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ABSTRACT:

Semantic interpretation of multi-modal datasets is of great importance in many domains of geospatial data analysis. However, when
training models for automated semantic segmentation, labeled training data is required and in case of multi-modality for each rep-
resentation form of the scene. To completely avoid the time-consuming and cost-intensive involvement of an expert in the anno-
tation procedure, we propose an Active Learning (AL) pipeline where a Random Forest classifier selects a subset of points suf-
ficient for training and where necessary labels are received from the crowd. In this AL loop, we aim on coupled semantic seg-
mentation of an Airborne Laser Scanning (ALS) point cloud and the corresponding 3D textured mesh generated from LiDAR data
and imagery in a hybrid manner. Within this work we pursue two main objectives: i) We evaluate the performance of the AL
pipeline applied to an ultra-high resolution ALS point cloud and a derived textured mesh (both benchmark datasets are available at
https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/default.aspx). ii) We investigate the capabilities of the
crowd regarding interpretation of 3D geodata and observed that the crowd performs about 3 percentage points better when labeling
meshes compared to point clouds. We additionally demonstrate that labels received solely by the crowd can power a machine learning
system only differing in Overall Accuracy by less than 2 percentage points for the point cloud and less than 3 percentage points for the
mesh, compared to using the completely labeled training pool. For deriving this sparse training set, we ask the crowd to label 0.25 %
of available training points, resulting in costs of 190 $.

1. INTRODUCTION

In recent years, significant effort was put into developing and
advancing automatic Machine Learning (ML) methods such as
Convolutional Neural Networks (CNNs) for various data repre-
sentations, as for 2D imagery (Ronneberger et al., 2015; Badri-
narayanan et al., 2017) or 3D point clouds (Qi et al., 2017; Gra-
ham et al., 2018). However, lack of labeled training data greatly
hinders the application of such systems. Therefore, tremendous
exertion was made for establishing massive annotated data cor-
pera such as ImageNet (Deng et al., 2009). Since manual anno-
tation of about 14 million images by experts is infeasible, this
dataset was mainly built up by the available workforce of indi-
vidual crowdworkers on the internet. Namely, paid crowdsourc-
ing was applied, where in contrast to volunteered crowdsourc-
ing such as OpenStreetMap (Budhathoki and Haythornthwaite,
2012), individual workers are recruited through respective plat-
forms like Amazon Mechanical Turk (Buhrmester et al., 2011) or
Microworkers (Hirth et al., 2011). However, compared to anno-
tating images of everyday life scenes, interpretation of geospa-
tial data by non-experts (i.e., the crowd) is far more demand-
ing due to an unfamiliar perspective (i.e., nadir-like bird view).
This complexity is further intensified when focusing on 3D data,
which non-experts might have never dealt with before. However,
when a semantic segmentation of 3D data is desired, working di-
rectly with the original data is most reasonable in order to avoid
loss of information, for instance, by projection to a lower dimen-
sional space. Herfort et al. (2018), Walter and Soergel (2018)
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and Kölle et al. (2020) already demonstrated that crowdwork-
ers are generally capable of interpreting 3D scenes discretized
by Airborne Laserscanning (ALS) point clouds. However, inter-
pretability of 3D scenes might even be improved by combining
ALS data and high-resolution imagery in form of textured 3D
meshes. Compared to discretized point clouds, textured meshes
provide an easy-to-interpret closed 3D surface description. Such
kind of multi-modality is especially supported by the simultane-
ous use of an ALS sensor and camera(s) in many applications
(Haala et al., 2020; Cramer et al., 2018). For combining both
raw measurements in accurate georeferencing, Glira et al. (2019)
have proposed to run a hybrid adjustment of both sensors’ out-
put in order to exploit the individual strengths of each principle
yielding in an optimal alignment of LiDAR data and imagery.

Although pursuing aforementioned approaches might simplify
the interpretation of 3D data for crowdworkers, the total amount
of instances which need to be annotated is still the same, since
ML models typically require fully annotated training sets. One
means for significantly reducing the number of necessary labels
and thus costs is Active Learning (AL) (Settles, 2009). AL is an
iterative process which aims to detect those instances which are
sufficient for training a ML model. This means manual labeling
is focused on most informative instances only. This approach of
learning from a small pool of labeled points has already proven
to be successful for semantic segmentation of point clouds, as
demonstrated in Luo et al. (2018), Li and Pfeifer (2019), Lin et
al. (2020) and Kölle et al. (2021). While to the best of our knowl-
edge for semantic interpretation of 3D meshes no AL approaches
have been proposed in literature so far, some strategies for Pas-
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sive Learning (PL) are present. Rouhani et al. (2017), Tutzauer
et al. (2019) and Laupheimer et al. (2020) have shown that this
task can be realized as classification of individual faces, which
are simplified to their Center of Gravity (CoG). This enables the
application of classification approaches utilized for point clouds
such as PointNet++ (Qi et al., 2017), SCN (Graham et al., 2018)
and Random Forest (RF) (Breiman, 2001).

Within this work, we aim on establishing a hybrid intelligence
system (Vaughan, 2018) where we completely remove experts
from the AL loop. Our contributions can be summarized as fol-
lows: i) We enhance the AL procedure so that our RF models
for semantic segmentation of the point cloud and the 3D mesh
are iteratively refined in a coupled fashion. ii) Since these models
learn from the crowd, we compare whether 3D point clouds or 3D
textured meshes are more suitable for presenting to crowdwork-
ers, which are addressed by usage of the Microworkers platform.
iii) We release a new high-resolution 3D benchmark dataset in-
corporating both a 3D LiDAR point cloud and mesh data, which
we refer to as Hessigheim 3D (H3D) henceforth.

2. METHODOLOGY

Within this section, we discuss the two main elements of our
human-in-the-loop system: i) the ML part for coupled seman-
tic segmentation of point clouds and meshes (section 2.1 & 2.2)
and ii) the way we leverage human workforce of crowdworkers
(section 2.3).

2.1 AL Loop for Coupled Semantic Segmentation of Point
Clouds and Meshes

AL can be considered as a construct composed of three interde-
pendent components: i) the ML model, ii) the strategy for selec-
tion of most informative points and iii) the employed oracle O.
The interaction of these components is depicted in Figure 1. We
assume to have acquired an ALS point cloud and run basic post-
measurement routines (e.g., alignment of strips). This dataset can
be thought of as unlabeled training pool U . For initializing the
AL loop, a first small training pool T is required including sam-
ples for the desired classes. T is built by the oracle OC , embod-
ied by the crowd C in our case, and then induced into the point
cloud branch (see Figure 1). Based on T , we can train an arbi-
trary classifier for semantic segmentation of the point cloud. For
this, we rely on a RF classifier, which can be easily adapted for
the AL setting for its pointwise functionality and since (in con-
trast to CNN approaches) required features can be computed one
time in advance of the AL loop (features employed are discussed
in section 2.2). After inference of the trained model on the re-
maining training set R (R = U \ T ), the main objective in AL
in each iteration step is to select those instances of R which have
the greatest positive influence on the performance of the model
and therefore justify manual labeling effort (Settles, 2009). Here,
we aim on finding an intrinsic measure for determining the un-
certainty of the model’s predictions. One established method is to
select those points where the entropy of the respective a posteriori
probabilities p(c|x) that point x belongs to class c is maximum
(i.e., the classifier is most uncertain about these points):

xE = argmax
x
−
∑
c

p(c|x) · log p(c|x) (1)

In order to alleviate severe class imbalance ALS point clouds
generally tend to suffer from, we further weight the entropy
scores by dynamically derived factors determined as ratio of

the total number of points nT currently present in T and the
number of representatives of each class nc at iteration step i
(wc(i) = nT (i)/nc(i)). For efficiency reasons, we aim on se-
lecting n points in each iteration step, which often leads to the
acquisition of similar points in terms of their position in feature
space. To increase the diversity of selected points and hence
boost the convergence of the AL loop, we proceed as proposed
by Zhdanov (2019). For this we detect clusters in feature space
by running a k-means clustering (Lloyd, 1982) and form a di-
verse sampling by choosing one instance of each cluster derived.
Therefore the number of clusters k equals the number of points n
selected in each iteration step. However, we need to keep in mind
that non-experts (i.e., the crowd) are asked to generate labels for
the selected points. We aim to evaluate whether we can ease in-
terpretability of sampled points by further applying the method
proposed in Kölle et al. (2021), denoted as Reducing Interpreta-
tion Uncertainty (RIU). Sampled points are often situated exactly
on class borders, where the true label is ambiguous and labeling is
strongly dependent on the individual class understanding. There-
fore, we try to increase the distance to the class border by con-
sidering the selected point as seed point and decide to use a point
within distance dRIU instead when the sampling score (i.e., the
weighted entropy value) of this instance is lower, assuming that
a lower score is closely related to the distance to class bound-
ary (detailed explanation can be found in Kölle et al. (2021)).
Afterwards the selected points (either applying RIU or not) are
presented to crowdworkers for labeling.

This AL loop (denoted by red arrows in Figure 1) is repeated for
ni iteration steps until convergence or until exhaustion of budget.
So far, this approach only allows semantic segmentation of point
clouds (see point cloud branch in Figure 1). If the airborne plat-
form is equipped with imaging sensors as well, we can further
process textured 3D meshes. In order to derive a coupled seman-
tic segmentation of 3D meshes, we associate labeled points and
faces of the mesh by the method proposed in Laupheimer et al.
(2020), referred to as Point Cloud Mesh Association (PCMA).
This procedure works as follows: i) For each face of the mesh,
LiDAR points within an unbounded prism neighborhood (with
shape and orientation determined by the respective face) are se-
lected and further filtered based on their orthogonal distance to
the face’s triangular plane. Due to discrepancies in representa-
tions, few points and faces remain without any associated enti-
ties. ii) The class of the face is then obtained by majority vote
from all class labels of associated LiDAR points.

This method allows to transfer labels from individual points of
the LiDAR point cloud (set by crowdworkers) to the 3D mesh.
Therefore, samples for the mesh are as well implicitly generated.
Thus, we can couple both segmentation processes (see Figure 1).
This consequently makes a second independent AL run for the
mesh expendable and labeling effort for the meshed representa-
tion can be completely avoided by exploiting the overlaying na-
ture of the mesh and the point cloud. However, the performance
of the RF employed within the AL loop for semantic segmenta-
tion of the mesh might be diminished, since although we employ
the RF classifier for both segmentation tasks, the models would
actually differ due to different primitives (3D LiDAR points vs.
mesh faces) and features (see section 2.2). Therefore, different
positions in the two representation forms would be selected by
the classifier, so that a fair comparison of which data representa-
tion is best suited for presenting to crowdworkers would not be
possible. This can only be achieved within the coupled approach
by visualizing context of the exact same selected point, on one
hand by the point cloud and on the other hand by the textured
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Figure 1. Crowd-based Active Learning pipeline for coupled semantic segmentation of both the point cloud and the mesh.

mesh (see section 2.3).

2.2 Employed Features for Semantic Segmentation

We distinguish between features which can be computed from
ALS measurements solely and features only available after de-
riving a textured 3D mesh. For the first group, we compute
geometric features as proposed by Weinmann et al. (2015) and
Chehata et al. (2009) by estimating the structural tensor for the
local neighborhood of each individual point. After extracting the
eigenvalues of that tensor, we can determine the characteristics
of the respective point distribution by forming different ratios of
eigenvalues (Weinmann et al., 2015). Since computing eigenval-
ues and eigenvectors eventually means to fit a plane to the local
point distribution, we can further enhance our feature vector by
taking into account the orientation of this locally adapted plane.
Furthermore, we consider height based features by determining
the height above ground (i.e., DTM level) for each LiDAR point.
Additionally to purely geometric features, LiDAR inherent fea-
tures such as echo ratio and intensity of received echo are also
used for the segmentation process. In order to establish a multi-
scale approach and to analyze features on different levels of ab-
straction, we compute each feature for spherical neighborhoods
of radii r = 1, 2, 3 and 5 m.

To derive mesh features, we follow the approach of Tutzauer et al.
(2019) and encode each individual face by its CoG. By this, we
can on one hand compute all aforementioned geometric features
for our CoG cloud. On the other hand, we preserve features of
the mesh geometry (approximated by CoGs) by assigning mesh
inherent features such as area/density of faces, normal orientation
and curvature, to the respective CoGs (i.e., faces). Furthermore,
by using PCMA, LiDAR-specific features can be transferred to
the mesh representation. For both the point cloud and the mesh,
we additionally incorporate radiometric features (required that re-
spective imagery is available). For this, RGB tuples are converted
to HSV color space and used together with Gaussian smoothed
color values for the aforementioned spatial neighborhoods.

2.3 Employment of Crowdworkers

Although the ML part of our hybrid intelligence system is capa-
ble of identifying most informative points in order to improve the
performance of its predictions, it still depends on a human anno-
tator it can learn from. However, when employing the crowd for
labeling, we need to consider that non-experts work on this task.
Therefore, we need to design such a task as easy understandable
as possible. For reaching a vast pool of potential crowdworkers,
we develop web-based labeling tools similar to those presented
in Kölle et al. (2020) and employ our crowdworkers by usage of
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Figure 2. Webtool used by crowdworkers for labeling a selected point. Either the colorized point cloud (left) or the textured mesh
(right) is presented to the crowd (please note that class designations were simplified for crowdworkers).

the Microworkers platform. In order to initialize the AL loop by
a small training dataset T , a first crowd campaign is conducted
where each crowdworker is asked to mark one point for each
class. We ask for the results of 100 crowdworkers, each receiving
a payment of 0.10 $. Labeled points obtained by this first group
of crowdworkers are afterwards outsourced to be controlled by 3
independent workers (minimum configuration for majority vote).
Furthermore, we can easily enhance this crowd task by includ-
ing control points. Precisely, we additionally include 4 control
points, where the true answer is known. By this, we can on one
hand filter low quality results (more than one point falsely anno-
tated causing denial of payment). On the other hand, we encour-
age the crowdworkers to work carefully by paying an additional
bonus of 0.05 $ per task if only correct answers are given. After-
wards, we aggregate votes of the controlling group and only con-
sider the labels received in the first place to be true if the majority
approves. Otherwise these points are rejected. For comparability
reasons, this initialization dataset is used for all AL runs.

In the AL loop, points selected by the machine (i.e., the RF) are
subdivided in jobs of 10 points each. Here, we again aggregate
class votes from 3 crowdworkers per point and include control
jobs. Analogous to the previous control campaign, we add 4
control points and handle payment same as before (note that we
always use the same 4 control points for each iteration step of
all AL runs in order to allow comparability). For labeling these
points, crowdworkers use the tool visualized in Figure 2. Sam-
pled points are indicated in yellow. For enabling interpretation
of such points we also need to provide their vicinity. Therefore,
we present to the crowd all entities within a 2.5D neighborhood
radius of 20m around the selected point. To determine which
data representation form is easier for the crowd to understand,
this neighborhood is i) given by the colorized 3D point cloud and
ii) by the textured mesh and evaluated separately.

2.4 Dataset and Ground Truth Generation

2.4.1 Data Acquisition and Processing. For evaluating our
proposed pipeline, we utilize simultaneously acquired LiDAR
data and imagery captured over the village of Hessigheim, Ger-
many (Haala et al., 2020; Cramer et al., 2018). Our setup is
constituted of a Riegl VUX-1LR scanner and two oblique looking

Sony Alpha 6000 cameras, integrated on a RIEGL Ricopter plat-
form. Considering a height above ground of 50m, we achieve a
laser footprint of less than 3 cm and a Ground Sampling Dis-
tance for the cameras of 1.5 − 3 cm. Georeferencing of ac-
quired LiDAR strips of this highly dense LiDAR point cloud
(800 pts/m2, approx. 126M points in total) is accomplished us-
ing the OPALS software (Pfeifer et al., 2014). The LiDAR point
cloud is furthermore colorized by nearest neighbor interpolation
of colors from a photogrammetric point cloud derived from Sony
imagery in order to make the data more familiar to crowdworkers.
However, especially for vegetation where Dense Image Matching
fails to generate accurate 3D point clouds due to lacking detec-
tion of identical points in image space, color information can only
insufficiently be mapped to the LiDAR point cloud (see Figure 2).

In case of the textured mesh, color information is directly mapped
from the acquired images even considering occlusions by the help
of the distinct 3D surface, given by the mesh geometry. For gen-
erating this second data representation, both the LiDAR point
cloud and imagery are processed in a hybrid manner by combina-
tion of OPALS and SURE software (Pfeifer et al., 2014; Rother-
mel et al., 2012).

2.4.2 Creation of Ground Truth Data. Reference data for
the point cloud was manually provided by the authors as outlined
in Kölle et al. (2021). For our study, we decide to only use a sub-
set of available classes (i.e., we merge classes), since in Kölle et
al. (2020) it is observed that some classes are hard to interpret for
non-experts. Precisely, we keep classes Urban Furniture (includ-
ing Powerline), Low Vegetation (including Gravel), Impervious
Surface, Car, Roof (including Chimney), Façade and Vegetation
(Shrub & Tree). Ground Truth of the 3D mesh is obtained by
transferring labels from the fully labeled point cloud to the mesh
via PCMA.

3. RESULTS

Within this section, we first discuss the conducted experiments re-
lying on real crowdworkers and some details regarding the crowd
campaigns (section 3.1), which run in parallel to our AL loops.
The performance of the AL loops (i.e., the performance of the
machine learning from the crowd) is elaborated in section 3.2.
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Figure 3. Achieved labeling accuracies of crowd oracles both with and without RIU, representing the vicinity of a point either as point
cloud (a and b) or as 3D mesh (c and d).

For the point cloud we run 6 different AL loops:

• AL(OO) and ALRIU (OO) denote the simulated AL loops
using an omniscient oracle OO , always predicting the true
label for the selected AL points, whereby ALRIU (OO)
makes use of RIU in order to check whether increasing dis-
tance to decision boundary diminishes reachable accuracy.

• AL(OCP ) and ALRIU (OCP ) refer to the same two AL ap-
proaches (with and without RIU) using a real crowd oracle
where the point cloud is presented to crowdworkers (OCP ).

• For AL(OCM ) and ALRIU (OCM ) the point cloud is re-
placed by the 3D textured mesh.

For all experiments dRIU is set to 1.5m according to the findings
of Kölle et al. (2021).

While in section 3.2.1 the performances when using crowd labels
for semantic segmentation of the point cloud are reported, section
3.2.2 is dedicated to the evaluation of the results of the semantic
mesh segmentation based on the same labels as for the respective
point cloud runs but transferred to the mesh via PCMA.

As a compromise between total costs and segmentation accuracy,
each run is conducted for ni = 10 iteration steps, whereby in
each step 300 points are selected for labeling. Since we aim
on coupling the mesh branch with the point cloud branch, as a
first preprocessing step, we eliminate all points in the point cloud
which cannot clearly be assigned to an entity (i.e., face) of the
3D mesh. By this, we solely reduce the number of points in our
unlabeled training pool U , but guarantee clear correspondences
between point cloud and mesh. For efficiency reasons, we further
apply a spatial subsampling to 30 cm point distance for the train-
ing point cloud, which again reduces the number of instances in
U . This is however justified since this method can be considered
as eliminating quasi duplicates in feature space. In case of our
dense dataset, close neighbors of individual points incorporate
very similar feature vectors. Since AL aims on selecting most in-
formative points avoiding duplicates, our spatial subsampling not
only boosts processing speed but also helps guaranteeing diver-
sity of selected points (Kölle et al., 2021).

3.1 Performance of the Crowd

To evaluate which data representation is best suited for present-
ing to crowdworkers, Figure 3 displays the confusion matrices
derived from the labels obtained by the crowd for a complete AL

run each. First of all, we can observe that when spatial context
is given by means of the textured mesh, Overall Accuracy (OA)
is significantly higher (84 % vs. 87 %). This means that under-
standing meshes is significantly easier for non-experts (i.e., the
crowd) substantiating our initial hypothesis. When we present the
point cloud to the crowd for labeling (OCP ), most confusion can
be found regarding class Urban Furniture. Precisely, the crowd
tends to label a point as Urban Furniture aka class Other (see
Figure 2) whenever a difficult to interpret point is presented. Us-
ing such a class always poses the risk that crowdworkers select
this class for most points in order to complete the task as fast as
possible and receive their payment (Gadiraju et al., 2015). This
underlines the importance of our control points, which allow the
results of crowdworkers following this behavioral pattern to be
excluded. Nevertheless, repeatedly choosing class Other might
also be an indication that crowdworkers have severe difficulties
in interpreting many points. In contrast, for meshes, this issue is
already alleviated due to the more realistic closed 3D surface data
representation (see Figure 2). Further confusion for OCP can be
observed for Low Vegetation vs. Impervious Surface, Roof vs.
Façade and Impervious Surface vs. Façade. Those misclassifi-
cations can be explained due to the adjacent occurrence of these
classes in real 3D scenes.

Since AL focuses on selecting points the classifier is most uncer-
tain about, eventually points lying on class borders are sampled
(Ertekin et al., 2007; Kölle et al., 2021). Such points are of course
ambiguous for interpretation and might even be mixed by experts.
This can also be observed for the labels received by OCM rely-
ing on the mesh. Therefore, when increasing the distance to the
decision boundary by RIU, both for presenting the point cloud
or the mesh to the crowd, we can increase the labeling accuracy
and especially minimize such misclassifications since now a clear
class label can be assigned. In both cases RIU increases the OA
by about 4 percentage points, which demonstrates a wise choice
of query functions is profitable in AL, especially minding the em-
ployed oracle. With an OA of 91 % we can yield top label results
by enhancing the query function by RIU and relying on the tex-
tured mesh as presentation modality (see Figure 3).

While accuracies reported in Figure 3 only indicate the perfor-
mance of the respective oracles with regard to the complete loop,
in Figure 4 (top) we oppose the OA of our individual runs at each
iteration step to each other. Please note that we use OA instead
of mean F1-score, since it would only poorly represent labeling
accuracy, as in many iteration steps only a few points for some

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2021-93-2021 | © Author(s) 2021. CC BY 4.0 License.

 
97



classes are present (see also Figure 5). We can observe that la-
beling OA decreases in the course of the AL loop for all oracle
types. Depending on the initial training set, points the classifier is
most confused about might just be those of which no similar ones
are included in the training set so far and which are not necessar-
ily complex for interpretation. During the AL loop, points sam-
pled become consequently more demanding for labeling since the
more confident the model is about typical objects depicted in the
point cloud, the more specific the selections of the model get -
which in the end explains the continuously loss in OA. While
the general ranking of our different oracles remains same as in
Figure 3, OCM + RIU shows an almost constant OA, further un-
derlining its effectiveness.

In our experiments, the time required to complete the crowd
jobs of one iteration step is less than 11 hours. This means that
a complete AL run is finished in about 5 days (approx. 11 h ·
10 iteration steps + approx. 16 h for initialization = 126 h).

3.2 Performance of the AL Loop

The results presented in section 3.1 are utilized within the AL
loop for training of our RF models, which are in all experiments
parametrized by 100 binary decision trees with maximum depth
of 18 (empirically determined by grid search). In each iteration
step, the models for the point cloud and the mesh are trained from
scratch applying bootstrapping and afterwards used for inference
on the test dataset of H3D. Results are reported in Figure 4 (mid-
dle & bottom) in terms of mean F1-score.

3.2.1 Semantic Segmentation of the Point Cloud. For the
point cloud, in Figure 4 (middle) we can observe that within the
first 4 iteration steps all approaches perform similarly well and al-
most reach accuracies of the baseline solutions, which utilize cor-
rect labels only (AL(OO) & ALRIU (OO)). From the fourth it-
eration step on, the approaches relying on meshes as presentation
modality (AL(OCM ) & ALRIU (OCM )) start diverging from the
ones using point clouds (AL(OCP ) & ALRIU (OCP )). In the
end of the iterations, AL runs where meshes are presented to the
crowd perform up to 2.44 percentage points better in mean F1
and 2.71 percentage points in OA (see Table 1). While in case of
OCM not only the performance of the crowd but also the one of
our RF seems to benefit from RIU, the latter does not apply to our
AL loop depending onOCP (ALRIU (OCP )). RIU neither seems
to improve nor to diminish the accuracies, although more re-
ceived crowd labels are correct and systematic confusions (as dis-
cussed in section 3.1) can be reduced. This together with the fact
that AL(OCM ) performs significantly better than ALRIU (OCP ),
although having a similar OA in crowd labels, might seem coun-
terintuitive. The explanation for this can be found by analyzing
the number of correctly labeled instances of class Urban Furni-
ture, which is as follows: AL(OCP ): 241; ALRIU (OCP ): 244;
AL(OCM ): 376; ALRIU (OCM ): 413. This corresponds well
to the result of our RF model. The more correct samples for
this particular class are available in the training set, the better
the overall performance of the RF. This also explains the simi-
lar accuracies of AL(OCP ) and ALRIU (OCP ). However, one
would assume that AL is capable of detecting required points and
requesting corresponding labels by design. Since this is evidently
not the case, it can be concluded that the model is rather confi-
dent about this class - or at least is more unconfident in other
classes. This can also be seen in Figure 5. Until the fourth it-
eration step, in total for all AL runs a similar amount of Urban
Furniture points is queried. From then on, for the runs relying
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Figure 4. Comparison of the performance of the RF model re-
garding the point cloud (middle) and the mesh (bottom) for se-
mantic segmentation, denoted as AL(O) and the accuracies of
different oraclesO (top) serving as input for the classifiers. Dot-
ted black lines represent the baseline of each respective PL result.
Please note that while for the AL runs mean F1-score is used for
evaluation, for the reached accuracy of our crowd oracles we rely
on OA (see also section 3.1).

on OCP (AL(OCP ) & ALRIU (OCP )) almost no points are re-
quested for this class, unlike AL loops using OCM (AL(OCM )
& ALRIU (OCM )). This is mainly due to confusion by the crowd
of points in class Urban Furniture with other classes (causing a
low precision, see Figure 3) in early iteration steps, so that our
model might become more unconfident about these other classes
and therefore mainly requests labels of the remaining classes.

Table 1 further compares the reachable accuracy of PL (i.e., using
the completely labeled training set) to our AL runs. For the point
cloud, our best AL approach ALRIU (OCM ) performs only 1.9
percentage points less in OA compared to PL and only 0.34 per-
centage points less compared to the baseline solution using the
omniscient oracle OO . We want to stress that for this, we ask
the crowd to label 0.25 % of available training points only, which
causes costs of 190 $ (100 points · 0.10 $ + 100 points · 3 rep. ·
0.15 $ + ni · (n/10) · 3 rep. · 0.15 $, see section 2.3).

3.2.2 Semantic Segmentation of the 3D Mesh. For the cou-
pled semantic segmentation of the 3D mesh (as depicted in Fig-
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Figure 5. Histograms of true class affiliation of selected most
informative points in each iteration step.

ure 1), AL runs for meshes perform similar to respective point
cloud loops. Please note that AL runs depending on an ora-
cle using point clouds (OCP ) are not evaluated, since employ-
ing the intermediate result of a 3D point cloud is not reason-
able when a derived mesh is already available. While our two
baseline AL runs, where OO is employed, yield top results in
most iteration steps, the approaches using real crowd oracles
(AL(OCM ) & ALRIU (OCM )) finally achieve similar accura-
cies (see also Table 1). However, in case of the segmentation of
meshes, ALRIU (OCM ) improves its mean F1-score significantly
in the first iteration step. Afterwards the mean F1-score increases
close to linearly while being clearly ahead of AL(OCM ) until the
fourth iteration step. This behavior is desirable, since it offers the
possibility of early stopping of the AL run, thereby further mini-
mizing costs. From Table 1 we can observe that ALRIU (OCM )
reaches top OA for depending on real crowdworkers and only dif-
fers by 2.5 percentage points from the baseline result of PL. Fur-
thermore, in case of our 3D mesh, class Urban Furniture achieves
a significantly higher F1-score compared to the point cloud. This

can be explained by the fact that we only evaluate accuracies for
the faces which can be clearly matched to labeled LiDAR data.
Eventually this equals implicit filtering of class Urban Furniture,
which is especially demanding in mesh generation due to rather
complex and/or thin structures. Thus, only unambiguous repre-
sentatives of this class are present in the mesh. Additionally, we
want to stress that all point selections of the AL loop are deter-
mined by the point cloud classifier (as mentioned in section 2.2),
which means that the detected most informative points might not
be optimal for the mesh RF model. Nevertheless, by coupling the
mesh branch labeling effort and thus costs are significantly re-
duced and accuracies similar to those from the non-approximated
point cloud branch can be achieved (see Table 1).

4. CONCLUSION AND OUTLOOK

Within this work, we have proposed a human-in-the-loop
pipeline, which is capable of completely avoiding the involve-
ment of an expert in the tedious and costly labeling process of
3D geodata for classification purposes. By leveraging AL capa-
bilities, we significantly reduce the amount of necessary labels,
so that only 0.25 % of available training points require annota-
tion by a human operator (which is in our case represented by the
crowd), thus as well minimizing costs to 190 $. We also focus on
investigating which form of data representation is best suited for
presenting to crowdworkers and which modifications of the AL
selection strategy help non-experts to label individual instances.
We found that using meshes can improve labeling accuracy by
about 3 percentage points. Moreover, we can ease interpretabil-
ity by RIU, which increases annotation accuracy by another 4
percentage points. Both enhancements directly impact the per-
formance of our coupled classifiers. We achieve an OA differing
from the PL approach by only 1.9 percentage points for the point
cloud and 2.5 percentage points for the mesh. However, when re-
lying on crowdworkers, the variety of classes to be used is limited
since applying an excessive class catalog also raises the complex-
ity of respective crowd tasks and would likely cause the crowd to
be overwhelmed (Kölle et al., 2020). All experiments within this
work were carried out for the ultra-high resolution H3D dataset,
which means that we rely on close to optimal data input. Similar
datasets are not yet available on a nationwide scale. Therefore,
in our future work, we will verify our proposed methods on cur-
rent state-of-the-art datasets having much lower point densities.

F1-score [%]

Method Data Oracle U. Furn. Low Veg. I. Surf. Car Roof Façade Veg. mF1[%] OA[%]

PL
Point Cloud - 41.14 90.68 85.26 51.63 92.96 83.77 93.05 76.92 88.16
Mesh - 48.57 91.38 88.15 49.81 91.86 85.34 91.88 78.14 88.00

AL

Point Cloud

OO 33.93 90.31 82.70 56.34 88.33 79.73 92.66 74.86 86.65
OO + RIU 36.97 89.91 83.84 55.42 90.05 79.61 91.91 75.39 86.60
OCP 32.32 89.92 76.26 53.95 88.88 75.43 91.70 72.64 83.38
OCP + RIU 31.00 88.54 79.69 53.04 86.82 76.43 90.67 72.31 83.55
OCM 33.37 88.34 78.14 57.40 88.89 79.83 92.07 74.01 85.15
OCM + RIU 34.56 89.59 81.81 56.20 89.18 79.35 92.56 74.75 86.26

Mesh

OO 43.32 90.00 84.00 54.65 86.65 81.95 90.95 75.93 85.32
OO + RIU 46.57 90.14 85.95 57.37 88.88 81.91 90.99 77.40 85.95
OCM 45.93 88.71 82.83 57.51 87.45 82.08 90.58 76.44 84.99
OCM + RIU 44.91 90.02 85.39 53.36 86.84 81.40 91.15 76.15 85.54

Table 1. Comparison of final classification results on the test site of H3D both for the ALS point cloud and the 3D mesh for PL and
AL. The AL designations are related to our different oracle types.
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For those, we assume the mesh to outperform the point cloud as
presentation modality by even greater margin.
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