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ABSTRACT: 
 
Building detection is an important process in urban applications. In the last decades, 3D point clouds derived from airborne LiDAR 
have been widely explored. In this paper, we propose a building detection method based on K-means clustering and the omnivariance 
attribute derived from eigenvalues. The main contributions lie on the automatic detection without the need for training and optimal 
neighborhood definition for local attribute estimation. Additionally, one refinement step based on mathematical morphology (MM) 
operators to minimize the classification errors (commission and omission errors) is proposed. The experiments were conducted in three 
study areas. In general, the results indicated the potential of proposed method, presenting an average Fscore around 97%. 
 

1. INTRODUCTION 

Geographic information systems (GIS) are essential tools for 
several urban applications such as evaluation of damage caused 
by natural disasters, urban growth planning and monitoring. 
Today, around 55% of the world’s population live in urban areas, 
a proportion that is expected to increase to 68% by 2050, adding 
2.5 billion people to urban areas by 2050 (The United Nations, 
2018). These numbers support the importance of urban planning 
and the use of up-to-date cartographic bases to assist decision 
making. 
 
In general, buildings play an important role in monitoring urban 
environments, since a high percentage is covered by them. 
Besides, the development and growth of cities is usually related 
to the increase in the number of buildings. Considering these 
aspects, several research efforts have been conducted aiming at 
the development of automatic or semi-automatic building 
detection methods. 
 
In the last decades, the scientific community has explored the use 
of remote sensing data such as aerial images, satellite images, 
point clouds derived from photogrammetric and LiDAR systems. 
According to Santos et al. (2021), airborne LiDAR data emerges 
as a suitable alternative, since the 3D point cloud is obtained 
directly from the integration of sensors, not requiring a 
photogrammetric matching process, and is not influenced by 
imaging conditions. 
 
According to Hui et al. (2021), building detection methods can 
be divided into two categories: machine learning and classical 
methods. The first category is based on learning classifiers, 
which require training data such as Random Forest (RF) and 
Convolutional Neural Network (CNN) (Protopapadakis et al., 
2016; Ni et al., 2017; Maltezos et al., 2019; Zhang et al., 2020). 
However, the use of training data can be a limitation, since, in 
some cases, there is still a need to label the initial dataset, which 
is a time-consuming task. 
 
___________________________ 
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In the second category, classical methods explore geometric 
morphological features that allow for distinguishing buildings 
from other objects. Usually, these methods perform region 
growing using geometric attributes, and also clustering 
algorithms such as RANSAC, K-means and C-means 
(Awrangjeb and Fraser, 2014; Cai et al., 2019, Santos et al., 2019; 
Liu et al., 2020; Hui et al., 2021). The limitation of the classical 
methods is related to the definition of multiples thresholds for 
segmentation and region growing stage, for example. Due to the 
point density variation, the definition of local neighborhood and 
attribute estimation are also challenging stages. 
 
Despite the diversity of developed methods, there is no general 
approach capable of encompassing all the complexity of an urban 
scene and airborne LiDAR data characteristics. Thus, building 
detection is still a topic of interest to researchers. In this sense, 
we propose a building detection method based on the well-known 
K-means clustering and omnivariance attribute. The main 
contribution is automatic building detection; thus avoiding the 
need for training data. As complementary contributions, we have 
the optimal neighborhood definition and the use of a single 
geometric attribute to separate above ground points into building 
and non-building classes. Additionally, we propose a refinement 
based on mathematical morphology (MM) to minimize the 
classification errors (omission and commission). 
 

2. BUILDING DETECTION METHOD 

In Figure 1, we show the main steps of the proposed method, 
which is composed of three main stages. In the first stage, the 
selection of above ground points is performed considering a 
normalized digital surface model (nDSM) and a height threshold 
(TH). In the second stage, above ground points are separated into 
two classes: building and non-building. The classification is 
carried out using the omnivariance attribute and the K-means 
clustering. In the last stage, the classification results are 
submitted to a refinement process based on mathematical 
morphology theory. The input data is a 3D point cloud acquired 
by an airborne laser scanning system.
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Figure 1. Proposed method for building detection. 

 
2.1 Selection of above ground points 

Initially, a filtering process is executed to obtain the digital 
terrain model (DTM). This stage is performed using the 
lasground tool from LAStools software. The lasground tool has 
implemented the progressive TIN (Triangulated Irregular 
Network) densification approach proposed by Axelsson (2000). 
Additionally, it provides some options with parameters already 
defined. In this work, we selected the option “city”, which 
considers the following threshold values: step_size = 25 m, 
offset = 0.05 m, spike = 0.5 m and stddev = 0.1 m. 
 
In the next step, the nDSM is generated using the lasheight tool 
from LAStools by evaluating the relative height for each point in 
available point cloud. This height corresponds to the vertical 
distance between the point in question and its projection on the 
DTM.  
 
The selection of above ground points is performed by comparing 
the height of each point (Hi) with a height threshold (TH). In the 
following, we show the criterion applied: 
 

Hi ≥ TH  ቊ
Yes: pi is above the ground

No: pi is not above the ground
 

 
where Hi represents the height of a given point pi and TH the 
height threshold. In this work, we adopted TH = 2 m, whose value 
is based on the minimum height of building roof.  
 
2.2 Classification using Omnivariance Attribute and K-
Means Clustering 

The majority of the points selected in the previous step are 
sampled on the building roofs and/or trees. As discussed in 
Chehata et al. (2008), geometric, textural and spectral attributes 
can be used to classify 3D point cloud. For airborne LiDAR data, 
local geometric attributes are usually explored, as can be seen in 
Weinmann et al. (2014, 2017) and Grilli et al. (2019). In the 
proposed method we explore the local omnivariance derived 
from eigenvalues. Additionally, the K-means clustering is 
adopted for separating above ground points into two classes: 
building and non-building. 
  

2.2.1 Neighborhood Selection 
 
In the context of 3D point cloud, the neighborhood of a given 
point pi can be established by using a sphere or a vertical cylinder. 
Additionally, there is the possibility to define the neighborhood 
by considering the number of neighboring points (n) near pi, 
where n ϵ ℕ. 
 
In this method, we adopt the criterion based on n nearest 
neighbors, however, instead of using a fixed number of 
neighbors, we establish one criterion to automatically select the 
optimal neighborhood for each point. For this purpose, we 
consider a minimum (nmin) and maximum (nmax) value for n, as 
well as an increment value ∆n. The minimum value is nmin = 10, 
in accordance to Demantkle et al. (2012) and Weinmann et al. 
(2014). For maximum value, we select a relatively high number 
of n, i. e., nmax = 50. As for the increment, it is adopted ∆n = 5. 
The variable Ɲi,n represents the neighborhood of a given point pi 
and its n nearest neighbors. In total, for each point, we estimate 
nine possible neighborhoods (Ɲi,10 Ɲi,15  Ɲi,20 . . . Ɲi,50). In 
contrast to Demantkle et al. (2012) and Weinmann et al. (2014), 
our strategy uses the omnivariance feature instead of Shannon 
entropy (Shannon, 1948). In the next section, the criterion for 
choosing the optimal neighborhood is outlined. 
 
2.2.2 Omnivariance Attribute Estimation 
 
The omnivariance is a geometric attribute/feature commonly 
applied to describe the local 3D structure around an interest point. 
This attribute was selected based on previous work results 
(Weinmann et al., 2017). According to West et al. (2004), the 
omnivariance is calculated using Equation 1: 
 

Oλ = (λ1 . λ2 . λ3)1/3                                     (1) 
 

where λ1, λ2 and λ3 correspond to eigenvalues, with λ1 ≥ λ2 ≥ λ3≥ 0, 
estimated from the neighborhood around each point.  
 
As can be seen in the omnivariance map (Figure 1), low values 
are usually related to points sampled on flat surfaces such as roof 
buildings. In contrast, high Oλ values correspond to rougher 
surfaces, as, for example, ridge lines and vegetation areas. 
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Figure 2. Different statistical measures computed for omnivariance: (a) mean, (b) median, (c) standard deviation, (d) maximum and 

(e) minimum. In (f) the profiles for regions I and II are shown. 
 

The eigenvalues (λ1, λ2 and λ3) in Equation 1 are estimated from 
the 3D covariance matrix also known as 3D structure tensor, 
which is a symmetric positive-definite matrix (Weinmann et al., 
2014). This 3D covariance matrix is obtained from the 3D 
coordinates of the point in question and its neighbors. 
 
For each point pi, we calculate nine local omnivariance values 
(Oλ i,10 Oλ i,15 Oλ i,20 … Oλ i,50), where each value (Oλ i,n) 
corresponds to a different neighborhood (Ɲi,n). In this sense, it is 
relevant to select a unique value of omnivariance for the point in 
question. Some statistical measures can be considered such as 
mean, median, standard deviation, minimum and maximum, as 
mentioned by Santos et al. (2021). In Figure 2, we show an 
example with different statistical measures computed for 
building points. Performing a visual analysis, it is possible to 
observe that the ridge lines appear thinner for minimum Oλ. Then, 
based on this analysis, the number of n* neighbors for one 
generic point pi can be selected according the following equation. 
 

ni
*= argmin

j∈{10,15,20,…,50}
Oλ i,j                              (2) 

 
2.2.3 Class Definition using K-means 
 
In this stage, we perform the classification using the K-means 
clustering. As an attribute, we consider the minimum 
omnivariance estimated from Equation 2. The number of classes 
set for the clustering method was K = 2, which corresponds to 
building and non-buildings classes. The main advantages of 
using K-means are that no training is required and the classes are 
automatically defined. The centroids corresponding to each class 
are iteratively defined as described in Johnson and Wichern 
(2007).  
 
Additionally, we use the Euclidean distance in the 1-D space as 
the similarity measure. As an output, the K-means provides two 
centroids. In our context, the centroid with lower value represents 
the building class, whereas the higher is the non-building class.  
 
2.3 Refinement Based on Mathematical Morphology 

The result derived from the classification usually has errors, 
affecting the quality of the building detection. Figure 3a shows 
the building points detected by the K-means clustering. In this 
figure, the classification errors (highlighted by arrows) are 
associated with holes in the ridge lines (omission errors) and 
points wrongly labeled as building (commission errors). To 

minimize the classification errors, a refinement based on the 
concept of mathematical morphology (MM) is adopted. 
 
To allow the application of filtering via MM, a regular grid is 
generated using the building points. The size of the grid cell 
(Sgrid) is set equal to the average point cloud spacing (psavg). After 
the grid generation stage, a 3x3 median filter is applied to 
minimize noise effects. Then, the refinement using MM is 
performed, applying an opening followed by a closing filter. 
According to Pei et al. (1997), this sequential application of 
filters is known as alternating filter and was introduced by 
Sternberg (1986). For this purpose, we adopt a square structuring 
element (SE) of dimension 4x4. The size of the SE is defined 
empirically. 
 
In the refinement stage, the grid is assumed to be a grayscale 
image. Let X denote the grid and B the structuring element. The 
alternating filter (AF) is defined as an opening followed by a 
closing: 
 

AFB(X)=(X∘B) • B                                 (3) 
 

where AFB represents the alternating filter response for the SE B, 
and (∘) represents the opening and (•) closing operation. 
 
To illustrate the effect of the AFB filter on real data Figure 3 is 
shown. In Figure 3a, we show an example of building detection 
with some classification errors. As can be observed, there are 
noise around the building (arrows in cyan) and gaps in roof 
buildings (arrows in yellow). The results of applying only 
opening and closing MM filters are shown in Figures 3b and 3c, 
respectively. In Figure 3d, we show the results derived from 
applying the AFB filtering, where it is possible to observe that 
both types of errors are minimized. 
 

3. STUDY AREAS AND DATASETS 

For the analysis of the proposed method, three study areas were 
selected. Two areas are located in the city of Vaihingen/Germany 
and the other one in Presidente Prudente/Brazil (Figure 4). The 
first area (Area 1 – Figure 4a) is composed of high-rise residential 
buildings that are surrounded by trees. The second area (Area 2 
– Figure 4b) is a purely residential region with small detached 
houses. The third area (Area 3 – Figure 4c) has a high 
concentration of residential houses (left side) and large buildings 
with nearby trees (right side).  
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Figure 3. Example of refinement based on mathematical morphology. Grid generated using the building points (a). Result applying 

only opening filter (b). Result applying only closing filter (c). Result final derived from opening followed by closing (d). 
  

                                (a)                                                             (b)                                                                    (c) 
Figure 4. Study areas located in Vaihingen/Germany (a and b) and in Presidente Prudente/Brazil (c). 

 
The airborne LiDAR data corresponding to areas 1 and 2 comes 
from the ISPRS Test Project on Urban Classification, 3D 
Building Reconstruction and Semantic Labeling, which is 
available for download through the ISPRS website 
(https://www2.isprs.org/commissions/comm2/wg4/benchmark/)
. The dataset of area 3 is part of the Unesp Photogrammetric Data 
Set and is also available to the community (Tommaselli et al., 
2018). In Table 1, we show some relevant characteristics of both 
datasets and the 3D point cloud. 
 

Information Germany  
(Areas 1 and 2) 

Brazil  
(Area 3) 

Scanning system Leica Geo. 
ALS50 

RIEGL LMS-
Q680i 

Scan angle 45° 60° 
Flying height 500 m 550 m 

Average point spacing 0.7 m 0.4 m 
Average point density 4 pts/m2 12 pts/m2 

Table 1. Characteristics of the airborne LiDAR datasets 
considered in the experiments. 

 
4. RESULTS 

Figure 5 shows the results obtained by the proposed method for 
three study areas, as well as the original point cloud and reference 
map of buildings. In addition, we highlight some regions by black 
rectangles to illustrated commission errors (Figure 5a, rectangles 
I and II), omission errors (Figure 5b, rectangle III) and two 

complex situations (Figure 5c, rectangles IV and V), where 
buildings are partially occluded by tall trees. 
 
Figures 6a and 6b illustrates two examples of commission errors. 
To facilitate the visual analysis, we include an aerial image and 
clipping of the point cloud. The cyan arrows indicate the objects 
that were incorrectly identified. In the first case (Figure 6a, I), a 
non-building object was incorrectly detected as a building. In the 
second case (Figure 6b, II), the incorrect detection corresponds 
to part of the canopy. 
 
In Figure 7, we show an example where the building was not 
detected by the proposed approach. In this figure, it is also shown 
the aerial image, point cloud, and one clipping containing only 
sampled points on the roof.  
 
Additionally, Figures 8a and 8b show buildings partially 
occluded by nearby vegetation. In both figures, we display aerial 
and terrestrial images, as well as the point cloud. The buildings 
in question are highlighted by cyan arrows.  
 
The quantitative analysis was carried out using the following 
quality parameters: completeness (Comp.), correctness (Corr.) 
and Fscore (Sokolova et al., 2006; Wiedemann et al., 1998). The 
reference data for areas 1 and 2 is available in the ISPRS dataset, 
whereas the reference for area 3 was manually generated using 
the CloudCompare v2.10.2 software. 
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Area 1 

 
(a) 

 

Area 2 

 
(b) 

 

Area 3 

 
(c) 

Figure 5. Building detection using the proposed method for the study areas 1 (a), 2 (b) and 3 (b). Point cloud according to height (left 
column), result derived from proposed method (middle column) and reference map (right column). 
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Figure 6. Objects incorrectly detected as building by the 

proposed method. Entrance to an underground parking lot (a) 
and canopy (b). The arrow in cyan indicates commission errors. 
 

 
Figure 7. Building not identified by the proposed mehtod. The 

cyan arrow indicates the ommited building. 
 

 
Figure 8. Buildings partially occluded by tall trees. The cyan 

arrows indicate the interest buildings. 
 

According to Hui et al. (2021), the quality parameters can be 
estimated considering different types of information (or scope): 
pixel-based or object-based. In this work, these parameters are 
estimated at the pixel-based level. In Table 2, we show the 
completeness, correctness, and Fscore for three study areas using 
the proposed method. In order to perform a comparative analysis 
with previous works, Table 3 is shown, where the quality 
parameters are reported for areas 1 and 2. In Figure 9, we show 
an error map for each study area, containing the spatial 
distribution of true positives (TP), false positives (FP), and false 
negatives (FN). 
 

Study areas Comp. (%) Corr. (%) Fscore (%) 
Area 1 98.55 93.81 96.12 
Area 2  93.90 98.23 96.02 
Area 3 96.74 98.29 97.51 
Mean 96.40 96.78 96.55 

Table 2. Quality parameters estimated for areas 1, 2 and 3 using 
the proposed method for building detection. 

 

Area 1 
Building detection  

methods 
Comp. 

(%) 
Corr. 
(%) 

Fscore 

(%) 
Awrangjeb and Fraser (2014) 91.50 91.00 91.25 
Protopapadakis et al. (2016) 90.80 90.50 90.65 

Maltezos et al. (2019) 87.70 96.00 91.66 
Liu et al. (2020) 95.40 92.90 94.10 
 Hui et al. (2021) 96.86 92.93 94.85 
Proposed method 98.55 93.81 96.12 

    
Area 2 

Building detection 
 methods 

Comp. 
(%) 

Corr. 
(%) 

Fscore 

(%) 
Awrangjeb and Fraser (2014) 93.90 86.30 89.94 
Protopapadakis et al. (2016) 96.70 84.50 90.19 

Maltezos et al. (2019) 88.20 93.70 90.87 
Liu et al. (2020) 94.10 90.20 92.10 
Hui et al. (2021) 91.54 97.59 94.46 
Proposed method 93.90 98.23 96.02 

Table 3. Quality parameters estimated for areas 1 and 2 
considering different building detection approaches. 

 
5. DISCUSSION 

Conducting a visual analysis of the results (Figure 5), we can 
observe that most of the buildings are correctly detected. Despite 
a low occurrence, it is possible to note the presence of false 
positives and false negatives, which correspond to commission 
and omission errors, respectively. Analyzing the error map in 
Figure 9, it is noticed that area 1 presents higher occurrence of 
false positives, whereas area 2 presents higher occurrence of false 
negatives. 
 
In Figure 6, we highlight two commission errors. In the first case, 
the region of interest (highlighted by the arrow in cyan) is 
probably the entrance or exit of an underground parking lot, as 
can be observed in point cloud and height profile. Visually, this 
object has geometric characteristics similar to a building roof. In 
the second case, part of the canopy was incorrectly detected. This 
problem may be related to the scan pattern of the Leica ALS50 
laser system at the edges of the strip, where we have an 
oversampling. This issue is associated with the deceleration and 
acceleration of the oscillating mirror. Since the omnivariance is 
locally determined based on n* nearest neighbors (see Equation 
2), the oversampling problem affects the attribute estimation. In 
Figure 5, a car was incorrectly detected as building, since this 
object typically has similar omnivariance values to buildings. To 
minimize this problem, a larger structuring element can be 
adopted, for instance. 
 
For the omission errors highlighted in Figure 7, it is possible to 
verify an under-sampling problem, probably caused by the roof 
material. Due to this characteristic, the proposed method did not 
detect the building. Additionally, in Figure 8, we highlight two 
buildings partially occluded by nearby trees. In the first case, only 
one corner is partially covered by vegetation; whereas in the 
second the building is almost completely covered. Despite the 
high complexity, both buildings are detected by the proposed 
method (Figure 5c).  
 
When analyzing the completeness metric (Comp.) (Table 2), it 
can be observed that the results for areas 1, 2 and 3 present values 
around 99%, 94% and 97%, respectively. These results indicate 
the low rate of omission errors. Considering the analyzed areas, 
the lowest omission rate occurs in area 1, followed by areas 3 and 
2, respectively. 
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Figure 9. Visualization of building detection result at the per-pixel level for areas 1, 2 and 3. Yellow color represents true positives 

(TP) (building correctly detected), red represents false positives (FP) (incorrectly detected as building), and blue corresponds to false 
negatives (FN) (omitted buildings). 

 
Considering the correctness metric (Corr.) (Table 2), we obtained 
values around 94%, 98% and 98% in areas 1, 2 and 3, 
respectively. These results also point to the low occurrence of 
commission errors. Additionally, it is possible to observe that 
areas 3 and 2 present lowest omission rates followed by area 1.   
 
Analyzing the Fscore metric (Table 2), it is noted that the proposed 
method presents values around 96%, 96% and 98% in areas 1, 2 
and 3, respectively. In general, this indicates the potential of the 
proposed method in identifying buildings, as well as in separating 
building class from other types of objects. 
 
Performing a comparative analysis (Table 3), it is possible to 
observe that the quality parameters of the proposed method are 
in agreement with previously developed approaches. The 
proposed approach presents the best values of Fscore for both 
areas, as well as of completeness and correctness for areas 1 and 
2, respectively. These results reinforce the potential of the 
proposed method. 
 
In summary, the qualitative and quantitative analysis indicate that 
proposed method is robust in detecting building in an urban 
environment with different complexities. 
 

6. CONCLUSION 

This paper proposes an automatic building detection method 
from airborne LiDAR. The method consists of three main steps: 
selection of above ground points, classification, and refinement. 
The main contribution lies in the automatic building detection, 
without requiring training and automated selection of neighbors 
around each point based on the minimum omnivariance, followed 
by one refinement step using MM operators. The results indicate 
that the proposed method has the potential to be applied in urban 
environment with different complexities, presenting an average 
Fscore around 97%. Additionally, the proposed method presents 
results similar to those previously developed. As a limitation, this 
approach requires the conversion of LiDAR data into a regular 
grid, losing information about building shape. 
 
For future research, we suggest the development of a refinement 
process in 3D space, avoiding the need of grid generation. 
Additionally, we suggest a comparative analysis in terms of 

processing time and application of the proposed method on 
photogrammetric point clouds. 
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