMPUTATION

Most of classification algorithms, including the Random Forest,
rely on local and global descriptors, computed at a point scale,
or at a global scale (Hackel et al., 2016; Xing et al., 2019). Such
descriptors are usually easy and fast to compute, while provid-
ing meaningfull geometrical information. In order to describe
the local geometry of each point we define six descriptors: lin-
earity, planarity, scattering, verticality, omnivairance and curvature,
which we represent in Figure 1.

The features are defined from the local neighborhood of each
point of the cloud. For each neighborhood, we compute the
eigenvalues λ1 ≥ λ2 ≥ λ3 of the covariance matrix of the po-
sitions of the neighbors. The neighborhood size is chosen such

that it minimizes the eigentropy E of the vector

λ1/Λ
λ2/Λ
λ3/Λ

, with

Λ =
∑3

i=1 λi, in accordance with the optimal neighborhood
principle advocated in Weinmann et al. (2015):

E = −
3∑

i=1

λi

Λ
log(

λi

Λ
). (1)

As presented in Demantké et al. (2011) and Weinmann et al.
(2015), these eigenvalues allow us to qualify the shape of the

local neighborhood by deriving the following values:

Linearity =
λ1 − λ2

λ1
, (2)

Planarity =
λ2 − λ3

λ1
, (3)

Scattering =
λ3

λ1
, (4)

Omnivariance =
λ3

λ1 + λ2 + λ3
, (5)

Curvature = 3
√
λ1λ2λ3 . (6)

The linearity describes how elongated the neighborhood is, while
the planarity assesses how well it is fitted by a plane. Finally,
high-scattering values correspond to an isotropic and spherical
neighborhood. The combination of these three features is called
dimensionality.

In our experiments, the vertical extent of the optimal neighbor-
hood proved crucial for discriminating ballast and walls, and
between poles and catenaries, as they share similar dimension-
ality. To discriminate these classes, we used a descriptor called
verticality, introduced in Guinard and Landrieu (2017). This
descriptor can be computed from the eigen vectors and values
defined above. Let u1, u2, u3 be the three eigenvectors associ-
ated with λ1, λ2, λ3 respectively. We define the unary vector of
principal direction in R3

+ as the sum of the absolute values of
the coordinate of the eigenvectors weighted by their eigenval-
ues:

[û]i ∝
3∑

j=1

λj |[uj ]i|, for i = 1, 2, 3 and ‖û‖ = 1 (7)

The authors shows that the vertical component of this vector
characterizes the verticality of the neighborhood of a point.

As advocated by Blomley et al. (2016), these descriptors are
computed at different scale, for small, medium and large neigh-
borhoods. In our case, we compute these descriptors for each
point, considering respectively their 10, 20, 40 and 80 neigh-
bors. The results can be seen in Figure 1.

3. CLASSIFICATION

We now focus on the classification part of our approach. In or-
der to perform a classification in one step, on multiple classes,
and with little ground truth, we decided to use the Random
forest algorithm (Breiman, 2001). This algorithm already proved
its efficiency and versatility when it comes to classifying LiDAR
point clouds in various environments, from urban to forested
areas (Chehata et al., 2009; Niemeyer et al., 2013; Li et al.,
2019), hence we argue that it is a suitable algorithm for classi-
fying complex rail corridors.

In our case, we are working with 5 classes, composing the vast
majority of railroad scenes. These classes are: vegetation, bal-
last, walls & fences, linear objects and other. Linear objects
include rails, poles and catenaries. The last class comprises
elements appearing on railroad acquisitions but not useful for
our application, such as nearby buildings or cars.

To train the algorithm, we manually hand labeled 5691 points
including 3162 vegetation points, 843 ballast points, 346 points
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(a) Linearity computed for 40 nearest neighbors (b) Verticality computed for 80 nearest neighbors

(c) Omnivariance computed for 10 nearest neighbors (d) Curvature computed for 20 nearest neighbors

Figure 1. Illustration of the computed descriptors and their complementarity. Color ranges from blue (lowest values) to red (highest
values).

for the walls & fences, 1286 for linear objects and 54 points for
representing the other objects.

Thanks to a training set with a limited number of points, con-
taining elements of all classes with various local geometries,
we expect the learning process to be fast, while achieving good
overall predictions.

4. REGULARIZATION

One of the main drawbacks of a computing a pointwise classi-
fication is the noise in the prediction. In order to overcome this
noise, and produce a more regular prediction, we propose to use
two different approaches:

1. Regularization based on the nearest neighbors prediction,

2. Regularization based on a geometrically homogeneous seg-
mentation.

4.1 Nearest Neighbors

The first approach for regularizing the pointwise classification
consists in associating to each point the label of the majority of
its neighbors. Such post-processing step allows for reducing the
noise in the classification while being computationally fast. In
the experiments, we test this approach at different scales, from
20 to 80 neighbors.

4.2 Segmentation

In order to improve the classification process, we also decided
to add a pre-segmentation step, as in Guinard and Landrieu
(2017). This is motivated by the fact that railway environment

ballast

fences

vegetation

catenaries

Figure 2. Illustration of the classification of the segments, based
on the sum of point’s classifications probabilities. Each pie

corresponds to a single segment, and the adjacency relationship
illustrates the segment-graph. Each color represents a different

class. In our pipeline, the most represented color in a single
segment will be associated to every point of the segment.
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No regularization Regularization - 20 neighbors Regularization - 80 neighbors
Class Precision Recall FScore Precision Recall FScore Precision Recall FScore

Vegetation 0.8566 0.9875 0.9174 0.9653 0.9564 0.9609 0.9418 0.9531 0.9474
Ballast 0.9800 0.4864 0.6502 0.9281 0.9254 0.9267 0.8791 0.8733 0.8762

Linear objects 0.2938 0.9823 0.4523 0.9722 0.9631 0.9677 0.9565 0.9317 0.9440
Walls & Fences 0.8958 0.5805 0.7045 0.8951 0.9225 0.9086 0.8627 0.8902 0.8763

Other 0.7796 0.1188 0.2063 0.5364 0.8500 0.6578 0.4724 0.7276 0.5729
Total 0.7611 0.6311 0.5861 0.8594 0.9235 0.8843 0.8225 0.8752 0.8433

Table 1. Detailed results when no pre-segmentation has been done.

Segmentation Segmentation + Reg. 20 neighbors Segmentation + Reg. 80 neighbors
Class Precision Recall FScore Precision Recall FScore Precision Recall FScore

Vegetation 0.8568 0.9968 0.9215 0.9816 0.9834 0.9825 0.9591 0.9781 0.9685
Ballast 0.9905 0.5507 0.7079 0.9769 0.9639 0.9704 0.9581 0.9329 0.9454

Linear objects 0.3100 0.9847 0.4716 0.9841 0.9813 0.9827 0.9735 0.9609 0.9671
Walls & Fences 0.9137 0.5732 0.7098 0.9404 0.9610 0.9506 0.8991 0.9224 0.9106

Other 0.9285 0.1866 0.3108 0.9248 0.9156 0.9202 0.9065 0.8995 0.9030
Total 0.8035 0.6584 0.6243 0.9616 0.9610 0.9613 0.9393 0.9387 0.9389

Table 2. Detailed results when a pre-segmentation step has been done. The first column corresponds to the results of (Guinard and
Landrieu, 2017).

are mostly man-shaped. Thus, we argue that it should display a
certain geometric regularity. Such geometric regularity should
be translated as a regularity on the computed descriptors: points
belonging to a same object should display similar descriptors
values. A pre-segmentation step, using descriptors values as in-
put, and grouping points accordingly can be able to capture the
underlying structure of the scene.

As LiDAR point clouds contain millions of points for small
scene, we expect the segmentation algorithm to be able to handle
massive data in a reasonable computation time. Also, railroads
are composed of objects of various sizes, from ballast that com-
poses the majority of the scene, to traffic signs, that contain
a few dozens of points. Hence, the segmentation algorithm
should produce a segmentation where regions can have various
sizes and shapes, according to their local geometry.

Let G = (V,E) be the graph representing our data, where each
point vi ∈ V is a point of the cloud, and each point is con-
nected to its 5 nearest neighbors. Let fi ∈ R24 be the vector
of descriptors associated to each point. We want to find g?,
a piecewise constant approximation of the signal f ∈ R24×V ,
such that it minimizes the following energy:

g? = arg min
g∈R4×V

∑
i∈V

‖gi − fi‖2 + ρ
∑

(i,j)∈E

δ(gi − gj 6= 0) , (8)

with δ(· 6= 0) the function of R24 7→ {0, 1} equal to 0 in 0 and
1 everywhere else. The first part of this energy is the data fidel-
ity part, ensuring that the segmentation produces geometrically
homogeneous segments. The second part of the energy is the
regularization term, forcing the segmentation to show simple-
shaped segments. This energy is non-convex, non-continuous
and non-differentiable, thus hard to solve.

We decide to use the `0-cut pursuit algorithm of Landrieu and
Obozinski (2017) to find an approximate solution to this seg-
mentation problem. In fact, `0-cut pursuit proceeds in a top-
down manner, by iteratively splitting the data, and has no prior
on the number of regions, nor their size or their shape. This
algorithm already proved its ability to process large amount of

data (such as LiDAR acquisitions), while producing a geomet-
rically homogeneous segmentation of the scene.

Using this pre-segmentation step allows us to reformulate the
pointwise classification problem as a segment-wise classifica-
tion problem, where the final label associated to each point cor-
responds to the label associated to its segment. To do this, we
still produce a random-forest-based pointwise classification, but
then associate to each segment the most popular label among its
points, thanks to a voting strategy. The last consists in associat-
ing to each point the label of its segment. This is illustrated on
Figure 2.

5. EXPERIMENTS

5.1 Dataset

To the best of our knowledge, there exists no public labeled
railroad dataset. Hence, we used our own private dataset, which
consists in a few kilometers long train-based LiDAR acquisition
on the French railroad network. This acquisition has been cut
in 100m× 100m parts which are processed independently.

We selected and manually labeled a part of this dataset. The
composition of the training set is detailed in Section 3. The
test set has been manually labeled as well and contains ∼ 700k
points. It is composed of 191114 vegetation points, 243205
ballast points, 74866 points for the walls and fences, 162543
points for linear objects and 29517 points representing other
objects. The test set can be seen on Figure 3a. Our approach is
evaluated using the unweighted FScore on the labeled part, and
by visual validation on the rest of the dataset.

5.2 Results

The results are evaluated using the F1-Score metric. In this
paper we compare a pointwise classification with a Random
Forest, to its regularized classifications, based on 20 and 80
neighbors. We then add a presegmentation step to improve the
classification results and also improve the results by averaging
the prediction on the 20 and 80 nearest neighbors.
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(a) Ground truth. (b) Segmentation.

(c) Ranfom forest classification. (d) Random forest aided by a presegmentation.

(e) Random forest regularised on the 20 nearest neighbors. (f) Random forest aided by a presegmentation and regularised on the 20
nearest neighbors.

(g) Random forest regularised on the 80 nearest neighbors. (h) Random forest aided by a presegmentation and regularised on the 80
nearest neighbors.

Figure 3. Classification results for 5 classes: vegetation (green), ballast (brown), linear objects (yellow), walls & fences (pink) and
other (white). The scene is part of an acquisition along rail tracks, where tracks and ballast are visible in the middle, linear objects on

the top, and vegetation, walls & Fences and other objects are mostly on the sides. Figure 3a displays the ground truth. Figure 3b
shows the segmentation, where each color stands for a different region. Figures 3c, 3e and 3g present the pointwise classification with

respectively no regularization, a regularization based on the 20, and on the 80 nearest neighbors. Figures 3d, 3f and 3h display the
same experiments but using a pre-segmentation step. Major improvements from our method compared to the non-regularized Random

Forest are seen mostly on linear objects.
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(a) Classification on a large scene.

(b) Classification on a rail section.

(c) Classification on catenaries.

(d) Classification on walls.

Figure 4. Classification results for 5 classes: vegetation (green),
ballast (brown), linear objects (yellow), walls & fences (pink)

and other (white). The results are obtained after a
pre-segmentation step and a regularization on 20 neighbors. The

scenes show respectively a view of a 100m × 100m tile
containing 3.4 million points, and close-ups on rail tracks and

ballast (4b), a complex set of catenaries (4c) and sidewalls (4d).
.

The random forest-based classification displays great results for
vegetation detection, with a FScore higher than 0.9. However,
it fails to retrieve the limits between ballast, linear objects and
other objects. This is due to the fact that the limits between
such objects may display the same geometry. Also, this method
suffers from the noise in the original acquisition. Hence, the
regularisation of the classification based on 20 and 80 neigh-
bors show great improvements, both in terms of objects borders
detection and in terms of FScore. The detailed results are vis-
ible on Table 1, and visuals are shown on Figure 3.

In order to improve results, we added a segmentation step, based
on the `0-cut pursuit algorithm. This allows us to group points
by similar geometries and to decrease noise influence. The seg-
mentation in itself is visible on Figure 3b. We remark that
ballast and vegetation are cut in a limited number of regions,
while catenaries and geometrically complex areas are divided
in numerous regions. This shows that the segmentation was
able to efficiently group large numbers of points when possible,
while preserving geometrically complex areas. Improvements
in terms of classification can be seen on Table 2. In fact, the
use of a presegmentation step increases the FScore of a random
forest classification by .4, and a regularization based on the 20
nearest neighbors improves the FScore to .96, with FScores per
classes higher than .92. More results for the best approach:
presegmentation + regularization on 20 neighbors are shown on
Figure 4. The scene conrresponds to a 100m × 100m acquis-
ition along rail tracks. Close-up on rails, catenaries and walls
are displayed as well. We see that our classification displays a
great accuracy on geometrically complex objects such as rails
and catenaries. In fact, the FScore for the linear object class
rises from 0.45 for the Random Forest classification to 0.98
when aided by a pre-segmentation step and a regularization on
20 neighbors.

Such results are promising and shows that a random forest-
based classification aided by pre-segmentation step and a post-
classification regularization can efficiently discriminate the most
present types of objects in railway environments.

5.3 Computational performances

The computational performances for a standard 100m× 100m
tile containing 3.4 million points are displayed hereafter. The
code has been executed on a single core, with a Intel Core I7
@ 2.80 GHz processor and 16 GB of RAM. Also, all the code
has been written in C++. The processing times are displayed
on Figure 5. The processing times include reading and writing
steps that are done at each step. This is due to the fact that each
step is independent and can be separated from the pipeline.

For the descriptors computation, using already determined neigh-
borhood sizes allows for faster computation than finding op-
timal neighborhood sizes at run time. In our case, a quick
benchmark on neighborhood sizes coupled to the use of 4 differ-
ent neighborhood sizes allows us to find close to optimal neigh-
borhood sizes and to collect enough informations to perform a
meaningful pointwise classification.

The segmentation part —which is optional in our case, follows
a top down approach, meaning it is able to scale-up more easily
than bottom up approaches. Also, the iterative solving scheme
used by the `0-cut pursuit algorithm gives us a good approxim-
ation of a non-convex problem that would be otherwise unsolv-
able in a reasonable amount of time.
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Figure 5. Processing times per task.

Last, the training time remains low thanks to a limited ground
truth composed of ∼ 5000 points, which extremely little com-
pared to the size of training datasets needed for deep learning
methods. This limited ground truth also ensures that the trained
forest is small enough to have a fast prediction.

The overall processing time remains low enough to consider
using such pipeline for production.

6. CONCLUSION

In this paper, we investigated the classification of LiDAR data
in railroad environments. Such environment is very peculiar, as
it contains a specific spatial organization, with pairs of rails in
the central part of the scan, surrounded by ballast, they also
combine dense urban areas near train stops with rural areas
between cities served. In order to improve maintenance flows,
we propose to detect the key elements of railway environments
thanks to a classification of the scene.

To the best of our knowledge, there exists no public bench-
mark, nor large-scale ground truth on railroad environments that
could be used for training, so we designed a weakly supervised
approach, using only a few hundred samples per class. This
approach is based on local descriptors computed at different
scales and can be improved by a pre-segmentation step. We in-
vestigated a post-processing regularization based on the nearest
neighbors classification. Our method’s computational perform-
ances allows us to envisage its usage for production purposes.

Further work will focus on country-wide classification and its
evaluation. Also, as proposed by (Xu et al., 2019), a pseudo-
labelling approach could be used to add more data in the train-
ing process, enabling the use of deep learning algorithms.

REFERENCES

Arastounia, M., 2012. Automatic classification of lidar point
clouds in a railway environment. Master’s thesis, University of
Twente.

Arastounia, M., 2015. Automated recognition of railroad in-
frastructure in rural areas from LiDAR data. Remote Sensing,
7(11), 14916–14938.

Arastounia, M., Oude Elberink, S., 2016. Application of tem-
plate matching for improving classification of urban railroad
point clouds. Sensors, 16(12), 2112.
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