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ABSTRACT:

Real world localization tasks based on LiDAR usually face a high proportion of outliers arising from erroneous measurements and
changing environments. However, applications such as autonomous driving require a high integrity in all of their components,
including localization. Standard localization approaches are often based on (recursive) least squares estimation, for example, using
Kalman filters. Since least squares minimization shows a strong susceptibility to outliers, it is not robust.

In this paper, we focus on high integrity vehicle localization and investigate a maximum consensus localization strategy. For our
work, we use 2975 epochs from a Velodyne VLP-16 scanner (representing the vehicle scan data), and map data obtained using a
Riegl VMX-250 mobile mapping system. We investigate the effects of varying scene geometry on the maximum consensus result
by exhaustively computing the consensus values for the entire search space. We analyze the deviations in position and heading for
a circular course in a downtown area by comparing the estimation results to a reference trajectory, and show the robustness of the

maximum consensus localization.

1. INTRODUCTION

Tackling localization tasks including the fusion of different
sensor measurements using Kalman filters is a common ap-
proach (Chen, 2012). Applying Kalman filters, uncertain-
ties are modelled using normal distributions and residuals are
minimized in a least squares manner (Kalman, 1960). Con-
sequently, there is a strong susceptibility to outliers, which con-
tradict the underlying assumption of independent and identic-
ally normal distributed residuals (Chin and Suter, 2017). Even
a small amount of outliers can affect the least squares estimate
heavily. In real world localization, especially using images or
LiDAR sensors, there is usually a large amount of outliers due
to erroneous measurements, false assumptions about the ego
position, and changing environments.

Estimation techniques based on the maximum consensus cri-
terion can be used to approach this lack of robustness com-
ing along with least squares. The consensus set size serves as
robust objective function since the maximum consensus solu-
tion corresponds to the candidate model yielding the largest
consensus set, which in turn represents the highest consist-
ency with the postulated functional model. In contrast to least
squares, maximum consensus methods exclude data beyond a
specific threshold preventing these from influencing the estim-
ate. Therefore, maximum consensus techniques are inherently
well-suited for parameter estimation in outlier contaminated
data (Chin and Suter, 2017). There are various maximum con-
sensus approaches, which can be categorized into heuristic and
exact ones.

Whereas heuristic techniques are often able to generate results
close to the optimum in a reasonable amount of time, they can-
not give any guarantees. The probably most famous heuristic
maximum consensus technique is Random Sample Consensus
introduced by (Fischler and Bolles, 1981). The algorithm ran-
domly draws samples used to instantiate candidate models and

evaluates those by comparing their consensus set sizes. The ba-
sic assumption is that within a particular number of trials, there
is at least one in which only inliers are picked. The number of
trials is computed from the assumed percentage of outliers and a
failure probability set by the user. Even though this method has
been applied very successfully in many estimation settings, it
does not give any guarantees. In addition, the required number
of draws is approximately inversely proportional to the prob-
ability of a good draw (of a model), mitigating the advantage
of lower computational effort in strongly outlier contaminated
data.

If gradients are available, non-randomized methods such as
gradient ascent or descent seem attractive, however those can-
not be used in the non-convex settings frequently encountered.
Two deterministic, heuristic approaches, based on a non-
smooth penalization and the alternating direction method of
multipliers, respectively, have recently been reported by (Le et
al., 2017). While they show good results and attractive exe-
cution times, especially at higher outlier rates, they do neither
ensure global optimality nor being within certain bounds from
the optimal result.

Exact algorithms guarantee to obtain the globally optimal res-
ult, but they are computational costly. Since maximum con-
sensus is fundamentally NP-hard (Chin et al., 2018), the optim-
ization cannot be solved in polynomial time. Exact algorithms
aim to keep the computational effort low by conducting search
strategies (Chin and Suter, 2017). For example, Branch-and-
Bound (BnB)-, tree-, and exhaustive search were reported in the
literature. (Li, 2009) and (Zheng et al., 2011) as well as (Breuel,
1992), (Chin et al., 2014), and (Parra Bustos et al., 2016) intro-
duced BnB algorithms. (Olsson et al., 2008) and (Enqvist et al.,
2012) pursued exhaustive search by enumeration, while (Chin
etal., 2017) introduced a tree search strategy. In general, search
strategies will succeed in acceptable time only if there are very
few local maxima in search space, so that only a very small
portion of the total search space needs to be explored.
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Considering the applications of approximate maximum con-
sensus approaches, the approaches of (Zheng et al., 2011; Li,
2009; Chin et al., 2017; Olsson et al., 2008; Enqvist et al., 2012)
focus on robust fitting of feature points in images.

Localization using LiDAR measurements is closely related to
point cloud registration. If the points are known in a sensor
coordinate system, then aligning point clouds also yields the
relative orientation of the sensor standpoints. Point cloud re-
gistration is a very well-researched topic. For example, (Chen
et al., 1999) and (Aiger et al., 2008) use randomized heurist-
ics, (Li and Hartley, 2007) and (Yang et al., 2013) are using
maximum likelihood frameworks, and (Chin et al., 2014) and
(Parra Bustos et al., 2016) are using a geometric matching cri-
terion, striving for globally optimal point cloud registration us-
ing BnB. The most common algorithm used for point cloud re-
gistration is arguably the Iterative Closest Point (ICP) algorithm
(Besl and McKay, 1992), which approaches intractability by
using two alternating phases, (i) finding correspondences and
(ii) minimizing the residuals. If least squares is used for the
minimization step, this of course also introduces a sensitivity
to outliers, which is usually mitigated by additional selection,
matching or weighting criteria in the correspondence or min-
imization phase (Chetverikov et al., 2002). However, even if
the optimum solution could be guaranteed in the minimization
phase, the algorithm could still converge to a local optimum due
to wrong correspondences. Typically, one hopes for a conver-
gence towards the global optimum if the initial values are ‘good
enough’.

In this paper, we investigate high integrity localization based
on LiDAR, using maximum consensus. Even though in gen-
eral, the optimization problem has exponential time complexity
in the number of variables, it can of course be tackled by ex-
haustive search in case of a low-dimensional problem. In ad-
dition, exhaustive computation of the search space allows us to
gain knowledge about typical and atypical situations, and the
influence of the geometry of the scene. In detail, in this paper
we show (i) a localization based on the registration of two point
clouds, a sparse, ‘car sensor’ cloud from a Velodyne VLP-16
scanner, and a dense, high resolution ‘map’ point cloud from
a mobile mapping campaign, (ii) a high integrity localization
method using the maximum consensus criterion, leading to a
globally (within search radius) optimal solution, and (iii) an as-
sessment of the effects of scene geometry on the distribution of
the maximum consensus score.

2. APPROACH

In this part, the localization approach is introduced on exem-
plary Velodyne VLP-16 point clouds (hereafter referred to as
car sensor scans). In the evaluation part (section 4), the localiz-
ation results for a whole trajectory are presented. The used data
for the evaluation is introduced in section 3.

For the localization of the vehicle it is assumed that a rough ini-
tial pose (position and orientation) is available, where the origin
of this approximate localization solution is irrelevant. It can be
a global navigation satellite system (GNSS) solution, but also
be provided by any other kind of initialization, measurement,
or prediction from a previous pose. Based on this pose, the
car sensor scan can be transformed into the ‘global’ coordin-
ate system (for the purpose of our investigations, we use UTM
coordinates), where it should match the globally georeferenced
map point cloud. For the purpose of this paper, we use a 3D

pose, but we limit the parameters to be estimated to the (x,y)
position in the plane and the heading angle, for a total of three
degrees of freedom. Estimation of the height component z is
usually less problematic since it can be assumed that the vehicle
is moving on the road surface. In addition, it is usually easy to
identify and match points on the road surface. As for the angles,
roll and pitch are typically very small under normal driving con-
ditions and may also be measured quite reliably.

It is assumed that the true position is within a certain distance
from the initial position, and this defines the search range. It
is important that this range is chosen large enough to certainly
contain the true position, and existing uncertainty information
may be used to define it. In theory, it could be extended to
cover the entire world, but when considering a meaningful ap-
plication and acceptable run times, much smaller ranges will
usually be used. The task is then to find the position within
this range, which maximizes the consensus with regard to all
available measurements.

To find this position, the space of possible values (positions) is
discretized, and the consensus set is computed for every cell.
The consensus count in each cell is defined by the total number
of car sensor scan points which match a map point, for that
particular position. A match takes place if points are within the
distance defined by the edge length of the discretization raster.

The maximum consensus optimization criterion is defined in
equation 1. Given the car sensor scan, consisting of the set of
points {p;}"1, p; € R®, and the map point cloud {g,;}7%1
q; € IR?, the consensus function with respect to the point cloud
registration is defined in equation 2, where I(c) denotes the
well-known indicator function which returns +1 if condition
cis true, and 0 otherwise. In this investigation, it is sought for a
three degrees of freedom rigid transformation Rop + ¢, where
the rotation matrix Ry € SO(3) considers only the heading
angle 0 and the translation vector ¢ € R® only the (z, %) trans-
lation in the plane, so that t = (z,9,0)" = (t4y,0)", with
t., € R% More precisely, 6 and t,, are discretized, so that
each parameter combination corresponds to a cell of the (search
space) discretization raster. The inlier threshold e equals the cell
size. The outcome of the optimization are the parameters 6™ and
t,,,, which maximize equation 1.

0", t;, = argmax U(Ry,t) (1
e[—m,m), tyy ER?
U(Ro,t)=> > I(|Rop; +t—q,ll, <e) (2
i=1 j=1

where ¥(-) is the consensus function,

I(-) is the indicator function,

0 is the heading angle,

Ry € SO(3) is the corresponding rotation matrix,
t € R? is the translation vector, t = (t,,,0) "

p; € R3isa point of the car sensor scan,

q; € R? is a point of the map point cloud, and

e is the inlier threshold.

In this work, we set the size of the overall search space around
the initial position to 2m x 2m (from —1m to 4+1m for both
axes) and the edge length of a grid cell to 2¢m resulting in
100 x 100 cells within the translation discretization raster. Since
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the ‘hits’ are summed up in the discretized space of positions,
this is also called the accumulator. Technically, instead of iter-
ating over all possible positions, and counting the matches for
each position, the accumulator can also be filled by using stencil
operations, where for each car sensor scan point, the local en-
vironment from the map is added to the accumulator. To avoid
extensive zero operations, which occur since most of the space
is not occupied, sparse representations can be used. All map
points belonging to a local environment can be efficiently se-
lected using a k-d tree spatial data structure. Note that these
implementation details increase the efficiency, but do not alter
the results in any way. Since points belonging to the ground
plane do not create any additional value for the localization in
(z,y) and rather interfere with the goal of obtaining a clear peak
within the accumulator, ground points are removed in the car
sensor scan as well as in the map point cloud beforehand. This
is done by discarding all points which have a z-component of
the local normal vector close to £1.

Figure 1 visualizes the maximum consensus accumulator for
the point cloud depicted in Figure 2. The image shows that the
highest consensus set sizes are around the origin (0, 0), which
corresponds to the initial position. This is because in this ex-
ample, the car sensor scans are transformed into the global
UTM coordinate system using the reference trajectory on which
the map point cloud is based as well. Therefore, the car sensor
scan and the map fit perfectly, resulting in the high peak at
(0,0). Apart from the peak, two ‘rays’ can be identified within
the maximum consensus grid. Those arise from the structure
of the scene. As can be seen in Figure 2, the scene consists of
groups of parallel facades, each group defining a plane. Since
the normal vectors of the planes point in various directions, the
overall set of planes constrains the pose very well, resulting in
the clear peak at (0, 0). In addition, each single plane constrains
the possible poses only up to a shift parallel to the plane, result-
ing in rays in the accumulator, which intersect in the origin.
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Figure 1. Maximum consensus accumulator for the point cloud
depicted in Figure 2.

To investigate the influence of the heading 6, the car sensor
scans are rotated around the up-axis in discrete angular steps
and the 2D ‘position’ accumulator is calculated for each fixed
angle as described above. The 3D accumulator ‘cube’, describ-
ing the consensus counts for the full pose, is then obtained by
simply stacking the set of 2D accumulators. Figure 3 shows an
example for set of position accumulators for different heading
angles, which, when stacked, yield the 3D pose accumulator.

One can observe that the heading of —1 degrees leads to the
highest and sharpest peak. With increasing deviation from this

Figure 2. Top (upper) and perspective (lower) view of an
example point cloud for a crossing scene.
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Figure 3. Maximum consensus accumulators for headings from
-2 to +2 degrees around the initial heading.

heading, the peak gets smaller and more blurred.

In Figure 1, the accumulator is shown for a point cloud ob-
tained at an intersection. As described, due to the structure of
the scene, the peak is sharp and unique. In contrast, Figure 4
shows a point cloud in a street without any side roads or cross-
ings. Here, the parallel facades on both sides are the dominant
structure in the scene and therefore, the accumulator contains a
dominating ray (cf. Figure 5).
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Figure 4. Top (upper) and perspective (lower) view of an
example point cloud for a straight street without side roads.
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Figure 5. Maximum consensus accumulator for the point cloud
depicted in Figure 4.

At first sight, the accumulator is characterized by a single ray.
However, by searching for its highest peak, it also appears at
(0,0). Nevertheless, due to multiple grid cells (along the dom-
inating ray) showing high consensus values, the certainty of the
localization result is low compared to the crossing scene depic-
ted in Figure 2. In the evaluation part (section 4), a deeper view
on assessing the localization uncertainties is taken.

3. DATA

In this part, the measurement scenario is introduced. Further-
more, the car sensor scans as well as different map data sets,
which originate from this measurement, are presented in more
detail. Afterwards, the evaluation of the localization approach
is conducted based on these different data sets.

Figure 6. Trajectory of measurement experiment (background
map: OpenStreetMap (OpenStreetMap contributors, 2021)).

The measurement data was acquired in an inner city area char-
acterized by a dense building structure. The trajectory is shown
in Figure 6. The circular path was driven five times.

The car sensor scans were acquired by a Velodyne VLP-16 (Ve-
lodyne LiDAR, Inc., 2016). It provides 16 scan layers in a
360° horizontal field of view. The vertical field of view is from
—15° to +15°, with a uniform vertical spacing of 2° between
the layers. The map data is based on point clouds gathered by
a Riegl VMX-250 Mobile Mapping System (MMS) (RIEGL
Laser Measurement Systems GmbH, 2012). Two Riegl VQ-
250 laser scanners are measuring with a rate of up to 300,000
points per second each and a ranging accuracy of ten milli-
meters. The reference trajectory is acquired using an Applanix
POS LV GNSS/IMU system. In a post-processing, by applying
correction data from the Satellite Positioning Service (SAPOS),
a highly accurate trajectory is obtained.

To obtain more accurate map data, the acquired point clouds of
the five runs within the measurement drive are aligned using the
adjustment strategy described in (Brenner, 2016). The standard
deviation of the resulting map data is below two centimeters.
The shifts of the reference trajectory emerging from this adjust-
ment are applied as corrections to the original trajectory. This
leads to a highly accurate fit between the adjusted map point
cloud and the reference trajectory.

In the evaluation of the localization approach different map data
sets are investigated. Those maps are characterized by different
point densities referred to as Level Of Detail (LOD). The ori-
ginal adjusted map point cloud corresponds to LOD 0, whereas
in this work, due to data handling reasons, investigations are
done beginning with LOD 2. The point density between two
consecutive LODs is uniformly reduced by a factor of 4. Con-
sequently, the point density of LOD 2 compared to LOD 0 is
already reduced by a factor of 16. Figure 7 and 8 show a seg-
ment of the map point cloud exemplary for LOD 2 and LOD 4.
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Figure 8. Map point cloud in LOD 4.

4. EVALUATION

For the evaluation, all accumulators for one measurement drive
of the trajectory depicted in Figure 6 are calculated. It com-
prises 2975 epochs. To assess the localization results obtained
by our search algorithm we first analyse the (x,y) positions of
the highest consensus sets in the accumulator. According to our
premise that the car sensor scans are transformed into global
UTM coordinates based on the reference trajectory, we expect
the highest peak for each epoch to be close to (0,0). This ex-
pectation is reinforced by the fact that the car sensor scans and
the map point cloud were measured simultaneously technically
allowing only deviations due to calibration errors. After ana-
lysing the (z,y) positions of the highest consensus peaks, we
evaluate by which heading angle the highest consensus sets are
obtained. Analogous to the position, we expect the deviation
from the initial heading to be zero as well. Apart from consid-
ering the highest consensus set in the accumulator, we want to
use the gained entire knowledge about the search space to eval-
uate the quality of the localization result. Therefore, we intro-
duce an approach to interpret the distribution of high consensus
scores within the accumulator as a measure for certainty.

Before investigating the localization results, it is to mention
that all results are presented with respect to the car body frame.
The z-axis points across-track to the right of the car, the y-axis
points in driving direction and the z-axis points up. In addition
to that, the evaluations have shown that there are no signific-
ant differences between the four map point clouds with varying
LODs. Therefore, only the results using the LOD 4 map point
cloud are presented.

In Figure 9, the distribution of the highest peaks over the whole
trajectory is depicted in the (z,y) plane. The regular circular
pattern which especially appears close to (0, 0) occurs because
of the discrete accumulator cells. The mean value of all highest

0.4

0.3

0.2

0.1

0.0

y [m]
o ...:
D
[;.,j
~Fete
»

-0.1 o INTIRS.
-0.2

-0.3

-04 -03 -02 -0.1 0.0 0.1 0.2 0.3 0.4
x [m]

Figure 9. Qualitative representation of the positions of the
highest consensus sets in the 2D (z, y) plane.
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Figure 10. Distribution of the highest consensus sets along the
x- and y-axes.

peaks is at (—0.004m, —0.004m) and the standard deviations
are 0, = 0.028m, 0y = 0.041m . Those values indicate that
the expected localization position is accurately obtained for the
majority of epochs. This perception is encouraged by Figure 10
which shows the quantitative distributions of the highest con-
sensus sets along the z- and y-axes. The highest consensus sets
are in most epochs at (0, 0) or at least close to it.

The analysis of the heading angle has shown that it can be de-
termined robustly as well. Figure 11 shows that in most epochs
the initial heading angle leads to the highest consensus sets and
that in general, the deviation is mostly within +1°.

Now that the estimation of the (x,y)-position as well as the
heading angle using the highest consensus set in the accumu-
lator provides promising results, we also want to assess the loc-
alization quality. To do this, we consider all consensus sets,
which reach at least a certain percentage of the score of the
largest consensus set. For the evaluation in this work, we set
this threshold to 80 percent. We characterize the distribution of
the consensus set by computing the mean and covariance of all
sets exceeding this threshold. This is graphically represented
by an error ellipse centered at the mean. Figure 12 and 13 show
the calculated error ellipses, superimposed on the accumulators
for the point clouds introduced in Figure 2 and 4.
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Figure 11. Distribution of heading angles leading to the highest
consensus sets.
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Figure 12. For the point cloud depicted in fig. 2: Accumulator
and error ellipse based on the weighted sum of all consensus sets
reaching at least 80 percent of the highest consensus score.
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Figure 13. For the point cloud depicted in fig. 4: Accumulator
and error ellipse based on the weighted sum of all consensus sets
reaching at least 80 percent of the highest consensus score.

Already by means of those two examples it can clearly be seen
that the different scenes inevitably influence the distribution of
high consensus sets within the accumulator and therefore the
certainty about the localization result. Whereas in the crossing
scenario the covariance ellipse is small indicating a comparat-
ively certain localization result, it is small in x-, but large in
y-direction for the straight street scenario indicating a high un-
certainty in driving direction.

The distribution of the mean values over the whole trajectory
is depicted in Figure 14. Compared to the positions of the

highest consensus sets in the (z,y) plane depicted in Figure
9 it is visible that in driving direction (along the y-axis) some
mean values significantly differ from the position of the highest
consensus set.
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Figure 14. For the 2D (z, y) plane: Qualitative representation of
the mean values of the consensus sets exceeding the 80 percent
threshold.

Analogous to Figure 10, the distribution of the mean values
along the z- and y-axes is visualised. The histograms show
that for the majority of epochs the mean values also match the
initial position at (0, 0).
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Figure 15. Distribution of the mean values of the consensus sets
exceeding the 80 percent threshold along the x- and y-axes.

In Figure 16 the distribution of the variances of the consensus
sets exceeding the threshold is visualized. As the examples in
Figure 12 and 13 already indicated, the highest variances oc-
cur along the y-axis since in straight streets without any side
roads (as they appear for the most time within the trajectory)
no single strong peak exists in the accumulator, but rather a line
of strong peaks. The facades parallel to the streets are certainly
optimal means for robust localization in z-direction, but they
also dominate the accumulator due to the high amount of points
representing those structures. Varying point densities along the
parallel facades may induce false peaks, which outvote the cor-
rect solution when orthogonal facade structures are scarce.
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Figure 16. Distribution of the variances of the consensus sets
exceeding the 80 percent threshold: The highest uncertainties
appear in driving direction (along the y-axis).

In Figure 17 and 18 the trajectory and a section of it are visu-
alized along with the error ellipses (enlarged representation) of
every 100th (Figure 17) and every 20th (Figure 18) epoch. The
different localization qualities for the different moments along
the trajectory become visible. In Figure 18, the 2D trajectory
position corrected by the shift according to the position of the
highest consensus set is visualized as well.
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Figure 17. Trajectory of the measurement along with the
covariance ellipses of every 100th epoch (ellipses enlarged by a
factor of 100).

To conclude the evaluation of the localization quality, the vari-
ances along the x- and y-axes over all epochs are visualized in
Figure 19. In particular the epochs around number 1800 to 1850
stand out due to their high variances in y-direction. Apart from
these few peaks, variances are generally much smaller, how-
ever, the overall characteristic that the variances in y are larger
than in z holds for most of the epochs.

5. CONCLUSIONS

In this work, we have shown that using maximum consensus
based on LiDAR provides great potential for high integrity loc-
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Figure 18. Section of the trajectory along with the positions
corrected by the shift according to the highest consensus set and
the covariance ellipses of every 20th epoch (ellipses enlarged by
a factor of 10).

— X
Yy
0.20]

0.15

[m]

0.10

0.05

L

0 500 1000 1500 2000 2500 3000
Epoch

0.00

Figure 19. Variances along the z- (in blue) and y-axes (in green)
over all epochs of the measurement.

alization. We have introduced a localization strategy using the
maximum consensus criterion based on the registration of two
point clouds to obtain a globally optimal 3D pose. In addition to
that, tackling the problem by an exhaustive search strategy has
given us the opportunity to examine the structure of the search
space. This revealed the influence of the scene geometry on
the accumulator and offered the possibility to assess the local-
ization results based on the distribution of high maximum con-
sensus scores.

The results also revealed weaknesses of this approach, es-
pecially with regard to the along-track localization in street
canyons. Tackling those shortcomings is the next step. The idea
is to enhance the accumulator by a score which values the distri-
bution of normal vectors within the scene to strengthen possible
positions which not only achieve high consensus scores by par-
allel facades but also perpendicular facing objects. The goal of
this approach is to reduce the uncertainty especially in driving
direction. Apart from that, the approach will be extended to six
degrees of freedom estimating the entire vehicle pose. To limit
the computational effort, the application of Branch-and-Bound
approaches for this localization strategy will be investigated. A
bound on the possible maximum consensus score may also be
estimated for each given (map) scene beforehand, based on the
scene geometry and a sensor model.
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