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ABSTRACT:

This paper presents a new deep-learning-based method for 3D Point Cloud Semantic Segmentation specifically designed for pro-
cessing real-world LIDAR railway scenes. The new approach relies on the use of spatial local point cloud transformations for
convolutional learning. These transformations allow an increased robustness to varying point cloud densities while preserving met-
ric information and a sufficient descriptive ability. The resulting performances are illustrated with results on railway data from two
distinct LIDAR point cloud datasets acquired in industrial settings. The quality of the extraction of useful information for main-
tenance operations and topological analysis is pointed together with a noticeable robustness to point cloud variations in distribution
and point redundancy.

1. INTRODUCTION

3D data are becoming a standard for environment percep-
tion, and replace images in various use cases: autonomous
cars, urban mapping, forensics. They usually come as point
clouds (coordinates in the 3D space) with an associated ra-
diometry information. As deep-learning for processing 2D im-
ages has already developed towards industrial use (face recogni-
tion, CGI, cartography), deep-learning for processing 3D point
clouds is an ongoing field of research. In the past few years,
the autonomous cars industry has been a driving force of its
development especially by providing open source data – e.g.
SemanticKITTI (Behley et al., 2019).

With the uprising embeddability and decreasing financial cost
of high precision devices (LIght Detection And Ranging scan-
ners – LIDAR) point clouds data for geomatics and large scale
topography become widely accessible (e.g. the OpenTopo-
graphy1 database). Several large scale high density open source
LIDAR datasets – e.g. Hessigheim Benchmark (Kölle et al.,
2021) – address the issue of Point Cloud Semantic Segment-
ation (PCSS) i.e. labeling each point with relevant semantic
information. Although this information is low-level, it is used
to build meaningful representations for real-world application –
e.g. numerical terrain models, vegetation mass estimate, pop-
ulation density, infrastructures cartography – see the work of
Soilán et al. (2019) for a comprehensive review in the railway
field. Granting the railroad industry has been using LIDAR
data for a while, especially for these type of applications, deep
learning-based processing is yet at its early stages of develop-
ment in this field. The use of reliable point cloud semantic in-
formation could simplify existing railway use cases and lead to
new ones (vegetation growth estimate, automated site invent-
ory, assisted building information modeling). Railway LIDAR
∗ Corresponding author
1 https://opentopography.org

Figure 1. Top view of railway LIDAR point clouds using:
airborne capture (left), railborne capture (right), colorized by

relative local density (low-medium-high / blue-green-red)

PCSS represents a first step towards optimizing maintenance.

In this paper we address the issue of semantic segmentation
on large scale railway LIDAR point clouds by proposing a
simple partially symmetrical kernel operator supported by a
deep-learning framework. We design our method to be spe-
cifically adapted to the characteristics of railway LIDAR data.
Evaluation of the resulting approach is performed using rail-
way data from two distinct LIDAR point cloud datasets. The
paper is organized as follows: we first introduce the railway
context and our datasets as to identify their specificity. We then
discuss several PCSS methods relevant to the specifics of our
use case. We present our deep-learning approach designed for
railway environment then evaluate our results of segmentation,
speed and robustness to point distribution together with several
state-of-the-art methods. We finally elaborate on the future de-
velopments our approach could benefit from.

2. RAILWAY CONTEXT

SNCF Reseau, the french railway state-owned company, co-
ordinates the maintenance operations of ∼27,000km of high
speed and regional active railway lines. Its numerical twin pro-
ject aims at modeling the entire network and its infrastructure,
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Figure 2. Slice from an aerial LIDAR point cloud of railway
tracks colorized by semantic class

centralizing positional and semantic information along with any
maintenance-related details into a unique model. It is part of an
ongoing effort to optimize existing operations and evolve to-
wards predictive maintenance.

To collect high precision topological data on a regular basis,
SNCF Reseau has been using railborne and airborne LIDAR
systems for the past few years. To keep information up to date,
data acquisition campaigns are continuously led throughout the
entire network hence providing a significant and still increas-
ing amount of available data to process. The resulting 3D point
clouds (see Figure 1) are currently being used to perform auto-
mated analyses with model-based algorithms for track vectoriz-
ation, vegetation to infrastructures proximity warnings or caten-
ary pole geolocation. While focusing on specific infrastructure
objects (see Figure 2), we want to have a better estimate of the
benefits of deep-learning PCSS in railway environments.

To compete with existing model-based industrial approaches
we want to achieve a good quality of segmentation (as it is the
very first step to maintenance related object extraction) while
keeping a low processing time – the amount of collected data
being consequent. Also, since the ground truth data we present
in Section 2.1 is not definitive and will be updated (possibly on
a regular basis) to be more representative of the overall infra-
structures, we want our deep-learning based solution to be fast
to train.

2.1 Railway datasets

To tackle our use case, we introduce two datasets acquired on
French railroads, annotated for semantic segmentation evalu-
ation purposes (see Table 1). The former (Paris-Lyon) is a hand-
labeled (high semantic quality) airborne LIDAR point cloud
dataset of 5.25km of linear tracks on a high-speed line. The
later (Saint-Etienne) is a semi-automatically labeled (lower se-
mantic precision) railborne LIDAR set of 13km on a regional
line.

Dataset Type Length (km) Npts (M) Seg. truth
Paris-Lyon Airborne 5.25 297.5 Manual
Saint-Etienne Railborne 13 257.0 Semi-auto

Table 1. Railway LIDAR datasets characteristics

The environment in the Saint-Etienne is much more diverse
than in Paris-Lyon. Both are labeled using the same gen-
eric set of classes: Ground, Rail, V egetation, Fence,
Building, CatenaryPole, CatenaryWire, Structures,
Environment. While Structures encompasses rail bridges,
road bridges and tunnels, Environment contains all remaining

Figure 3. Number of points per class (and percentages) for each
of the railway datasets

railway related objects (beacons, antennas, electrical cabinet,
etc.) and punctual objects (lightning pole, high voltage lines,
cars, etc.). As we focus mainly on the railway infrastructure, we
keep a reduced number of classes to facilitate our PCSS prob-
lem while still segmenting out important objects. Both data-
sets contain the same information per point collected from the
LIDAR scanner: XY Z the 3D spatial coordinates, Intensity
of the returning signal, Nret the number of returns per laser
beam and Rid the return index in a series of returns per beam.

2.2 Analysis

Here we want to identify the characteristics of our datasets in
the scope of our PCSS task. These characteristics will orient
our choices in the development of our specific approach. As we
focus on railway infrastructure, we notice in Figure 2 that ob-
jects of interest are mainly oriented vertically. The ground be-
neath the tracks being necessarily flat for complying with rail-
road standards, objects like antennas, catenary poles, signaliza-
tion poles or electrical cabinets always show a major Z-oriented
component.

A usual inconvenient of the LIDAR scanning approach is the
locally varying distribution of points in the resulting cloud. As
we notice in Figure 1, areas close to the sensor bear more point
density than those away from it. We also notice that a lower
point of view (railborne) leads to more local density variations
than a higher point of view (airborne). Finally, as objects of in-
terest are very scarce in both datasets, we struggle with a strong
class imbalance (see Figure 3). Saint-Etienne dataset shows a
greater proportion of points from several misrepresented classes
than Paris-Lyon.

3. RELATED WORKS

Keeping in mind our objectives of segmentation quality, train-
ing and inference speed and robustness to varying density, we
review in this section a few state-of-the-art trends and tech-
niques for PCSS relevant to our use case.

3.1 Railway LIDAR PCSS

In our specific industrial context, traditional model-based
approaches are often object oriented and rely on user-
implemented geometrical global and local features, trajectory
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Figure 4. Successive steps for performing local projective cylindrical convolution with: (a) the 3D cylindrical neighborhood (green)
centered around the query point (red); (b) the spatial 2D projection and partitioning of the neighborhood; (c) the max-pooling of the

neighborhood points’ attached spectral features into a 3× 3 grid used as a convolution support for the weight matrix Ω3×3

information – e.g. Lamas et al. (2021). Although these ap-
proaches perform well in controlled environments, they need to
be redesigned for any change in use case and are sensitive to
unforeseen characteristics.

In recent work, Guinard et al. (2021) propose a fast Ran-
dom forest classifier using a series of handcrafted features de-
rived from eigenvalues of local point-neighborhoods covari-
ance matrices. To improve the algorithm’s robustness to ill-
sampled data and processing speed, the authors design a pre-
segmentation step of the point cloud into geometrically homo-
geneous, simple segments. Classification is performed on those
segments and propagated to the original points. The methods
shows very good results although on a very small dataset.

Exploring deep-learning approaches, Soilán et al. (2020) apply
PointNet (Qi et al., 2017a) and KPCNN (Thomas et al., 2019)
to segmentation of railway tunnels point cloud data. Although
the test environment is simple, their work shows hopeful results
for full infrastructure segmentation using deep-learning-based
approaches.

3.2 Deep-Learning for LIDAR PCSS

A major issue in deep-learning PCSS lies in the definition of
the data: as opposed to 2D pixels or 3D voxels images, point
clouds are unstructured thus disabling straightforward discrete
convolutional operations. Several approaches work around this
issue using intermediate global representations, i.e. projecting
point clouds onto 2D grids (Boulch et al., 2018) or 3D voxels
(Tchapmi et al., 2017).

PointNet (Qi et al., 2017a) stands as a pioneer in proposing to
work directly on unstructured point cloud. Rich features learn-
ing without the need of a proxy representation of the point cloud
is achieved by approximating n-dimensional global filters with
Multi-Layers Perceptrons (MLP). Points coordinates are dir-
ectly passed as features for learning. Since MLP layers pro-
cess points individually, the local context is aggregated through
pooling operations. Although lacking the descriptive power of
a local operator, this approach proves to be efficient and ex-
tremely modular.

Recent works (Boulch, 2020; Thomas et al., 2019) introduce
a new type of continuous 3D local convolution using an un-
structured kernel allowing a fine contribution from each local
neighborhood point to the convolution product. The downside
to this approach is its sensitivity to data redundancy – e.g., two
spatially close points bearing similar spectral information will
both contribute equally to the convolutional product.

In a more straightforward design, some methods propose a
structured discrete kernel as 3D local voxels (Hua et al., 2018)
or 1D bins (Zhang et al., 2019). Though both approaches
operate on a point’s local neighborhood (thus preserving the
point cloud global representation) they imply a spatial projec-
tion while calculating the learned features. At the risk of limit-
ing kernel descriptiveness, the ShellConv kernel (Zhang et al.,
2019) keeps a low number of learned parameters and speeds up
learning and inference.

4. A PARTIALLY SYMMETRICAL KERNEL FOR
LOCAL POINT CLOUD DESCRIPTION

To fulfill our objectives of segmentation, speed and robust-
ness to varying density, we inspire from the ShellNet projective
descriptor (Zhang et al., 2019). Its kernel design is simple but
efficient and allows a significant increase in inference speed. To
benefit from the seemingly important elevation information of
our objects of interest (cf. Figure 2), we design a vertically ori-
ented cylindrical kernel operating on local point neighborhood.
Working with metric data, we also want to preserve metric in-
formation along the transformations as it can be discriminant
(e.g. between a shack and an electrical cabinet).

4.1 A focus on neighborhood selection

As the calculation of the convolution product is to be performed
on a local neighborhood of points (see Figure 4, a), a point
selection operation must be used to define this neighborhood.
Several recent works (Zhang et al., 2019; Thomas et al., 2019;
Boulch, 2020) use a K-Nearest Neighbors algorithm (K-NN)
and normalize the selected points to a unit sphere. Although
easily parallelizable, this approach neither guarantees a fixed
size neighborhood nor metric conservation hence overlooking
potentially discriminant tacit information.
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Figure 5. Schema of a K-NN selection (a) and a fixed distance
neighborhood selection (b)

An alternative approach is proposed here. Define a sphere of ra-
dius rs centered on a query point p. Let S be the set of all neigh-
boring points within this sphere, i.e. q ∈ S ⇔ ∥p− q∥ < rs.
The proposed approach samples uniformly K points from S
(see Figure 5). This sampling approach is efficiently implemen-
ted in the python package ”Torch-Cluster” (Fey, 2020). We find
that this implementation allows the selection of a large number
of neighbors without significant impact on the overall algorithm
speed, contrary to a K-NN search. Moreover, the fixed-size ap-
proach seems to help increasing robustness to local variations
in local points distribution (cf. Section 5.3).

In the case where K < |S|, drawn points are repeated which
does not influence the convolution product thanks to the spa-
tial binning and max-pooling operations later performed (see
Section 4.3). To avoid under-sampling, i.e. K ≪ |S| or
overly repeating information i.e. K ≫ |S|, we aim at select-
ing rs such as K ≈ |S|. At each layer’s first forward pass,
for each input point p, we use a K-NN algorithm to calculate
dp = max

∀q∈Nk
p

||p − q||. The averaged maximal distance per

K-neighborhood over the input point set P is defined as rs =
1

|P |
∑
p∈P

dp. Once rs is fixed for each layer, the training process

only uses the distance search.

4.2 An axially symmetrical projection

One of the main objectives of this work is to take advantage
of the inherent characteristics of the railway scenes – i.e. ob-
jects of interest have a strong vertical component. Although
ShellNet (Zhang, et al., 2019) uses a fully invariant descriptor,
we define an axially symmetrical transformation to conserve
relative elevation information. This transformation is applied
around the query point p =

[
xp yp zp

]T , with p ∈ Nk
p

the K-neighborhood of p obtained using the approach described
in Section 4.1. It consists in projecting the K-neighboring 3D
points q ∈ Nk

p into 2D space using the transformation Φ ex-
pressed in Equation 1. Where x, y, z are the points 3D coordin-
ates, zmin denoting the minimum z value of the neighborhood
points Nk

p .

Φ : R3 → R2

Φp(q) =

[
||(xq − xp, yq − yp)||

zq − zmin

]
where zmin = min

∀q∈Nk
p

zq

(1)

The resulting 2D neighborhood is illustrated in Figure 4, b. Al-
though this transformation simplifies the K-neighborhood ex-
pression, a downside to this strategy is the loss of information

due to projecting 3D data onto 2D domain, even while pre-
serving elevation, possibly impeding on the kernel overall de-
scriptiveness.

4.3 Binning and max-pooling operation

Because spinning LIDAR sensors sample regularly in angular
domain, points are sampled unevenly in height/range space de-
pending of their distance to the sensor. To deal with this issue,
Zhu et al. (2021) propose to use a cylindrical spatial partition-
ing centered on the sensor for processing single scans. In this
geometry, scans are transformed from cartesian to cylindrical
coordinate system and projected into a cylindrical grid. Doing
so, the number of points in cells become roughly independent
of their distance to the sensor. Although this idea is interest-
ing to deal with sampling issue, it is restricted to process scan
one at a time (or at least implies having information about the
sensor location over time) since the absolute geometry changes
between scan acquisitions. In our use case, scans are already
concatenated into dense point clouds thus presenting a differ-
ent density profile illustrated in Figure 1. Moreover, in our
trainborne and airborne configurations, the embedded spinning
LIDAR sensors are single-sheet and scanning perpendicularly
to the movement vector. Nonetheless, this approach can be used
to regularize density with a local statistical approximation in-
stead of global one.

A spatial K-neighborhood points grouping within bins is then
performed as shown in Figure 4, b. For the point p its feature
vector at the output of the operator F out(p) is computed from
feature vectors of the the Nk

p input points F in(q) using Equa-
tion 2. For each bin Bi, the feature vector of all point belonging
to Bi are merged using a MaxPooling operator. The resulting
feature map (one feature vector for each bin) is then convoluted
with the filter (parametrized by the weights ωi) (see Figure 4,
c).

F (n)(p) =

|B|∑
i

ωi ·MaxPool({F (n−1)(q) : ∀q ∈ Bi}) (2)

As the binning operation obviously reduces the intrinsic
measure-induced noise or local variations in points distribution,
the max-pooling operator (see Equation 2) provides a regular-
ization by skipping redundant local information – e.g., two spa-
tially close points bearing similar spectral information and fall-
ing into the same bin contribute only once to the convolutional
product.

5. RESULTS

In this part we first introduce the network architecture used
to support the convolutional operator. We then present the
method’s results and compare its segmentation performances,
execution speed and robustness to varying density to other state-
of-the-art approaches.

5.1 Network design

The proposed approach is based on the well known U-Net (Ron-
neberger et al., 2015) (encoder-decoder) architecture for seg-
mentation used in many PCSS methods (Tchapmi et al., 2017;
Boulch, 2020; Thomas et al., 2019), where 2D convolutional
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Figure 6. Structure of the encoder-decoder network with the Cylindrical convolutions, the MLP and PCA modules. Each CyConv
layer also takes as input the downsampled point cloud along with the previous layer’s features in order to perform the spatial pooling.

K denotes the numbers of searched neighbors per input point at each layer level.

blocks are replaced with the cylindrical 3D convolution pro-
posed in Section 4. This model is illustrated in Figure 6.
The successive dimensional reductions, here computed using
Farthest Point Sampling (FPS) algorithm (as introduced by Qi
et al. (2017b)), along the steps of the network reduce computa-
tional time and memory needs. The skip connections between
the encoder and the decoder allow a proper update of the first
layers’s weights where the spatial information is being encoded
– an essential step especially with 3D points clouds holding few
initial spectral information. Spectral (NxF) and spatial informa-
tion (Nx3) are processed by two separated frontend before feed-
ing the convolutional encoder-decoder.

The spatial frontend is composed of a Principal Component
Analysis (PCA) module followed by a shared MLP and oper-
ates as follows: for each input point pxyz its k spatial neigh-
bors Pk are uniformly selected within a fixed distance sphere
(cf. Figure 5 and Section 4.1). The covariance matrix of the

centered neighborhood’s positions C =
PT
k ×Pk

k−1
is diagonalized

such as C = V ×Σ×V T where V is the matrix of eigenvectors,
Σ the diagonal matrix holding the eigenvalues λ1 ≤ λ2 ≤ λ3

in decreasing order. Once normalized, these eigenvalues are
used as rotationally invariant local features and lifted to higher
dimension using a 3-layers shared MLP composed of respect-
ively 16, 32 and 32 nodes. The spectral frontend is composed of
a single 3-layers shared MLP composed of respectively 16, 32
and 32 nodes applied to the LIDAR features Intensity, Nret

and Rid introduced in Section 2.1.

Both resulting spatial and spectral features are stacked together
and fed into the convolutional backbone consisting in 8 convo-
lutional layers. Finally, the last MLP layer decodes the output
features to the desired output semantic classes.

5.2 Analysis of semantic segmentation quality

This part presents the segmentation performances of the pro-
posed method and compares them to the similar state-of-the-art
methods ConvPoint (Boulch, 2020) and ShellNet (Zhang et al.,
2019) over the two railway datasets presented in Section 2.1.
Segmentation performances were evaluated using the widely
used mean Intersection-over-Union (mIoU) metric as described
by Qi et al. (2017a).

For fair comparison, the learning parameters of our approach
have been chosen to be close to those originally used in the

tested methods. To select the network inputs, the dataloader
proceeds as follows: 8 points are randomly selected from the
entire training dataset, used as centers for column-shaped areas
of 10m × 10m wide. All points within those 8 areas are each
randomly sampled to 8192 points and concatenated as input –
in areas containing less than 8192 points, samples are repeated.
Each point is represented by its XY Z position and its base
LIDAR information introduced in Section 2.2 as normalized
and centered input features. The inference split of Paris-Lyon
dataset represents 14.3% of the entire dataset (750m) and 19.2%
for Saint-Etienne (2.5km).

The network is trained using a cross-entropy loss function, an
initial learning rate L0 = 1× 10−3 along with an Adam optim-
izer. Each epoch is composed of 100 iterations over the data-
loader, i.e. 100 × 8 × 8192 points. The current learning rate
is decreased every 50 epoch by a factor 0.9. All methods use a
dropout parameter of 0.5 and batch normalization steps while
training. As both datasets’ classes are unbalanced (see Fig-
ure 3), a loss weighting coefficient is applied during training:

ρ = 2.5

√(
Pmax
Pc

)
∀c ∈ C the classes, with P the percentage

of a class in points within the dataset. It allows a stronger error
back-propagation for the less represented classes.

Semantic segmentation performance results are summarized in
Table 2. The proposed method shows comparable overall res-
ults with both tested state-of-the-art methods. It systematic-
ally outperforms both methods while segmenting large objects
like buildings, concrete structures, vertical objects like caten-
ary poles or environment objects (encompassing antennas, side-
track beacons, signal poles, electrical cabinets or power-line
poles) but, mostly underperforms while segmenting the ground,
rails or vegetation (i.e. classes without a dominant vertical com-
ponent).

We also notice that the strong class imbalance does not neces-
sarily impact the segmentation performances. In Paris-Lyon
results, all methods perform properly on the catenary poles
class but not on the building class (respectively 0.14% and
0.11% of the dataset’s points). ShellNet fails to segment the
building class altogether. This result can be explained by the
regular spatial distribution of catenary poles within the point
clouds, contrary to the buildings. The batches being drawn ran-
domly across the whole dataset, the building class is not seen
often during training. We can conclude that in this configura-
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Figure 7. Colorized segmentation results on both railway datasets with: Ground in brown, Rail in bright green, V egetation in plain
green, Fence in red, Building in yellow, CatenaryPole in blue, CatenaryWire in cyan, Structures in grey, Environment in

bright pink.
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Dataset Method mIoU Ground Rail Vegetation Fence Building Cat. Pole Cat. Wire Struct. Env.
ConvPoint 78.1 88.1 94.5 87.7 84.5 54.0 82.9 97.6 73.9 39.7

Paris-Lyon ShellNet 66.1 86.0 90.7 85.8 78.8 0.0 73.0 97.3 68.9 14.5
Ours 83.4 82.4 89.1 82.3 79.5 97.2 86.1 98.0 84.7 51.8
ConvPoint 76.7 95.8 84.5 96.9 35.0 78.0 83.8 96.5 92.0 28.0

Saint-Etienne ShellNet 73.3 93.3 78.4 95.1 32.2 77.7 79.1 93.2 91.2 20.2
Ours 77.3 94.6 77.9 96.5 36.9 81.2 90.1 96.8 92.1 29.7

Table 2. Segmentation performances in mIoU (%) by class on Paris-Lyon and Saint-Etienne datasets

tion, the spatial distribution of objects within the dataset has a
strong impact on the segmentation performances, especially in
the case of statistically unbalanced dataset.

To better understand the caveats behind the metrics, we display
comparative views of the resulting segmented points clouds in
Figure 7. In Paris-Lyon, we see that both ShellNet and Con-
vPoint show confusion between the bridge (structure) and the
ground class while our approach does not. This is most likely
due to its large metric receptive field. As a downside, it presents
a lower accuracy on the fine-grained textures like the low veget-
ation. In Saint-Etienne, we notice that our approach is more
successful in segmenting the antenna which is attributed en-
tirely to the catenary pole class with ConvPoint and partially
with ShellNet. This aspect is most likely due to the tacit preser-
vation of the metric information along the network. Our ap-
proach also seems to be less sensitive to spatial noise while
segmenting objects inside the vegetation (environment pole and
wire on the bottom right of the Saint-Etienne thumbnails).

5.3 Processing speed and robustness to point distribution

Although our segmentation results are competitive with the se-
lected state-of-the-art approaches in a railway environment, the
industrial constraints discussed in Section 2.2 lead to the mat-
ters of training and inference speed and robustness to variations
in point cloud distribution.

Method Paris-Lyon Saint-Etienne
Train (min) Inference (s) Train (min) Inference (s)

ShellNet 1067 1568 388 1666
ConvPoint 144 1286 85 2232
Ours 94 1475 375 2075

Table 3. Comparison of compute time for training phase and
inference phase on both datasets (lower is better)

Training and inference times necessary to achieve the segment-
ation performances displayed in Table 2 are summarized in
Table 3. In our inference settings, we chose for ShellNet and
our method to sample a 10m × 10m wide column every 2
meters, offering a satisfying compromise between speed and
segmentation performances. As ConvPoint showed very low
segmentation performances with a 2 meters step, we reverted to
the author’s original 0.8 meter step.

The proposed method converges faster (train) on Paris-Lyon
(∼10 times than ShellNet and ∼1.5 times than ConvPoint),
and shows an inference time consistent with those of the other
methods – although ConvPoint shows slightly better results. On
Saint-Etienne however, the proposed method struggles to reach
convergence within competitive time (ConvPoint is ∼4.5 times
faster than the other methods), the inference times are similar
for all methods – although slightly better for ShellNet. The
Saint-Etienne dataset scene complexity being greater, smaller
networks (ShellNet and ours) might suffer from a lack of ab-
straction compared to ConvPoint (embedding a 13-layers-deep
network), leading to a slower convergence.

Figure 8. Effect of different grid-sampling resolutions with the
Paris-Lyon inference split on the segmentation mIoU metric.

The tested resolutions are 1cm, 5cm, 15cm, 30cm, 50cm.

An other aspect of our kernel approach being oriented towards
robustness to varying density, we evaluate our method’s robust-
ness to different point distributions. We test the methods (only
at inference) with subsampled point clouds (randomly keeping
one point per voxel of a 3D grid) and compare their segmenta-
tion performances (see Figure 8). Although the grid resolution
varies, the number of points per sample block (10m × 10m
column) stays the same. Since a fixed number of points per
batch is needed (to make the algorithm parallelizable), point
are repeated if necessary. Hence, increasing the sampling grid
resolution also increases the redundancy of points in the input
batches.

We notice in Figure 8 that our methods’ segmentation per-
formances are less impaired by large grid subsamplings than
the other two methods. This effect is due to a combination
of factors: our neighborhood selection is fixed (the neighbor-
hood size is not dependent on point-to-point distances), we use
a local spatial pooling before convolution (discarding redundant
points). Interestingly, ConvPoint performs slightly better with a
5cm sampling, probably benefiting from the global density reg-
ularization induced by this type of sampling without too much
a loss of information.

These results are promising for our approach especially consid-
ering the industrial quantities of data to be processed. To tackle
this issue, the inference protocol could be redesigned to perform
on roughly subsampled data (e.g. 30cm grid sampling) using a
much larger block size to provide a fast global segmentation
of very large point clouds with a minimal loss of performances
e.g. for a fast count of catenary poles in a very large area.
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6. CONCLUSION

In this paper we investigated the relevance of a deep-learning
based approach for LIDAR railway PCSS with industrial stand-
ards. The railway environment is specific regarding the spatial
disposition of infrastructure objects. We build on this specificity
to design an axially symmetrical learnable kernel operator for
integrating in a deep-learning framework.

We experimented with a classic U-Net architecture on two dis-
tinct LIDAR railway datasets. Our methods shows similar
or better segmentation quality results (especially on railway
specific objects of interest) compared to other state-of-the-art
methods (cf. Section 5.2) and mitigated results in terms of con-
vergence times on complex datasets (cf. Table 3). Finally, its
ability to process strongly subsampled clouds without suffering
too severe of a drop in segmentation performances opens indus-
trial possibilities in terms of speed for specific maintenance use
cases.

Future investigations into the network architecture could prove
useful in scaling to industrial expectations as railway environ-
ments often resemble the Saint-Etienne in complexity. Several
network architectures for PCSS show conclusive results as Res-
Nets (Thomas et al., 2019) or attention mechanisms (Hu et al.,
2020) and could support our kernel approach and speed up con-
vergence on difficult datasets, hence bringing it closer to in-
dustrial standards. An other development to further evaluate
our approach will consist in completing both datasets with ad-
ditional data, compensating for the spatial and statistical class
imbalances.
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