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ABSTRACT:

In order to leverage and profit from unlabelled data, semi-supervised frameworks for semantic segmentation based on consistency

training have been proven to be powerful tools to significantly improve the performance of purely supervised segmentation learning.

However, the consensus principle behind consistency training has at least one drawback, which we identify in this paper: imbalanced

label distributions within the data. To overcome the limitations of standard consistency training, we propose a novel semi-supervised

framework for semantic segmentation, introducing additional losses based on prior knowledge. Specifically, we propose a light-

weight architecture consisting of a shared encoder and a main decoder, which is trained in a supervised manner. An auxiliary

decoder is added as additional branch in order to make use of unlabelled data based on consensus training, and we add additional

constraints derived from prior information on the class distribution and on auto-encoder regularisation. Experiments performed on

our concrete aggregate dataset presented in this paper demonstrate the effectiveness of the proposed approach, outperforming the

segmentation results achieved by purely supervised segmentation and standard consistency training.

1. INTRODUCTION

Nowadays, concrete is the most dominant building material world-

wide. Concrete consists of a mixture of aggregate particles with

a wide range of particle sizes (normally 0.1 mm up to 32 mm)

and geometries (round, flat, ect.) which are dispersed in a ce-

ment paste matrix. One important feature determining the qual-

ity and workability of fresh concrete is its stability which refers

to the segregation behaviour of the concrete due to differences

in specific weight or due to vibratory energy during the con-

struction process (Navarrete and Lopez, 2016). In this con-

text, concrete whose aggregate distribution remains homogen-

eous over the height of the sample during the hardening phase

is considered as stable while a sedimentation of the aggregate

particles is an indicator for an unstable behaviour of the ma-

terial. In order to assess the concrete stability a manual test

method is used in which a hardened core of the target con-

crete is cut lengthwise and is visually examined by a human

expert, evaluating the particle distribution. To overcome limit-

ations resulting e.g. from errors in human judgement, the sub-

jectivity of the evaluation, and from the fact that this process

is labour-intensive, it it was suggested to develop automated

systems to measure the concrete stability, e.g. based on image

data of the sediment samples. However, so far only relatively

simple approaches have been published, in which the aggreg-

ate is to be separated from the suspension based on manually

defined intensity thresholds in order to derive information about

the sedimentation behaviour (Fang and Labi, 2007; Lohaus et

al., 2017). In this paper, we propose a deep learning based ap-

proach for the segmentation of concrete aggregate in sediment-

ation images. Typically, fully supervised approaches for image

segmentation require large numbers of representative and an-
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Figure 1. Overview of the proposed framework for

semi-supervised semantic segmentation.

notated data in order to achieve high accuracies. However, the

generation of annotations, especially of pixel-wise reference la-

bels, is highly tedious and time consuming. On the other hand,

raw and unlabelled data can usually be acquired in abundance.

The idea behind semi-supervised learning, therefore, is to lever-

age the large number of unlabelled data along with a limited

amount of labelled data to improve the performance of deep

neural networks. While several approaches for semi-supervised

segmentation learning e.g. based on auto-encoder regularisation

(Myronenko, 2019), entropy minimisation (Kalluri et al., 2019),

consistency training (Ouali et al., 2020), or adversarial training

(Souly et al., 2017) have been proposed in the literature, the

question of how to best incorporate unlabelled data is still an

active problem in research.
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In this paper, we propose a novel framework for the semi-super-

vised training of deep learning networks for the segmentation of

concrete particles. An overview of the framework can be seen

in Fig. 1. Building upon the concept of consensus regularisa-

tion (Ouali et al., 2020), we make the following contributions.

1) In a first step, we identify the weak spot of standard meth-

ods based on consistency training by presenting a theoretical

derivation of their limitation which occurs when the data have

imbalanced class distributions.

2) Having identified this limitation of the standard consensus

regularisation as applied in existing work (Ouali et al., 2020),

we propose a semi-supervised strategy using prior guidance to

improve the segmentation performance (Sec. 3.4). In this con-

text, we incorporate prior information into the training proced-

ure in label space as well as in image space. More specific-

ally, we make use of prior knowledge about the expected label

distribution to supervise the label predictions of the unlabelled

data and we introduce an image reconstruction loss based on an

auto-encoder to learn the underlying distribution of the image

data as additional regularisation of the encoder.

3) As an additional minor contribution we propose a light-weight

architecture based on residual blocks and depthwise separable

convolutions which achieves quality measures close to state-of-

the-art while possessing significantly less parameters.

4) In order to train and to quantitatively evaluate the developed

method we propose our concrete aggregate benchmark consist-

ing of high resolution images of cut concrete cores providing

class labels on pixel-level. The dataset has been made freely

available in the course of publication1.

The remainder of this paper is structured as follows. We first

provide a brief summary of related work in Sec. 2. A detailed

identification of current limitations and a formal description of

the proposed method is given in Sec. 3. In Sec. 4 we present

our new dataset and the evaluation of our method. The paper is

concluded in Sec. 5

2. RELATED WORK

2.1 Semantic Segmentation

Semantic segmentation of images (called per- pixel classifica-

tion in remote sensing) refers to the problem of assigning se-

mantic labels to each pixel of an image. In this context, tra-

ditional approaches aim at finding a graph structure over image

entities as e.g. pixels or superpixels by using a Markov Random

Field (MRF) or Conditional Random Field (CRF) representa-

tion in order to capture context information. Then, classifiers

are employed to assign labels to the different entities based on

carefully designed hand-crafted features (Li and Sahbi, 2011;

Sengupta et al., 2013; Coenen et al., 2017).

Nowadays, usually Convolutional Neural Networks (CNN) are

applied for semantic segmentation in an end-to-end fashion. Pi-

oneering work was presented by Long et al. (2015) who pro-

posed a fully convolutional CNN for the per-pixel classification

of images by replacing the fully connected layers of a standard

CNN (Simonyan and Zisserman, 2015) by convolutional lay-

ers. In (Noh et al., 2015), transposed convolutions are proposed

in order to create a learnable decoder which is added to the de-

coder, leading to an enhancement of the segmentation accuracy.

Most of the current networks applied for semantic segmentation

follow this encoder-decoder strategy. Skip-connections, also

1 https://doi.org/10.25835/0027789

known as bypass connections (He et al., 2016) were firstly pro-

posed by Ronneberger et al. (2015) for the task of semantic seg-

mentation. The authors incorporated skip-connections between

corresponding blocks of the encoder and the decoder in order to

inject early-stage encoder feature maps to the decoder, which

allows the subsequent convolutions to take place with aware-

ness of the original feature maps, leading to better segmentation

results at object borders. In order to decrease the model size

and the computational complexity of such encoder-decoder ar-

chitectures, depthwise separable convolutions were proposed in

(Howard et al., 2017), where the standard convolutional layers

were replaced by operations which in a first step perform depth-

wise, i.e. per-channel convolutions in order to extract spatial

features, followed by pointwise convolutions in order to learn

cross-channel relations. In this work, we build upon the de-

scribed state-of-the-art techniques for deep-learning based seg-

mentation and propose a light-weight encoder-decoder archi-

tecture as basis for our framework for the semi-supervised seg-

mentation of concrete aggregate.

2.2 Semi-supervised segmentation

In order to train semantic segmentation architectures, usually

a large amount of pixel-wise annotated data representative for

the classes to be extracted is required, which is tedious and ex-

pensive to obtain. Research on semi-supervised segmentation

focusses on the question of how unlabelled data, which is typ-

ically easy to acquire in large amounts, can be used together

with small amounts of labelled data to derive additional train-

ing signals in order to improve the segmentation performance.

One line of research enriches the encoder-decoder structure of a

supervised segmentation network by an additional auto-encoder

which is trained in a self-supervised manner using the unla-

belled data in order to improve the shared latent feature repres-

entation produced by the encoder (Sedai et al., 2017; Myron-

enko, 2019). The idea behind this strategy is to learn a common

feature embedding for both tasks of semantic segmentation and

reconstruction of the image. In this way, unlabelled data is used

to add supplementary guidance and to impose additional con-

straints on the encoder part of the segmentation network. How-

ever, leveraging unlabelled data by providing guidance from

auto-encoder reconstructions only considers the common dis-

tribution representing the image data but disregards reasoning

on the level of semantic class labels of the unlabelled images.

As opposed to that, another strategy for making use of unla-

belled data is based on entropy minimisation (Kalluri et al.,

2019; Wittich, 2020), where additional training signals are ob-

tained by maximising the network’s pixel-wise confidence scores

of the most probable class using unlabelled data. However, this

approach introduces biases for unbalanced class distributions

in which case the model tends to increase the probability of the

most frequent and not necessarily of the correct classes.

In a semantic segmentation setting using adversarial networks,

the segmentation network is extended by a discriminator net-

work that is added on top of the segmentation and which is

trained to discriminate between the class labels being generated

by the segmentation network and those representing the ground

truth labels. By minimising the adversarial loss, the segmenta-

tion network is enforced to generate predictions that are closer

to the ground truth and thus, they can be applied as additional

training signal in order to improve the segmentation perform-

ance. In this context, the discrimination can be performed in an

image-wise (Luc et al., 2016) or pixel-wise (Souly et al., 2017;
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Hung et al., 2018) manner. Since the adversarial loss can be

computed without the need for reference labels once the dis-

criminator is trained, the principles of adversarial segmentation

learning are adapted for the semi-supervised setting to leverage

the availability of unlabelled data (Souly et al., 2017; Hung et

al., 2018). However, learning the discriminator adds additional

demands for labelled data and therefore might not reduce the

need for such data in a way other strategies do.

Another line of research for semi-supervised segmentation is

based on the consensus principle. In this context, Ouali et al.

(2020) train multiple auxiliary decoders on unlabelled data by

enforcing consistency between the class predictions of the main

and the auxiliary decoders. Similarly, in (Peng et al., 2020)

two segmentation networks are trained via supervision on two

disjunct datasets and additionally, by applying a co-learning

scheme in which consistent predictions of both networks on

unlabelled data are enforced. Another approach based on con-

sensus training is presented by Li et al. (2018) and Zhang et al.

(2020), who use unlabelled data in order to train a segmenta-

tion network by encouraging consistent predictions for the same

input under different geometric transformations. In this paper

we argue that semi-supervised training based on the consensus

principle leads to a problematic behaviour when dealing with

imbalanced class distributions in the data. Tackling this prob-

lem, we propose a new strategy based on prior guidance in order

to overcome this effect and to eventually improve the segment-

ation performance by making use of unlabelled data.

3. METHODOLOGY

3.1 Problem statement

CNN architectures for semantic image segmentation typically

consist of an encoder E(X), which maps the input data X to a

latent feature embedding z by aggregating the spatial informa-

tion across various resolutions, and of a decoder D(E(X)) =
D(z) which spatially upsamples the feature maps and finally

applies a classifier to produce pixel-wise predictions Ŷ , usually

at the same resolution as the input image. In Ŷ , every pixel

obtains a score ŷi for each class Ci ∈ C with i = 1...NC , de-

noting the probability of the corresponding pixel to belong to

the respective class. In order to train such networks in a super-

vised manner, the reference label maps Y are used to compute

a pixel-wise loss Lsup(Ŷ , Y ), which is backpropagated through

the network via stochastic gradient descent (SGD) in order to

optimise the network parameters. In this context, the availab-

ility of a sufficient amount of representative training data for

which the reference labels are known is required for each class.

In the absence of these labelled training data the neural net-

work is likely to become overfitted, restricting the model’s abil-

ity to generalise well and thus, restricting the performance of

deep networks when applied to unseen data. Given a data set

X = {Xl, Xu}, where Xl are labelled examples possessing the

reference labels Yl and Xu are unlabelled examples for which

no reference labels are available, the goal of this paper is to

leverage the unlabelled data along with the labelled data for the

training of a CNN in order to improve its performance com-

pared to only using the labelled data. In this context, we re-

gard the case where only a small number Nl of labelled images

but a large number Nu of unlabelled data is available such that

Nu ≫ Nl. More specifically, we train a fully convolutional

encoder-decoder CNN for the task of concrete aggregate seg-

mentation. However, we point out that the proposed framework

can be applied to any encoder-decoder based network.

3.2 Semi-supervision using consensus regularisation

In this work, we build upon an encoder-decoder network as

described above. In the remainder of this paper, we refer to

the decoder performing the classification as the main decoder

Dmain(z) and to the predicted label maps as Ŷ main. In addition,

we introduce an auxiliary decoder Daux(z̃) = Ŷ aux. Both de-

coders make use of the shared encoder E(X) = z to predict the

target label maps. While the main decoder is trained in a super-

vised manner on the labelled data Xl using the corresponding

label maps Yl to compute the loss Lsup(Ŷ
main
l , Yl), the auxili-

ary decoder is trained on the unlabelled data Xu by enforcing

consistency between predictions of the main decoder and the

auxiliary decoder. In this context, the training objective is to

minimise the consensus loss Lcons(Ŷ
main
u , Ŷ aux

u ), which gives a

measure of the discrepancy between the predictions of the main

and the auxiliary decoder. In order to ensure diversity between

both decoders, a perturbed version z̃ of the latent representation

z with z̃ = F(z), using a perturbation function F(·), is fed to

the auxiliary decoder while the uncorrupted representation z is

used as input for the main decoder. This procedure of consensus

regularisation for semi-supervised segmentation is founded on

the rationale that the shared encoder’s representation can be en-

hanced by using the additional training signal obtained from

the unlabelled data, acting as additional regularisation on the

encoder (Ouali et al., 2020; Peng et al., 2020). Based on the

consensus principle (Chao and Sun, 2016), enforcing an agree-

ment between the predictions of multiple decoder branches re-

stricts the parameter search space to cross-consistent solutions

and thus, improves the generalisation of the different models.

Furthermore, the perturbations aim at enforcing invariance to

small deviations in the latent representation of the data.

3.3 The blind spot of the consensus principle

In this section, we present a theoretically founded derivation of

the limitations behind semi-supervised training using the con-

sensus principle. In an unsupervised training setup based on the

consensus principle as described above and as applied in the lit-

erature (Ouali et al., 2020; Peng et al., 2020), the training sig-

nal is computed based on the discrepancy between the predic-

tions of two or more distinct models. Consequently, knowledge

about the reference labels is not required in order to compute

the consensus training loss Lcons, which is the reason why also

unlabelled data can be leveraged for training. Instead, a train-

ing signal is produced if the models disagree on the prediction

and no training signal is produced if the models agree on the

prediction, regardless of the fact whether the prediction is cor-

rect or not. In this context, the pixel-wise class predictions of

each model can be categorised by an unknown binary state vari-

able s ∈
{
s+, s−

}
signalising if the pixel is classified correctly

(s+) or incorrectly (s−). The blind spot of consensus training

occurs in cases where the models agree on their prediction, so

that consequently no training signal is produced, even though

the predictions are incorrect (s = s−), i.e. they do not match

the actual class label. In this paper, we argue that the effect of

the blind spot just described leads to an unfavourable guidance

by the consensus principle, provided a data set possesses an im-

balanced label distribution, i.e. it consists of data in which one

or more classes occur more frequently compared to others.

The joint probability of a pixel to belong to the reference class

Ci and to be classified either correctly or incorrectly can be ex-

pressed as

P (s, Ci) = P (s|Ci) · P (Ci). (1)
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In this expression, P (Ci) is the prior probability of the pixel to

belong to the reference class Ci and can be represented by the

proportion of the respective class in the data. Assuming that the

probability, whether a classifier is able to determine the correct

class for a pixel or not, is independent of the actual class of

the pixel, leads to the state s and the class C to be independent

variables and, therefore, simplifies the conditional probability

P (s|C) to read

P (s|Ci) = P (s) ∀i. (2)

To gain further insights into the probabilistic behaviour of pre-

dictions leading to the blind spot of the consensus principle, the

case where s := s− is investigated further. In order to intro-

duce the predicted class Ĉk into the probabilistic formulation,

the joint probability of the reference and the predicted class,

and the state s = s− is formulated as

P (Ĉk, Ci, s
−) = P (Ĉk|s

−, Ci) · P (s−, Ci) with k 6= i

= P (Ĉk|s
−, Ci) · P (s−) · P (Ci)

(3)

For simplification, we assume that the conditional probability

P (Ĉk|s
−, Ci) of the predicted class Ĉk is independent of the

actual class Ci (although in practice, this assumption does not

always hold true, for example an instance of the class dog might

be more likely misclassified as cat than e.g. as bird etc). With

an overall number of classes NC , this simplification leads to

P (Ĉk|s
−, Ci) = P (Ĉk|s

−) =
1

NC − 1
with k 6= i, (4)

and therefore Eq. 3 simplifies to

P (Ĉk, Ci, s
−) =

1

NC − 1
· P (s−) · P (Ci). (5)

The probability, that two classifiers Dmain and Daux agree on the

same but incorrect class label Ĉk such that smain = s
aux = s−

and Ĉmain
k = Ĉaux

k 6= Ci occurs at a pixel with the actual class

Ci, can be expressed by the joint probability

P (Ĉmain
k , smain = s−, Ĉaux

k , saux = s−, Ci)

=P (Ĉmain
k , smain = s−|Ĉaux

k , saux = s−, Ci)

· P (Ĉaux
k , saux = s−, Ci)

(6)

Considering the two classifiers Dmain and Daux as independent

from each other allows to simplify the conditional probability

in Eq. 6 according to

P (Ĉmain
k , smain = s−|Ĉaux

k , saux = s−, Ci)

=P (Ĉmain
k , smain = s−)

=P (Ĉmain
k |smain = s−) · P (smain = s−)

=
1

NC − 1
· P (s−)

(7)

By substituting Eq. 6 with Eqs. 5 and 7, the probability of a

blind spot to occur results in

P (Ĉmain = Ĉaux, smain = s
aux = s−, Ci)

=
∑

∀k 6=i

P (s−)2

(NC − 1)2
· P (Ci) =

P (s−)2

NC − 1
· P (Ci)

(8)

Finally, according to Eq.8, the probability of the occurrence of

a blind spot during consensus regularisation solely varies in de-

pendency of the prior probability of the reference class Ci. In

case of data exhibiting an imbalanced label distribution such

that ∃i(P (Ci) > P (Ck)∧ i 6= k), i.e. if there exist one or more

classes which appear more often than other classes, the prob-

ability of a blind spot to occur for instances of that class is lar-

ger compared to other classes and therefore, statistically fewer

training signals are produced for incorrect predictions of the re-

spective majority classes. As a consequence, consensus regular-

isation systematically favours the prediction of more common

classes by introducing a bias within the consensus loss Lcons to

the training procedure.

3.4 Consensus regularisation with prior guidance

In this paper, we propose a strategy to overcome the uninten-

ded effect of consensus regularisation described in Sec. 3.3 by

making use of prior information which is exploited for fur-

ther guidance of the semi-supervised training procedure. In

this context, on the one hand, we compute the class distribu-

tion Π(Yl) within the labelled training data Yl in order to intro-

duce an additional loss LΠ
prior(Ŷu,Π(Yl)) to the training of the

proposed CNN which enforces the network to produce a label

distribution of the predicted label maps that corresponds to the

class distribution of the training data. By doing so, we aim to

counteract the biasing effect introduced by the consensus prin-

ciple in Lcons negatively affecting the prediction of less com-

mon classes. On the other hand, the image data itself can be

considered and leveraged as prior information. To this end, we

add an additional output X̂ to the auxiliary decoder Daux which

aims at reconstructing the input image X itself in order to in-

troduce additional prior guidance using auto-encoder regular-

isation. By doing so, we build upon the idea proposed in (Sedai

et al., 2017; Myronenko, 2019) and introduce an auto-encoder

to the segmentation network in order to regularise the shared

decoder and to impose additional constraints on its paramet-

ers. To this end, we add a reconstruction loss LAE
prior(X̂

aux
u , Xu)

which measures the discrepancy between the input image an the

image reconstructed by the auto-encoder. In this way, we aim

at leveraging the inherent feature similarity of the large num-

ber of unlabelled images by enforcing the encoder to learn a

latent feature representation of the auto-encoding model. An

overview on the complete framework proposed in this paper for

the task of semi-supervised segmentation is shown in Fig. 1. As

depicted, both decoders share the same encoder. During train-

ing, both, labelled and unlabelled data Xl and Xu is passed

through the main decoder while only the unlabelled data Xu is

processed by the auxiliary decoder. The training objective is to

minimise the overall training loss

L = Lsup(Ŷ
main
l , Yl) + ω1Lcons(Ŷ

main
u , Ŷ aux

u )

+ ω2L
Π
prior(Ŷ

aux
u ,Π(Yl)) + ω3L

AE
prior(X̂

aux
u , Xu).

(9)

A detailed description of the individual components of the loss

formulation is given in the subsequent paragraphs.

Supervised loss: For a labelled training sample Xl and Yl,

the segmentation network Dmain(E(Xl)) is trained using the

supervised loss Lsup(Ŷ
main
l , Yl). For Lsup, the weighted mean

squared error (MSE) loss as proposed in (Coenen and Rotten-

steiner, 2019) is computed from the predicted label maps Ŷ main
l

and the reference label maps Yl.

Consensus loss: The consensus loss Lcons(Ŷ
main
u , Ŷ aux

u ) is an

unsupervised loss and measures the discrepancy between the
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main decoder’s predictions Ŷ main
u and those of the auxiliary de-

coder Ŷ aux
u for the unlabelled training exampled Xu. As dis-

tance measure, the MSE is used in this work.

Prior loss: The prior loss LΠ
prior(Ŷ

aux
u ,Π(Yl)) is based on the

difference between the class distribution of the predicted label

maps Π(Ŷ aux
u ) and the prior class distribution Π(Yl) derived

from the labelled training data. In order to compute Π(Yl), we

calculate the proportion of pixels of each class Ci with i =
1...NC w.r.t. to the overall number of pixels for each image

in Yl. We represent Π(Yl) by the average class proportions µi

and the standard deviation σi across the whole training set Xl.

Given the class distribution Π(Yl) determined a priori, the prior

loss is computed according to

LΠ
prior(Ŷ

aux
u ,Π(Yl)) =

1

NC

NC∑

i=1

(
pi(Ŷ

aux
l )− µi

2σi

)2

. (10)

In Eq. 10, pi(Ŷ
aux
l ) denotes the proportion of pixels belonging

to class Ci of the predicted label map Ŷ aux
l . This loss enforces

the auxiliary decoder to predict label maps inheriting the label

distribution from the training data and therefore acts as coun-

terweight to the bias towards predicting more frequent classes

introduced by the consensus loss.

Auto-encoder loss: The loss LAE
prior(X̂u, Xu) is a self-super-

vised loss and is computed for the unlabelled images based on

the discrepancy of the auto-encoder output X̂u of the auxili-

ary decoder and the input image Xu. In this work, the MSE

is computed as distance measure to compute the auto-encoder

loss. Introducing this loss allows for additional training guid-

ance using the principles of auto-encoder regularisation.

The parameters ω1, ω2 and ω3 in Eq. 9 act as factors to weigh

the individual components of the overall loss of Eq. 9 w.r.t.

each other. It has to be noted, that only the labelled examples

are used to train the main decoder as only the supervised loss

is backpropagated through Dmain, while the unlabelled data is

leveraged for the training of the auxiliary decoder Daux in an

un-/self-supervised manner, respectively.

4. EXPERIMENTS

4.1 Test data

To evaluate the proposed approach for semi-supervised seg-

mentation and its applicability for the segmentation of concrete

aggregate we provide a new data set in the course of this pa-

per. To this end, high resolution images were acquired from

40 different concrete cylinders, cut lengthwise as to display the

particle distribution in the concrete, with a ground sampling dis-

tance of 30µm. Each sedimentation image is subdivided into

36 tiles of size 448x448px2. At the time of submission, 612

tiles belonging to images from 17 different sedimentation pipes

have been annotated by manually associating one of the classes

aggregate or suspension to each pixel. The remaining images

are used as unlabelled data for the semi-supervised segment-

ation training proposed in this paper. With 36.2% of all an-

notated pixels belonging to the class aggregate and 63.8% of

the data being associated to the class suspension, the data con-

tains an imbalanced class distribution with the class aggregate

representing the minority class. As a consequence, our data

set presents a suitable test environment for our proposed semi-

supervised segmentation framework tackling the problems of

consensus-learning that occur in the context of imbalanced la-

bel distributions in the data. An overview of the statistics of the

dataset is given in Tab. 1. Fig. 2 shows five exemplary tiles and

their annotated label masks. The diversity of the appearance of

both, aggregate and suspension can be noted.

Table 1. Statistics of our proposed concrete aggregate data set.

labelled unlabelled total

No. of images 17 23 40

No. of tiles 612 828 1440

Figure 2. Examples of our proposed data set. The top row shows

exemplary images of concrete and the bottom row shows the

reference labels with white and black representing the classes

aggregate and suspension, respectively.

In Fig. 3, the distribution of the particles in dependency on their

sizes is depicted. The variation of the size of the particles con-

tained in the data set ranges up to 15 mm of maximum particle

diameter. However, the majority of particles, namely more than

50% exhibit a maximum diameter of less then 3 mm (100px).

As a consequence, approximately 80% of the particles possess

an area of 5 mm2 or less.

(a) Histogram w.r.t. the max. particle diameter (mm)

(b) Cumulative histogram w.r.t. particle area (mm2)

Figure 3. Distribution of the particles in the proposed data set

w.r.t. their maximum diameter and their area.

It has to be noted that particles with a size less then 20px are

barely distinguishable from the suspension and are therefore not

contained in the reference data.

4.2 Architectures

In order to evaluate the effect of the proposed framework for

semi-supervised segmentation we make use of two different
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fully convolutional segmentation architectures. However, we

point out that the proposed strategy for semi-supervised seg-

mentation learning can be adapted to any arbitrary encoder-

decoder network structure since its applicability is not restricted

to any specific architecture. The first architecture that is used

in the experiments is the Unet proposed by Ronneberger et al.

(2015), which is an encoder-decoder architecture with approx.

31 Mio. learnable parameters, which, thus, represents a rather

heavy-weight network structure.

In addition, we propose the R-S-Net (Residual depthwise Separ-

able convolutional Network), a lightweight CNN with approx.

1.9 Mio. parameters, thus more than 16 times fewer paramet-

ers compared to the Unet. A high-level overview of the used

encoder-decoder network architecture is shown in Fig. 4. Note

that for reasons of simplicity, Fig. 4 only depicts the architec-

ture of the encoder and the main decoder. The auxiliary de-

coder used for the semi-supervised training is identical to the

main decoder of the respective architecture, except that no skip-

connections are used and the latent feature map produced by the

encoder undergoes stochastic permutations (described later) be-

fore it is fed to the auxiliary decoder. The additional decoder

branch leads to an overhead of parameters during training, how-

ever, the auxiliary decoder is only used during training; for in-

ference, only the main decoder is used.

Figure 4. High-level overview on our proposed R-S-Net

architecture. The depth of the feature maps is denoted by d.

The input to the CNN is a three-channel colour image of a con-

crete sample profile. The encoder E consists of a convolutional

layer, followed by four encoder-blocks. The decoder is sym-

metric to the encoder and consists of four decoder-blocks fol-

lowed by convolutional layers. Both convolutional layers use

filters with a kernel size of 3x3 and ReLU as non-linear activ-

ation function. Skip-connections are are used between corres-

ponding encoder-decoder-blocks by concatenating the outputs

of the encoder-blocks to the outputs of the decoder-blocks of

the same spatial size. The final output, i.e. the segmentation

map is produced by an additional convolutional layer using a

1x1 filter kernel and a sigmoid activation function. Details on

the structure of the encoder- and decoder-blocks are shown in

Fig. 5 and are explained in the following paragraphs.

Figure 5. Structure of the R-S-Net encoder and decoder blocks.

Encoder-block Each encoder-block consists of a residual con-

volution module, which takes a feature map of size m × n as

input and which returns a feature map with depth d and with

spatial size of m/2×n/2 as output. Inside each encoder block,

two intermediate representations are computed from the initial

feature map. The first representation is produced by a convo-

lutional layer using a kernel size of 1 and a stride of 2, and the

second one is computed by a sequence of a convolutional layer

followed by a depthwise separable convolution layer (Howard

et al., 2017), both using kernel size 3x3 and stride 1, and down-

sampled using max. pooling with kernel size 2x2 and stride 2.

As non-linear activation function, ReLU, is applied in each of

the convolutional layers. As output of each block, the element-

wise sum of both intermediate representations is returned.

Decoder-block Similar to the encoder-block, the decoder-

block processes the input in a two-stream path and returns the

element-wise sum of the output of both streams. In the first

stream, the input is upsampled by a factor of 2, followed by

a convolutional layer using filters with kernel size 1x1. The

second stream consists of a sequence of a convolutional layer

followed by a depthwise separable convolution (both using ker-

nel sizes of 3x3) and an upsampling layer.

Perturbation layer Similar to Ouali et al. (2020), we apply

perturbations F to the latent variable z produced by the encoder

to obtain the perturbed feature map z̃ = F(z), which is then fed

to the auxiliary decoder. The perturbation layer applies two fea-

ture based perturbations leading to F(z) = FDrop(FNoise(z)).
In FNoise, a noise tensor N is uniformly sampled in the range of

(−0.3, 0.3) and is injected to the encoder’s output:

FNoise(z) = (z⊙N) + z, (11)

Here, ⊙ denotes an element-wise multiplication of two tensors.

In FDrop, a proportion of the feature map with the highest ac-

tivations is set to zero. To this end, a threshold γ is randomly

drawn from the uniform distribution in the range of (0.6, 0.9).
After channel-wise normalising of the feature map z resulting

in z
′, each entry of z̃ is set to 0 whose value in z

′ exceeds the

threshold γ.

4.3 Evaluation strategy and training

In order to assess the impact of the proposed method for semi-

supervised segmentation, different variants for the network are

defined, each considering different components and loss func-

tions of the framework presented in this paper.

Base: In the baseline settings Unetbase and R-S-Netbase, the

performance of the two baseline architectures is evaluated, i.e.

in this set the auxiliary decoder is not used during training and

consequently, training is done in a standard supervised manner.

Consensus: In this setting, denoted as Unetcons and

R-S-Netcons, semi-supervised training is done by considering

the auxiliary branch and applying the consensus loss Lcons. In

this way, the effect of considering unlabelled data following the

consensus principle as proposed in (Ouali et al., 2020) can be

assessed.

Consensus+prior: The settings Unetfull and R-S-Netfull make

use of the complete framework presented in this paper by con-

sidering the full formulation of Eq. 9. In this work, the weights

ω1−3 are set to 1. A properly defined individual weighting of

the different losses might further improve the performance of

the network, but is not evaluated in the scope of this paper.
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Training: The CNNs used in the different variants of the pro-

posed framework are trained from scratch. The convolutional

layers are initialised using the He initialiser (He et al., 2015).

The networks are trained using the Adam optimizer (Kingma

and Ba, 2015), a variant of stochastic mini-batch gradient des-

cent with momentum, using the exponential decay rate for the

1st moment estimates β1 = 0.9 and for the 2nd moment estim-

ates β2 = 0.999. We apply weight regularisation on the con-

volutional layers using L2 penalty with a regularisation factor

of 10−5. A mini-batch size of 4 is applied, meaning that each

mini-batch consists of four labelled and four unlabelled training

images. We use an initial learning rate of 10−3 and decrease the

rate by a factor of 10−1 after 25 epochs with no improvement

in the training loss and train each setting for 500 epochs. In

order to get insights into the effect of the amount of annotated

training data on the quality of the segmentation results, we vary

the number of training images in the conducted experiments.

We define a minimum setting T1, in which only one tile of each

of the 17 annotated sedimentation pipes is used for the super-

vised training part of the segmentation framework. In T3, T5,

and T10, three, five, and ten annotated tiles of each sedimenta-

tion pipe, respectively, are used for training. The values for µi

and σi of Eq.10 are computed from the individual training sets.

In all variants, we make use of all 828 non-annotated images to

compute the losses of the non-supervised part of the framework.

Evaluation metrics: The evaluation of our proposed method

is based on all annotated concrete aggregate tiles that have not

been used for training. We determine values for the overall ac-

curacy (OA) of the segmentation, as well as class-wise values

for recall, precision, and F1-score according to:

Recall [%] = 100 ·
TP

TP + FN
(12)

Precision [%] = 100 ·
TP

TP + FP
(13)

F1-score [%] = 2 ·
Precision · Recall

Precision + Recall
(14)

In these equations, TP (true positives) denotes the number of

correctly classified pixels per class, FN (false negative) is the

number of pixels of that class that are erroneously classified and

FP is the number of pixels that are erroneously classified as the

class under consideration (false positives). The F1-score is the

harmonic mean of precision and recall and, thus, is not biased

towards more frequent classes. In addition to the OA, which

can be biased for imbalanced class distributions, we report the

Mean F1-score (MF1) of both classes.

4.4 Results

In Tab. 2 the OA, the MF1-score, and the class-wise values for

precision, recall and F1-score achieved by the different variants

of the Unet and the R-S-Net based on the T1 setup are shown.

For a visual comparison, Fig. 6 shows examplary qualitative

results achieved by the R-S-Net using the various settings of

the framework.

Base: The OA that is achieved by training the two considered

architectures in a purely supervised manner, i.e. without the

consideration of additional unlabelled data during training, res-

ults in 85.8% for the lightweight R-S-Net and in 88.0% for

the Unet. Similarly, the MF1-score of the base architectures

(86.9%) is larger for the Unet compared to the result achieved

by the R-S-Net (84.7%). Consequently, applying purely super-

vised training to learn the mapping from the image to the label

space leads to a better performance of the Unet over the light-

weight R-S-Net. As can be seen from Fig. 6 for the base setting,

a relatively large proportion of the FN aggregate classifications,

i.e. aggregate pixels that were erroneously classified as suspen-

sion, belong to boundaries of the individual aggregate particles.

In comparison, the FP aggregate classifications, i.e. pixel that

were erroneously associated to aggregate particles mostly ap-

pear as larger connected segments in areas of suspension.

Consensus: Regarding the results for the OA and the MF1-

score achieved after the consensus training of the networks, sig-

nificant improvements of up to 3.6% are obtained for the R-

S-Net while only small differences occur in case of the Unet

architecture. It is noteworthy, that in this setting the R-S-Net

achieves a better OA and MF1-score than the Unet. The class-

wise values for recall and precision allow for deeper insights

into the effect caused by the consensus training using the ad-

ditional unlabelled training data. While the precision of the

minority class aggregate increases significantly by 12.3% and

13.9% for the Unet and the R-S-Net, respectively, the recall of

that class decreases by 12.4% and 6.7%. In contrast, the effect

for the majority class suspension, reveals an opposite behaviour,

i.e. the consideration of the consensus loss leads to an enhance-

ment of the recall but to a decrease of the precision results,

although the magnitude of the differences is smaller compared

to the ones of the class aggregate. We consider these effects be-

ing directly related to the blind spot of the consensus principle

described in Sec. 3.3: Because the same incorrect prediction of

both, the main and the auxiliary branches, are not penalised by

the consensus loss Lcons and at the same time, those cases are

more likely to occur for more frequent classes (suspension in

this case), the training of the segmentation networks following

the consensus principle favours the prediction of majority class

labels. As a consequence, the absolute number of predicted la-

bels belonging to the majority class is likely to increase while

the number of minority class labels tends to decrease, causing

the recall of the majority class to become larger and the recall

of the minority class to become smaller, as observable from

Tab. 2. This effect is also clearly visible in Fig. 6. Compar-

ing the qualitative results obtained by the base and the cons

variant, a distinct decrease of the FP aggregate classifications

(red areas) can be seen, while the amount of FN segments (blue

areas) increases. The latter effect mostly leads to the misclas-

sification of complete aggregate particles by the cons setting,

which were successfully detected by using the base variant.

Consensus+prior: The goal of this paper is to propose a strat-

egy to counteract the effect caused by the blind spot of the con-

sensus principle by introducing prior information as additional

training signal to the semi-supervised segmentation framework.

As can be seen from Tab. 2, considering the full framework

during training leads to a significant increase of the recall val-

ues of the minority class aggregate by 3.2% for the R-S-Net

and by even 9.8% in case of the Unet architecture, compared

to the consensus solution. In contrast, the values for preci-

sion of that class decrease, but by a smaller margin. Again,

the behaviour of the values for these metrics achieved for the

class suspension is vice-versa. Accordingly, it can be seen from

the qualitative results in Fig. 6, that the full setting of our pro-

posed semi-supervised segmentation framework, distinctly re-

duces the amount of FN classifications (blue) of the class ag-

gregate, while the effect on the FP classifications (red) are only

marginal. Finally, for both architectures, the consideration of
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Table 2. Quantitative results for the different settings of the proposed framework achieved for the T1 training setup.

Aggregate Suspension
values in [%] OA MF1 Recall Precision F1 Recall Precision F1

Unetbase (Ronneberger et al., 2015) 88.0 86.9 85.0 81.4 83.2 89.6 91.7 90.6
Unetcons 88.5 86.6 72.6 93.1 81.5 97.1 86.8 91.7
Unetfull 90.5 89.4 82.4 89.6 85.9 94.8 90.9 92.8
R-S-Netbase 85.8 84.7 83.6 77.6 80.5 87.0 90.8 88.9
R-S-Netcons 89.4 87.9 76.9 91.5 83.5 96.1 88.5 92.2
R-S-Netfull 89.8 88.5 80.1 89.7 84.6 95.0 89.9 92.4

the proposed prior losses during training in the full framework

leads to the best values for the F1-score as well as for OA and

MF1, proving the suitability of the proposed additional regu-

larisations for semi-supervised consistency training.

Figure 6. Qualitative results for the different settings of the

proposed framework of the R-S-Net achieved for the T1 training

setup. Correctly classified pixels are shown without additional

colour coding, FN aggregate pixels are coloured in blue and FP

aggregate pixels are coloured in red.

In Fig. 7 we show the results for OA and the class-wise F1-

scores of our ablation study on the effect of the amount of

labelled data (T1 - T10) considered during training on the ex-

ample of the R-S-Net architecture and for the three investig-

ated framework variants base, cons, and full. As can be seen,

increasing the amount of labelled data for training also in-

creases the performance of all three variants. In this context,

the largest improvements are achieved between the setups T1

and T3, between which the amount of training data is tripled.

Here, the OA increases by 4.9, 2.1, and 2.2% for the base, cons,

and full variants, respectively. Between the training setups T3

and T10, further enhancements of 2.9, 2.7, and 2.5% for the OA

are achieved by the different variants.

Inspecting the F1-scores obtained for both classes, it is apparent

that, while both classes profit from the consideration of more

labelled data during training, the effect for the minority class

aggregate is larger compared to the one for the class suspen-

sion. While the F1 score of the class aggregate increases by

up to 10.3% between the T1 and T10 training variants, the en-

hancement for the class suspension is distinctly smaller, namely

only 6.3%. Furthermore, it can be seen that the effect of using

unlabelled data for the semi-supervised segmentation learning

on the quality measures for both, OA and F1-scores, is largest

in the case of very few annotated training data (T1), while the

differences between the results of the purely supervised and

the semi-supervised variants decrease the more labelled data is

available for training. Still, our proposed approach achieves the

biggest enhancement of OA and F1-scores of both classes in

the case where only few annotated training data is considered

and achieves the best results for the quality measures among all

settings considered in Fig.7.

5. CONCLUSION

In this paper, we present a novel framework for semi-supervised

semantic segmentation based on consensus training. We

identify limitations inherent to the consensus principle and pro-

pose additional regularisation techniques based on prior know-

ledge about the class distribution and on auto-encoder con-

straints to overcome these limitations. We demonstrate superior

results achieved by our proposed strategy compared to purely

supervised and standard semi-supervised training and present a

new light-weight architecture achieving competing results to a

state-of-the-art heavy-weight architecture on our new concrete

aggregate data set. In the future, we aim at a more in-depth

analysis on the influence of the individual prior losses and their

weights, additional variations of perturbation functions, and the

consideration of multiple auxiliary branches in the framework

in order to investigate the effect of the individual components

on the semi-supervised training behaviour. Also, we want to ap-

ply the proposed framework on multi-class segmentation tasks.

Besides, we want to make use of the segmentation results to de-

rive information about the segregation behaviour and stability

properties of the concrete. To this end, we will develop meth-

ods for an automatic inference of relevant evaluation criteria as

e.g. the sedimentation limit and the grain size distribution from

the segmentations.
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