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ABSTRACT:

Monitoring the condition of railway infrastructure is essential for maintaining safety standards and preventing accidents. The
regular inspections required for this task are still typically carried out in many countries with costly and time-consuming on-site
human inspections. LiDAR point clouds collected by mobile laser scanning (MLS) already proved to be suitable for recognizing
important railroad infrastructure elements, such as cables and the rail tracks. However, the computational requirement for processing
large data sets like these often extremely dense point clouds is still a challenge nowadays, resulting in longer execution time
than practically applicable. In our research, we have implemented and comparatively analyzed railroad fragmentation and object
segmentation algorithms with the focus on robustness and high effectiveness: prioritizing automation and prerequisite reduction
(e.g. the spatial relationship between the position of the railway track and the overhead contact line). These aspects also enable the
easy parallelization for the processing of larger railroad segments.

1. INTRODUCTION

Railroad transportation is one of the most popular methods both
for passenger traveling and cargo shipment. Public railroad
transportation provides annually around 8 billion unlinked pas-
senger trips and over 400 billion passenger-kilometers in the
EU (EuroStat, 2021b), together with around 390 billion tonne-
kilometers in railway freight transport (EuroStat, 2021a). Reg-
ular monitoring and surveillance of the railroad infrastructure is
crucial for safety concerns and accident prevention. This task is
still carried out by expensive and time consuming manual visual
inspections in many countries nowadays.

Automated detection of railroad infrastructure has been ad-
dressed based on LiDAR point clouds acquired both by mobile
terrestrial laser scanning (MLS) (Arastounia, 2015), (Jwa and
Sonh, 2015) or low-altitude aerial laser scanning (ALS), ob-
tained usually from helicopters (Zhu and Hyyppa, 2014), (Jeon
and Kim, 2019). Beside the generalized approaches, special-
ized algorithms on some characteristic of the surrounding en-
vironment have also been developed, optimizing their results in
rural environments (Arastounia, 2015) (Cserép et al., 2018) or
in urban environments (Arastounia and Oude Elberink, 2016).
Either the powerline cable or the rail recognition in these stud-
ies depends on the previously calculated results, their position.
Auxiliary data sources, either laser pulse return intensity (Yang
and Fang, 2014) or high resolution ortho-imagery for RGB data
could also be involved (Neubert et al., 2008), (Beger et al.,
2011).

These state of the art methods can provide precise results, but
their evaluation time is usually considerably high (magnitude
of 5-10 minutes) even for relatively small railroad segments
of a few hundred meters due to the heavy computational load.
Developing concurrent algorithms can boost evaluation time
resulting from the extensive size of the datasets (Arastounia,
2017).
∗ Corresponding author

Our research compares existing algorithms and contributes
to the development and comparison of automated data-driven
methods based on LiDAR point clouds for railroad fragment-
ation and infrastructure recognition. The proposed solution of
our study focuses on the robustness and automation of the al-
gorithm, through minimizing the assumptions (spatial relations
between the cables and rail, flatness of the ground, known tra-
jectory of the train and thus the rail tracks, etc.) Results are
evaluated by their computational efficiency and the accuracy of
the segmented objects.

The rest of the paper is organized as follows: Section 2 de-
scribes the utilized sample LiDAR datasets for the paper. Then
Section 3 introduces the proposed methodology of our research
and explains the processing steps. Section 4 presents the visual
and numerical results and also contains a verification against a
manually annotated point cloud. Finally, Section 5 concludes
the paper and discusses the future work.

2. DATASET

The sample LiDAR datasets used in this study were collected
by the Hungarian State Railways with a Riegl VMX-450 high
density mobile mapping system (MMS) mounted on a railroad
vehicle (shown in Figure 1), operating at 60 km/h. The imaging
unit was composed of two 360◦ field of view laser scanners
and two high-resolution cameras. The navigation unit consisted
of an integrated global navigation satellite system (GNSS) and
an inertial navigation system (INS). The sensor was capable of
recording 1.1 million points / sec with an average 3 dimen-
sional range precision of 3 mm and a maximum threshold of
7 mm. Average positional accuracy was 3 cm with a maximum
threshold of 5 cm. The acquired point clouds contain the geor-
eferenced1 spatial information (3D coordinates) with intensity
and RGB data attached to the points.

1 In the Hungarian national spatial reference system EPSG:23700.
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Figure 1. For technical reasons, the Riegl VMX-450 MMS sensor
was mounted on a car, which was placed on a carriage.

Figure 2. Satellite view of the sample datasets.

Two datasets from different topographical regions of Hungary
were selected and used in our research. The satellite view of the
locations are depicted in Figure 2.

Dataset 1 is the Szabadszállás - Kiskőrös dataset, which cov-
ers an approximately 29 km long and 130 m wide rural
railroad segment in Southern-Central Hungary and con-
tains ca. 2.5 ∗ 109 points. This area is generally flat with
minimal to no slopes on the rail tracks.

Dataset 2 is the Szentgotthárd neighborhood dataset, which
covers an approximately 5 km long and 90 m wide,
partially rural, partially suburban railroad segment in
Western-Hungary and contains ca. 0.8 ∗ 109 points. Here,
at the foothills of the Alps, topography is more varied and
the sample contains slopes.

The complete datasets used in this research are proprietary, but
the selected segments used for results and verification are made
publicly accessible in the Data availability section at the end of
the paper.

Figure 3. Workflow diagram of the processing steps.

3. METHODOLOGY

The proposed methodology of our research contains of 3 ma-
jor processing steps: i) railroad fragmentation receives a single
large input point cloud and fragments it at the curves of the rail
track. Hence the later processing steps, ii) cable recognition
and iii) rail recognition will receive multiple smaller inputs,
containing a mostly straight segment of the railroad. Cable and
rail recognition can be evaluated independently and can be op-
timized to be executed parallelly. When required by the applied
specific algorithm, cable recognition might depend on the res-
ult of rail recognition (or vice versa). This optional dependency
disables the direct parallel execution of cable and rail detec-
tion algorithms for the same area. However, in case of a large
amount of input fragments, where the complete dataset cannot
be analyzed at once due to its size, this will not hinder the par-
allelization of the entire process. A possible follow-up, iv) pro-
cessing step is the error analysis of the railroad infrastructure,
which will not be addressed in detail in this paper. The de-
scribed workflow of the methodology is depicted in Figure 3.

The following subsections 3.1, 3.2 and 3.3 will introduce these
processing steps.

3.1 Railroad fragmentation

The fragmentation consists of the following parts:

1. A 2D projection of the input point cloud is generated. This
2D digital elevation model (DEM) is constructed from the
point cloud along the Z axis, however instead of the usual
inverse distance weighting (IDW) algorithm, the maximal
Z coordinate in each grid cell is used as its value.

2. Vegetation is filtered through contour detection, since it
can be a problem at the edge of the railway track: in some
cases, the algorithm will not only be inaccurate, but it may
even result in false splitting points.

3. The curve of the rail track is detected using one the fol-
lowing methods:

Contour finding by first performing an Otsu threshold-
ing (Otsu, 1979), followed by the contour finding
with Suzuki’s algorithm (Suzuki and Abe, 1985).

Hough transformation (Duda and Hart, 1972) preceded
by a Canny-edge detection (Canny, 1986).
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Generalized Hough transformation or its Ballard-
defined version (Ballard, 1981) to be more specific.
It is a modification of the normal Hough trans-
formation so that it can recognize arbitrary shapes.
However, this method is not completely automated:
while it recognizes the precise occurrence of the
searched shape, it is not able to rotate or resize the
pattern during the search.

4. Finally, the point cloud is split based on the curve of the
trajectory, resulting in one or more output point clouds.

3.2 Cable recognition

There are multiple types of cables to detect above the rail track
(contact cables, catenary cables, return current cables), interna-
tional and national legislation regulating their relative position
to each other and to the rail tracks. In our study we aim to detect
all kind of cables, but with no expectation to distinguish them.
We present 3 algorithms in this subsection we have implemen-
ted and compared to achieve this goal.

3.2.1 Search from above with 2D Hough transform The
computational load usually grows with the dimension of the
space, thus we used an algorithm that achieve point count re-
duction based on a 2 dimensional projection of the original
point cloud (Cserép et al., 2018). Similarly like in Section 3.1,
a 2 dimensional DEM is constructed from the point cloud along
the z axis, with the maximal z coordinate in each grid cell as its
value.

In order to reduce the noise, the projection grid is filtered by
clearing all cells that have less than half of the maximum value.
Afterwards we run a probabilistic Hough line detection on the
projection first with permissive and then with strict parameters.
Finally a cleaning phase of the algorithm goes through all the
points and counts the cells around the actual cell with a sim-
ilar value – a difference lower than a small threshold. In case
this count falls below a given threshold, the cell must be re-
moved, since on a continuous cable, cells with similar height
should be located around it. The disadvantage of this approach
would be the incapability to detect cables below each other. To
address this issue, after the first run the selected points are re-
moved from the cloud and the algorithm can be evaluated again
to find the lower level cables also. Then, the detected cables
from consecutive runs can be merged into a single result set.

Figure 4 shows the main steps of the algorithm. In the first
column the first run of the inner algorithm is displayed, and
can be observed how the line detection initially finds the cables
and the trees also, but then the cleaning step removes the false
positive parts. Since our sample datasets contained three cables
(with two below each other), the second run of the algorithm
was deemed necessary. The second column of the subimages
presents these results and how the additional cable was located
correctly.

3.2.2 Hough transform for 3D line detection This ap-
proach is based on the work of Dalitz and his colleagues (Dalitz
et al., 2017). They proposed a new scheme based on Roberts’
minimal and optimal line representation (Roberts, 1988) to dis-
cretize the Hough parameter space in 3D. The discretization
uses the tessellation of Platonic solids (in 3D space these are
regular, convex polyhedrons). They used the following iterative
modification of the transform. The method works well in case
of outliers.

Figure 4. Mid-steps of the 2D Hough transform method.

1. Discretization of the parameter space for all lines crossing
the point cloud volume.

2. Hough transform of the point cloud X based on the dis-
cretization from step 1.

3. Determination of the line parameters corresponding to the
highest voted accumulator cell.

4. Finding all points Y ⊆ X close (i.e., distance less than
cell width) to the line.

5. Determination of the optimal line going through Y with an
orthogonal least squares fit.

6. Finding all points from X close to the fitted line and their
removal from X and from the accumulator array.

7. Repetition of steps 2 to 6 until X contains too few points
or the specified number of lines has been found.

3.2.3 Region growing algorithm Region growing al-
gorithms usually used for solving image segmentation prob-
lems, since this is the first step of a variety of image analysis
and visualization tasks. The algorithms start with a point that
meets a detection criterion to grow the point in all directions
or a specified direction to extend the region. These procedures
usually created for a specific task, thus don’t have universal cap-
ability (Hojjat and Kittler, 1998).

The region growing approach is based on Zhang’s and his col-
leagues method (Zhang et al., 2016). The original paper as-
sumes that the trajectory of the train – and thus the rail track
and the cables – are known. Since this information is not neces-
sarily provided (e.g. for airborne laser scanning), we replaced
this information with a small seed point cloud of the power-
line cable as more robust solution, from which the trajectory
can be calculated at the beginning of the algorithm with the
RANSAC algorithm (Fischler and Bolles, 1981). Since the pa-
per was not detailed enough some steps were changed in our
implementation. Our version of the algorithm is summarized in
Algorithms 1 and 2.
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Algorithm 1 Self-adaptive region growing method, step 1
Func Find seeds (gridCount)

1: Find a line in the seed point cloud using RANSAC
2: Rotate the seed point cloud to be parallel with Y axis, using

the parameters of the found line
3: Project the seed dataset onto y axis
4: Create grids with given number, gridCount
5: Select the grids which are not empty
6: Calculate the center of the points contained by the grids

Algorithm 2 Self-adaptive region growing method, step 2
Func Extract cables (boxLength,maxPointsPerBox)

1: Select an initial seed point
2: Create initial bounding box with size boxLength
3: while Max Y value of cable < max Y value of point cloud

do
4: Select points with biggest Y value from bounding box
5: Create new bounding box around the center of these

selected points
6: if Y value of new center is ≥ center of old bounding box

then
7: Add boxLength to the Y value of actual seed point
8: end if
9: if The actual bounding box is empty then

10: Decrease Y value of the seed point by boxLength
11: Calculate average of X last 100 cable points
12: If a point is further by 0.5 meter than the average

(on X axis), remove this point
13: end if
14: if number of points > maxPointsPerBox then
15: Reduce boxLength by its quarter
16: Find points which are inside the reduced bounding box
17: if New number of points < 2 then
18: Use the new bounding box
19: else
20: Remove points with biggest X values from original

bounding box
21: end if
22: end if
23: Add content of the bounding box to the cable point array
24: end while
25: Create grids with given size
26: Select the grids which are not empty
27: Calculate the center of the points contained by the grids

3.3 Rail recognition

Our solution is an adapted and optimized version of
Arastounia’s proposed algorithm (Arastounia, 2017). The ori-
ginal algorithm assumed that the trackbed is mainly flat, with
very little variance, which we found not to be the case in our
datasets. The developed algorithm was enhanced with proper
slope detection and handling. The algorithm consists of three
main parts.

1. Locating the trackbed within a small subset of the data

(a) First, the railway direction axis and the start coordin-
ate are computed. The initial step of the algorithm
requires to cut out a small portion of the dataset, in
which we detect the rail pairs. The problem emerges,
that without directional data – which is not necessar-
ily at our disposal –, it would not be defined where
to cut the dataset.

(b) A course classification on a subset of the cloud is
performed based on the heights of the points in the
cloud portion. In a railway environment, the ob-
ject with the most points in it should always be the

trackbed, so the height of the trackbed is determined
by searching for the most common height in our sub-
set within a tolerance threshold of 0.75m.

2. Detecting the rail pairs in that subset

(a) Candidate seed points for the rails are selected.
Since rail tracks by definition are narrow and rel-
atively high objects, our aim is to locate points the
trackbed, which are outliers in their respective local
neighborhoods. Given p is point of the trackbed, this
task can be achieved with the following algorithm:

i. Calculate p’s local neighborhood, Np.
ii. Calculate Np’s covariance matrix, C.

iii. Apply eigendecomposition to C.
iv. Classifying candidate rail seed points. The

smallest eigenvalue of a local neighborhood
without a rail piece should be below a low
threshold close to zero, as the trackbed is usu-
ally constructed to have the smallest height
variation possible in the longitudinal direction
due to safety regulations.

(b) Lines are detected with 2D Hough transformation.
In our algorithm, first the 3D point cloud of can-
didate rail seed points are converted into a 2D im-
age. For this purpose we use the projection filter
introduced and implemented in our previous work
(Cserép et al., 2018). Since the Hough line trans-
formation is dependent on the threshold given, there
is a high chance that the same threshold will not
provide appropriate results for two different data-
sets. To resolve this potential issue, the developed
algorithm works as follows:

i. Set the threshold to a high number.
ii. Run the Hough transformation on the image.

iii. If the Hough transformation did not give at least
two lines, lower the threshold.

iv. Repeat steps ii. and iii. until at least two lines
are found or the threshold reaches zero.

When the Hough transform was executed success-
fully we now convert the 2D image back to 3D.

(c) Rail pairs can be recognized through their matching
direction and the their predefined distance from each
other, called the track gauge. Let d1 and d2 be the
direction vectors of the lines calculated from the start
and end points given by the Hough transform, and
the following criteria can be constructed:

̸ d⃗1d⃗2 ≤ 5◦ (1)

|DistanceBetweenLines−Gauge| ≤ 0.05m
(2)

3. Growing the rail pairs throughout the rest of the data.
An iterative algorithm was implemented which fully grows
its input rail pair. Each point has to meet two criteria in
order to become a candidate rail point. These are the fol-
lowing:

|Hrail −Hp| ≤ 0.05m (3)
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̸ v⃗raildirectionv⃗p ≤ 5◦ (4)

Hrail depicts the average height of the current segment we
grow, Hp is the height of the point, vraildirection is the dir-
ection vector of the rail and vp is the vector connecting the
point to the current rail segment. To grow a rail segment,
first we calculate the local neighborhood Np for each p
point with the radius being our grow size, then recognize
candidate rail seed points from Np.

The flowchart in Figure 5 depicts the main steps of the al-
gorithm.

Figure 5. Flowchart of the developed rail recognition algorithm.

4. RESULTS

4.1 Fragmentation results

A curved rail track segment was selected from both sample
datasets described in Section 2 to evaluate the railroad frag-
mentation. These test areas are shown in Figure 6 and 7.

The value of the maximum allowed path curve was 10◦, with
this value the implemented methods in the framework worked
properly. The execution time of each method for a given sample
data can be found in Table 1.

The computed splitting locations of the methods are visualized
in Figure 8. Each method is marked with a different color as
denoted in the caption. In addition, the manually determined
locations of the maximum trajectory of 10◦ were also marked

Figure 6. Area from Dataset 1, ca. 600 m, 51.8 ∗ 106 points.

Method Dataset 1 area Dataset 2 area
Contour finding 2 m 52 s 9 m 10 s
Hough trans. 2 m 36 s 8 m 59 s
Gen. Hough trans. 3 m 11 s 13 m 7 s

Table 1. Runtime results of the rail fragmentation with different
curve detection methods.

to assess the accuracy of the methods. In both cases, the Hough
transformation produced the best splitting locations (closest to
the manually determined locations).

4.2 Object recognition results and verification

To evaluate and also verify the result and the accuracy of the
object recognition algorithms, we annotated manually both the
cables and the rails for a 100m long segment consisting of
7,316,298 points from Dataset 1 and tested the algorithms on
it. This railroad segment is shown in Figure 9. The following
metrics were examined: i) the runtime (without parallel execu-
tion), ii) the number of remaining points, iii) the number of
false negatives and iv) the number of false positive detections2.
The results are shown in Table 2.

Among the cable detection algorithms, the region growing pro-
duced the best accuracy, however it had the benefit of receiving
a small seed of the cable as an additional input, as discussed
in Section 3.2.3. The 2D Hough transform algorithm for cable
detection and the rail recognition method also produced a fairly
good accuracy. The execution time for all evaluated methods
are outstanding, since other novel approaches like (Arastounia,
2017) required over 5 minutes to process a 100m railroad seg-
ment even with concurrency. Unfortunately, concrete source
code implementations and tested datasets are rarely made pub-
licly available in the related literature, hindering the opportunity
of a more precise comparison of results.

Figure 10 shows the combined visual output of the best cable
and rail track detection result.

5. CONCLUSION AND FUTURE WORK

Both MMS and low-altitude ALS point clouds of the rail-
road infrastructure are typically dense and therefore large point
clouds, to guarantee that enough points are located on the im-
portant objects (e.g. cables) to recognize them. Therefore the
automatic surveillance and monitoring of railroad infrastructure
requires not only reliable, but also computationally efficient al-
gorithms.
2 The percentage of false negative detections were calculated against the

size of the verification point cloud, while the percentage of false posit-
ive detections were calculated against the number of remaining points.

Figure 7. Area from Dataset 2, ca. 1500 m, 58.6 ∗ 106 points.
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Algorithm Object Runtime Remaining points False Negative False Positive
Hough 2D cable 3.11 s 23,397 7.77 % 2.24%
Hough 3D cable 2.38 s 38,291 0% 35.23 %
Region growing cable 0.16 s 24,121 3.06 % 0.33 %
Rail track rails 67.18 s 67,368 3.16 % 1.52 %

Table 2. Accuracy of the object recognition algorithms.

Figure 8. Curve detection result. Blue: contour finding, Green:
Hough trans., Red: Gen. Hough trans., Black: manual

Figure 9. Verification area for cable and rail object recognition.

Figure 10. Combined visual result of the cable and rail track
detection.

In our research we developed a software framework capable of
detecting the most important railroad infrastructure, cables and
rails in a large input file through a series of 3 processing steps.
First, the trajectory of the rail tracks are detected and the input
point cloud is fragmented into parts containing a straight seg-
ment of the rail track. By dividing the original input file into
multiple fragments, this step already provides a high-level par-
allelization for future steps. After the fragmentation, the cable
and rail recognition steps are performed, which could also be
parallelized with each other. The study considered multiple al-
gorithms for these steps and carried out comparative examina-
tion on their runtime and accuracy.

In our further work we will focus on the omitted fourth pro-
cessing step mentioned in Section 3: the automated detection of
possible errors and anomalies in the railroad infrastructure and
its surrounding. Typical issues could be i) the improper height
of overhead contact cable, ii) the horizontal deviation of the
cables, iii) the dangerously close vegetation, iv) the deform-
ation of the railway bedding or v) the sinking of the railway
sleepers. We also aim to extend the involved algorithms with
further available attributes of the points beside their position,
like laser pulse return intensity or RGB data.

COMPUTER CODE AVAILABILITY

An open source prototype implementation for the discussed and
compared algorithms were carried out in standard C++11 as
part of our railroad infrastructure detection framework. Source
code is available on GitHub, released under the BSD-3 license,
at https://github.com/mcserep/railroad. The project
was tested to build and run on Ubuntu Linux 20.04 LTS.

DATA AVAILABILITY

Datasets used in Sections 3 and 4 to reproduce results can be
found at http://dx.doi.org/10.17632/ccxpzhx9dj.1, an
open-source online data repository hosted at Mendeley Data
(Cserép, 2022).
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