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ABSTRACT:

The goal of this paper is 3D shape completion: given an incomplete instance of a known category, hallucinate a complete version
of it that is geometrically plausible. We develop an adversarial framework that makes it possible to learn shape completion in a
self-supervised fashion, only from incomplete examples. This is enabled by a discriminator network that rejects incomplete shapes,
via a loss function that separately assesses local sub-regions of the generated example and accepts only regions with sufficiently
high point count. This inductive bias against empty regions forces the generator to output complete shapes. We demonstrate the
effectiveness of this approach on synthetic data from ShapeNet and ModelNet, and on a real mobile mapping dataset with nearly
9’000 incomplete cars. Moreover, we apply it to the KITTI autonomous driving dataset without retraining, to highlight its ability to
generalise to different data characteristics.

1. INTRODUCTION

Incomplete 3D shape information is the norm, rather than the
exception, when objects are observed in the wild: since visual
sensors such as laser scanners and cameras are line-of-sight in-
struments, large parts of most objects remain unobserved due
to occlusions, especially self-occlusions. For applications like
localization or scan matching, occlusions can lead to poor res-
ults. It thus makes sense to try and predict the missing portion,
using knowledge about the shape distribution of the objects of
interest. Reconstructing complete 3D shapes from incomplete
ones boils down to constructing a generative model of the tar-
get category, from which we can sample (complete) instances.
Shape completion is achieved by conditioning the sampling on
the available, incomplete observations. The question we ask in
this paper is: can one learn such a generative model in an self-
supervised fashion, only from incomplete instances? To do so,
we design an adversarial training scheme with a built-in pref-
erence for complete shapes: a generator network is trained to
synthesise object instances from incomplete inputs; the gener-
ator is guided by a discriminator network that accepts only in-
stances which on the one hand fit the observed portions of the
input, and on the other hand are complete.

Our main contribution is an adversarial architecture for 3D
shape completion, in the spirit of a conditional GAN, with a
novel loss function that makes it possible to train the model
without any complete example instances. In our case, the geo-
metry of an object is represented by a set of points or voxels on
its surface. The underlying idea is that if we split the bounding
box of the object into smaller sub-regions, then at least some
of them will correspond to observed object parts and thus have
high point density. If we sort the sub-regions by point density
and divide them into a positive set of sufficiently dense ones and
a negative set of overly sparse ones, we get access to a supervi-
sion signal. This allows us to train the discriminator such that
∗ Corresponding author

it rejects both samples with unlikely shapes and samples with
too few points on any of their parts. Taken together, these two
criteria express a preference for shapes that are plausible (ac-
cording to the consensus of many partial shapes observed dur-
ing training) and complete. Additionally, we describe a pipeline
to extract thousands of (incomplete) instances of cars from mo-
bile mapping data and align them. This enables us to collect
the training data for the shape completion network without hu-
man interaction. Due to the scanning geometry of the Mobile
Mapping System (MMS), the cars in the scanned point cloud
are typically 40-80% occluded. Furthermore, even the visible
surfaces may be only sparsely sampled, depending on the type
of scanner used.

We evaluate our approach first on a synthetic dataset by creating
occluded samples for which the complete shapes are known.
Then, we show that our approach works on a mobile mapping
dataset with nearly 9’000 instances of cars. Additionally, we
also run the method on KITTI data without retraining it, to show
that it generalises to very different, much sparser scan data.

2. RELATED WORK

Generative adversarial networks (GANs) are a class of
implicit generative models based on a game-theoretic scen-
ario (Goodfellow et al., 2014). A GAN consists of a gener-
ator network that produces samples x = G(z), and a discrim-
inator network y = D(x) that classifies samples as being real
data or fakes produced by the generator. The two networks are
trained jointly, so that the discriminator acts as a loss function
for the generator, forcing it to produce samples that are indis-
tinguishable from real data. Of particular interest for our work
are conditional GANs (cGANs) (Mirza and Osindero, 2014),
where the generator output is conditioned on some observation
q, such that the samples x = G(z, q) are not only realistic, but
also compatible with q. Conditional GANs have become a pop-
ular tool to generate and analyse images, e.g. (Isola et al., 2017,
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Figure 1. Our GAN learns to complete shapes from sparse observations (red voxels are observations, green voxels are predictions).

Dai et al., 2017b, Wang et al., 2018).

Shape completion has been a long-standing topic in computer
vision and graphics (Pauly et al., 2005, Dai et al., 2017a). Clas-
sical approaches were often based on deforming a shape tem-
plate to fit the data (Kraevoy and Sheffer, 2005) or fitting a gen-
eric deformable surface model (Zhao et al., 2001). For regular,
man-made objects, many authors have also used symmetry to
fill in missing parts by copying, extruding or mirroring exist-
ing ones (Mitra et al., 2006, Podolak et al., 2006, Pauly et al.,
2008, Mitra et al., 2013, Sipiran et al., 2014, Sung et al., 2015).
Shape completion is related to inpainting, where the goal is to
predict missing pixel intensities, rather than geometric surfaces.
Inpainting algorithms are often derived from signal processing
considerations, but conceptually they also either fit a “geomet-
ric” prior of the intensity landscape, e.g., a piece-wise constant
model (Getreuer, 2012); or they paste in content that is either
copied from the image itself (Criminisi et al., 2004) or synthes-
ised from a collection of training images (Yang et al., 2017).

More recently, learning-based approaches are favoured for
shape completion. Most of them operate in a fully supervised
setting, assuming that paired training data with incomplete and
complete versions of the same shapes is available (Yuan et al.,
2018, Firman et al., 2016, Han et al., 2017, Rezende et al., 2016,
Riegler et al., 2017). Supervised learning has also been com-
bined with symmetry, for the task of face inpainting (Zhang et
al., 2018). While such strong supervision simplifies the task
from a machine learning point of view, a big effort is needed
to assemble a large enough training set. More importantly, the
system will be fitted to the specific sensor characteristics and
environment of the training data, and may be hard to adapt to
other scenarios.

A few works relax the assumption and investigates weakly su-
pervised settings where only a small part of the data is la-
belled (Chen et al., 2019b). Another possibility is transfer
learning with large volumes of synthetic training data and a
smaller amount of real data. E.g., (Stutz and Geiger, 2018)
train a variational auto-encoder (Kingma and Welling, 2013)
for shape completion with synthetic data, then fine-tune only
the encoder with real data. An issue with synthetic training
data is that it is not easy to simulate realistic scanning condi-
tions, with, e.g., reflections, boundary effects, etc.

A recent trend is to exploit unpaired input and output shapes (Lu
and Dubbelman, 2019, Chen et al., 2019a, Chen et al., 2020, Wu
et al., 2020). Notably is the work of (Zhang et al., 2021), who
use a GAN pre-trained on complete shapes and search the lat-
ent representation for a complete shape that best reconstructs a

given incomplete input. Other notable unsupervised approaches
are (Yang et al., 2018, Sharma et al., 2016), who created auto-
encoders for 3D data.

3. METHOD

The basis of our method is a simple, statistical “big data” argu-
ment: if we collect a sufficiently large set of incomplete scans of
an object class, then they will nevertheless capture the underly-
ing shape distribution of complete objects, because the dataset
will contain all the necessary local shape features, and the pair-
wise overlaps to align and assemble the “puzzle pieces”.

Moreover, we also make the fairly weak assumption that we can
regard a local chunk of the object shape as “complete” if it has
a sufficiently high point density, respectively as “incomplete”
if the density is too low. If we explicitly divide the (extended)
bounding box into sub-regions of appropriate size, we can thus
find sufficiently many complete and incomplete examples for
every sub-region in the data. By accumulating that information
during training, it should therefore be possible to learn a shape
distribution for the object class that is complete, i.e., has a suf-
ficiently high point density everywhere.

3.1 Sub-region based GAN model

Let us for a moment take the perspective of a vanilla GAN that
should learn to synthesise complete 3D shapes, represented as
binary voxel grids in which voxels on the object surface have
label surface and all other voxels have label background (note
that, despite using the voxel grid format, this is a surface rep-
resentation, not a volumetric one). The generator takes as input
an incomplete shape and shall learn to output a complete one.
To train that model we would, however, require samples from
the target distribution as supervision, i.e., complete shape that
define the positive “real” class of the discriminator. In the self-
supervised setting, we need a mechanism to teach the discrim-
inator the difference between complete and incomplete samples
locally, since positive examples of completeness are only avail-
able for local sub-regions of the volume.

Our solution is to tile the volume into a fixed set of n =
nx × ny × nz sub-volumes which we call “blocks”, see Fig. 2.
The size of those blocks must be matched to the object type
and the data characteristics, such that in some of them the sur-
face is completely observed, i.e., populated with observations
of reasonable density. Every input sample is first encoded into
a PointNet-style (Qi et al., 2017b) feature vector and fed to the
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Figure 2. Methodology: Red/blue and green color indicate real and generated data, respectively. Orange blocks are merged voxel-wise
between real and synthesized, indicated by the max operation. The Encoder Θ(·) is shown in Figure 4. It encodes each block into a

vector which are then average pooled to a fixed size representation and passed to the discriminator.

generator – this is done globally for the whole volume. The
encoding step is important to ensure that the generator cannot
copy the input and learns to re-synthesise the shape. After the
generation step, both the input sample and the generator output
are tiled into blocks, and the blocks are sorted by decreasing
number surface voxels in the real, incomplete input. Among the
blocks of the real input, only a fixed number m of most densely
populated blocks are encoded into a global representation by
a series of 3D convolutions, average pooled into a single fea-
ture vector, and passed to the discriminator as “real” examples,
whereas the remaining, less densely populated blocks are en-
coded and pooled in the same way and passed on as “fake” ex-
amples. The hyper-parameter m is set conservatively, in our
implementation to 25% of all blocks. Alternatively, one could
set a threshold on the density – this would give the user bet-
ter control over the output density, but needs to be tuned more
carefully to the training data.

With the supervision provided so far, the discriminator can learn
to ensure a sufficiently high point density, but it is neither biased
against implausible distributions with appropriate point count,
nor conditioned on the input. To ensure the generated shape fits
the input in those regions where the latter has been observed, we
proceed as follows: In each block we determine the set union
between the surface voxels of the original input and those of
the generator output. With 1 representing the surface label and
0 the background, this corresponds to an element-wise max-
operation on the voxel labels. The blocks thus generated are
again encoded and pooled, then passed to the discriminator as
further “fake” examples. To understand the effect of this su-
pervision signal, consider first a block that has a too low point
density in the generator output: that case, with a “fake” label,
reinforces the desired bias towards complete shapes. More in-
teresting is the case where the generated block has sufficiently
many points. There are three cases: (a) the point count is cor-
rect, but the distribution is implausible – again the “fake” la-
bel is appropriate and steers the model towards plausible point
distributions; (b) the distribution is plausible in itself, but not
aligned with the input – the “fake” label is again correct and
implements the conditioning on the input; (c) the block matches
the input shape and has the right density – if this case becomes
frequent the model has been successfully trained: the generator
has learned to generate complete shapes that are well-aligned
with the input scan.

3.2 Loss function

We derive our loss from the Least Squares GAN-loss (LSGAN),
which for our case proved to be more stable and yielded better
results than the original GAN-loss. Note, though, that our block
scheme can be implemented with any other GAN loss function,
too. The original LSGAN objective reads

min
G

L(G) =
1

2
E[(D(G(z)− 1)2]

min
D

L(D) =
1

2
E[(D(x)− 1)2] +

1

2
E[(D(G(z)))2] .

(1)

In our scheme, the incomplete shape x is subdivided into blocks
qj , j ∈ {1 . . . n}. Moreover, we denote the ensemble of blocks,
sorted in descending order of point count, by an asterisk super-
script, so the sorted input becomes q∗ and the sorted generator
output G∗(x). The discriminator is divided into three functions:
The operation of encoding a block into a 1D vector with a series
of 3D convolutions is denoted as Θ(·). That same encoding, ap-
plied to multiple blocks and followed by average pooling into
a single 1D vector, is written Ξ(·). Finally, the function D(·)
denotes the last layer of the discriminator, which receives the
pooled 1D vector and predicts whether the input is “real” or
“fake”.

The discriminator loss has three parts, as described in the pre-
vious section. They correspond to the m most complete input
blocks, the (n−m) remaining, “incomplete” input blocks, and
the full set of merged input/output blocks:

L(D) = Lreal(D) + αLincomp(D) + Lfake(D) (2)

where α controls the weight for rejecting incomplete blocks.
Since our target distribution should only contain complete
shapes, the first term is simply the LSGAN loss for the “real”
class,

Lreal =
(
D(Ξm

j=1(q
∗
j ))− 1

)2 (3)

To reject incomplete shape parts, we assign the low-density
blocks to the “fake” class, although they were not produced by
the generator:

Lincomp =
(
D(Ξn

j=m+1(q
∗
j ))

)2 (4)
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Figure 3. The generator network receives incomplete shapes (red) as input and completes them (green).

Note, completely empty blocks are removed before the discrim-
inator, because nothing can be inferred from them. The third
loss term is responsible for conditioning on the input x. Since,
other than classical cGANs such as pix2pix (Isola et al., 2017),
we do not have access to (complete) samples of the target dis-
tribution, we pull the generator output towards the incomplete
input shape with the trick of merging them with the set union,
see 3.1. By using 1 as surface label and 0 as background label,
the set union can be written as element-wise max-operation and
we obtain

Lfake(D) =
(
D(Ξn

j=1(max(G∗
j (x), q

∗
j )))

)2 (5)

As usual, the generator loss serves to penalise the generation
of samples that are exposed as fake by the discriminator:

LGAN (G) =
(
D(Ξ(max(G∗

k(x), q
∗
k))− 1)

)2 (6)

Similar to pix2pix, the generator is also guided by a least
squares loss so that it favors surface points near the input points.

Lℓ2(G) =
1

m

m∑
j=1

||G∗
k(x)− q∗k||2 (7)

Note, that term is only applied to the m most complete blocks,
so that the generator is not forced to produce regions that are
incomplete or have low point density. Finally, we add a feature
matching term that pulls the encodings Θ(·) of generated blocks
towards those of real ones:

Lfeat(G) =
1

m

m∑
j=1

||Θ(q∗k)−Θ(G∗
k(x))||2 (8)

The generator is optimized by minimizing the weighted sum

L(G) = βLGAN (G) + γLℓ2(G+ δLfeat(G) (9)

3.3 Choice of architecture

After defining the loss function we still have to chose suitable
architectures for the generator and the discriminator. An obvi-
ous idea for the generator would be a straight-forward encoder-
decoder structure with 3D convolutions and 3D transposed con-
volutions, as in 3D-GAN (Wu et al., 2016). However, we ob-
served difficulties with such a design. On the one hand, skip

connections can lead to bad local minima where the generator
just copies the input. On the other hand 3D convolutions do
not work all that well with sparse, binary voxel data. We there-
fore prefer to use PointNet++ layers (Qi et al., 2017b) to en-
code the input. To do so, we start with a sampling layer that
randomly picks a fixed number of 3D surface points, in our
implementation 1024. These are passed through a sequence
of PointNet++ set abstraction layers to obtain a feature vector
of size 1×1024. Each set abstraction layer consists of three
steps: (1) The sampling step, which uses iterative farthest-point
sampling to select a set of points that define the centroids of
local regions; (2) The grouping step that constructs local sets by
selecting neighboring points around the centroids with a spher-
ical query; (3) The PointNet step, which uses a mini-PointNet
on each group to learn local patterns and encode them into fea-
ture vectors. The generator uses a total of three set abstrac-
tion steps, marked in green in Fig. 3. The implementation and
hyper-parameters are the same as proposed by (Qi et al., 2017a).
The output of the final set abstraction layer is transformed from
1×1024 into a 1 × 1 × 1 × 1024 tensor and passed through a
series of 3D transposed convolutions to obtain the prediction.
The transposed convolutions are arranged in a way that the out-
put size of the generator matches the size of the input voxel
grid. The output of the last layer is passed through a sigmoid
to give an occupancy score between 0 and 1 for each voxel. To
make the training more stable, batch-normalisation (Ioffe and
Szegedy, 2015) and spectral normalisation (Miyato et al., 2018)
are applied at every layer. The activation functions for all layers
except the last one are rectified linear units (ReLUs).

The discriminator network consists of two parts, Θ and D.
The encoder Θ is a traditional sequence of 3D convolutions

Input

3D
convolution

Spektral
Norm Relu

Figure 4. The network Θ(·) encodes a block of size 8× 16× 8
into a feature vector of size 1× 1× 1× 256.
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Figure 5. Predicted shapes for ModelNet chairs (top left), bathtubs (bottom left), ShapeNet cars (top right), and ShapeNet airplanes
(bottom right). All networks were trained on very sparse samples. Red voxels denote the input and green voxels the predictions.

down to a vector of size 256, again with spectral normalization
in each layer, see Fig. 4.

A set of encoded blocks is pooled and passed to the actual dis-
criminator D, which classifies the blocks as “real” or “fake”.
For D, we use two fully connected layers, the first with 64 out-
put features and ReLU activation, the second with an output of
one and identity activation (no non-linearity). In the fully con-
nected layers there is no normalisation. The same, shared en-
coder weights Θ are used fort all blocks. The encoder and the
fully connected layers are trained jointly as part of the discrim-
inator update. The complete architecture, as shown in Fig. 2,
was implemented in Tensorflow and trained end-to-end.

3.4 Training

Adding noise to the voxel data turned out to decrease the qual-
ity of the output, so we refrain from it. The generator is trained
with 50% drop-out, see Fig. 3, the discriminator without drop-
out. Training is run with batch size 3 for 5 epochs. As op-
timiser, we use Adam with separate learning rates of 0.0001
for the discriminator and 0.001 generator, a strategy some-
times referred to as TTUR, (Heusel et al., 2017). During train-
ing, we chose the same number of blocks in all experiments,
nx×ny×nz = 4×4×4. For a voxel grid of size 32×64×32,
this gives 64 blocks of size 8× 16× 8, of which 25% are con-
sidered ”real”, i.e., m = 16. Setting these parameters is not
critical. Empirically, the training is stable across a range of dif-
ferent block sizes and leads to similar results.

3.5 Data preparation

Synthetic datasets. We first test our model on two synthetic
datasets, ShapeNet (Chang et al., 2015) and ModelNet (Wu et
al., 2015). From ShapeNet we used the categories plane and
car, from ModelNet chair and bathtub. To create occluded
samples, we used the procedure described by (Stutz and Geiger,
2018) with their recommended parameters, except that we do
not employ scaling for data augmentation. Meshes are rotated
randomly to sample different viewing angles and projected to a
2D image grid to obtain points, which are then back-projected
into the 3D voxel grid. By adjusting the virtual camera paramet-
ers we can control the sampling density. We measure that dens-
ity by the mIoU in voxels between the rendered data and the
complete shape (hull only, without interior voxels). For planes
these densities are ≈0.49 mIoU (high) and ≈0.12 mIoU (low),
for cars they are ≈0.09 mIoU (high) and ≈0.024 mIoU (low).

For Modelnet we only sample lower resolution samples with
densities ≈0.19 mIoU for bathtub and ≈0.21 mIoU for chair.

Some existing works, in particular (Stutz and Geiger, 2018),
predict filled shapes. To make the results comparable, we post-
processed all our car predictions by flood-filling them with a
graph cut algorithm, where the graph source and sink nodes are
the barycentre and the boundary of the voxel volume, and an
template car serves as prior to determine the edge weights.

Real data. To show that our model works also on real-world 3D
data, we created a database of cars from scans captured with
a Riegl VMX-250 mobile mapping system (MMS). Since we
did not have car annotations for that data, we generated them
in the following manner: we perform semantic segmentation
of the image sequences acquired together with the scans, with
Deeplabv3+ (Chen et al., 2018) trained on the Cityscapes data-
set (Cordts et al., 2016), without any fine-tuning. We then pro-
jected the labels from all images onto the 3D point cloud and
performed majority voting to obtain a label per point. Next, we
removed all points not assigned to the car class, estimated point
normals, and segmented the points into individual car instances
by region-growing in the oriented point cloud. Since this simple
segmentation is, as expected, rather noisy, we filtered out all in-
stances that did not fit into a bounding box of 2×5×3 m. In
this way we obtained a set of 8941 fairly clean cars. Due to the
low viewpoint from the road, they are heavily occluded, with at
least one side entirely missing in most cases. To approximately
align the incomplete scans, we fitted each of them to a generic
car template (prototype car) with ICP.

4. EXPERIMENTAL RESULTS

4.1 Qualitative Evaluation

Predictions for the synthetic as well as the real datasets were
made with the same GAN architecture, trained per category, re-
spectively dataset. In this section, we show (1) the impact of
different scanner resolutions, (2) the performance of our model
on real data, and (3) its ability to generalize to new sensors
without retraining.

In Figure 5 we show the results for the categories chair, bathtub,
car and plane with lower scan resolution. As can be seen, our
GAN is able to complete shapes even from very sparse data.
The figure shows that the bias against sparse sub-regions leads
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(a) Completion examples for cars and planes.
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(b) GAN trained on MMS (top), applied to KITTI without retraining.

Figure 6. Examples for synthetic data (a) and real data (b)

the model to fill more voxels. Still, overly implausible com-
pletions are detected by the discriminator and rejected. This is
particularly visible for the ShapeNet planes in the lower row of
Fig. 5, where the observations are so sparse that the planes are
hardly recognisable.

Figure 6a shows additional results for high-resolution cars and
planes from ShapeNet. These results are illustrate the variab-
ility of the data set, and the ability of our model to complete
various instances with very different shapes.

Figure 6b shows predictions for the KITTI dataset, generated
with the GAN trained on our MMS dataset. KITTI features a
completely different type of laser scanner (Velodyne), which
records a much lower point density. The model generalises
very well, one can see that also for KITTI cars the predictions
are mostly complete and match the input observations (i.e., the
model does more than returning a mean car shape). Failures,
where the generator predicts a severely incomplete shape or one
that is in significant disagreement with the input, occur mostly
on rare, big shapes, like trucks or buses. Indeed, there are fewer
failures on KITTI, which does not contain any trucks, than on
the MMS data.

4.2 Quantitative Evaluation

We measure the quality of shape completion by calculat-
ing, separately per category, the mean intersection over union
(mIoU), accuracy (Acc) and completeness (Comp) of our pre-
dictions w.r.t. the ground truth shape. Accuracy is defined as
the average distance from the predicted shape to the ground
truth target, completeness is the average distance in the oppos-
ite direction. We compare our results to those obtained by(Stutz
and Geiger, 2018) and by (Dai et al., 2017a). Note that both
methods are to some degree supervised and constitute an up-
per bound for our self-supervised approach. Note also, they
have used a slightly different voxel grid size for the car cat-
egory. For synthetic data, we report accuracy and completeness
in multiples of the voxel edge length [vx], for KITTI and MMS
we use meters. As a simple baseline for the unsupervised set-
ting, we also used a fixed template as the “completion result”.
For MMS and KITTI, this “prior shape” is the prototype car that
was used to align the scans; for the other classes, we arbitrarily
picked the first example in the database.

In Table 1, one can see that our GAN increases the mIoU signi-
ficantly compared to the fixed prior shape, which confirms that

0K 5K 10K 15K 20K 25K 30K 35K 40K
iteration

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

m
Io

U

= 0
= 1
= 2

Figure 7. Ablation study showing the influence of the weight α
for the loss term Lincomp on mIoU during training.

our generator does condition its predictions on the data. We
point out that testing shape completion outputs against ground
truth is somewhat problematic, for two reasons. First, there are
many plausible completions of a partial shape – if a predicted
shape does not match the ground truth, then that does not imply
that it does not match another real instance of the target cat-
egory. Second, we applied a threshold to the soft predictions to
decide whether a cell is occupied or not – hence, differences to
the ground truth can also be due to aliasing and noise, in situ-
ations where the soft posterior is well estimated. For several
applications, e.g., localisation or shape comparison, there may
not be a need to threshold the probabilistic occupancy grid to
hard binary values, rather it is advantageous to work with soft
occupancies that are more forgiving.

To show the influence of the adversarial hyper-parameters, we
ran ablation studies with ModelNet chairs. Figure 7 shows three
models that were trained on the dataset in a deterministic set-
ting, with the exact same training samples in every iteration,
such that the three runs differ only in terms of the weight α for
the loss Lincomp. Figure 7 shows that higher α indeed results
in higher mIoU, and ensures that the model improves smoothly
and monotonically as the training progresses.

In another study we set β and δ to zero to eliminate the
adversarial term LGAN (G) and the feature matching term
Lfeat(G) of the generator. We plot mIoU w.r.t. ground truth
against training iterations. Figure 8 shows that the adversarial
losses significantly improve the completion, and that the per-
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Table 1. Quantitative Results. Numbers marked with † are taken from (Stutz and Geiger, 2018). Note that they use a slightly different
voxel grid for the ShapeNet classes.

ShapeNet Cars ShapeNet Planes
method complete resolution mIoU↑ Acc↓ Comp↓ mIoU↑ Acc↓ Comp↓

supervision [vx] [vx] [vx] [vx]
(Dai et al., 2017a) 100% 32×72×32 0.87† 0.32† 0.56† – – –
(Stutz and Geiger, 2018) ≤7.7% 0.78† 0.54† 0.74† – – –
Dataset

0% 32×64×32
0.09 – 2.9 0.49 – 1.75

Prior Shape 0.64 1.07 0.96 0.36 1.49 1.49
Ours 0.70 0.78 0.59 0.54 0.25 0.65

ModelNet Bathtubs ModelNet Chairs
method complete resolution mIoU↑ Acc↓ Comp↓ mIoU↑ Acc↓ Comp↓

supervision [vx] [vx] [vx] [vx]
(Dai et al., 2017a) 100%

32×32×32

0.59† – – 0.61† 0.66† 0.67†

(Stutz and Geiger, 2018) ≤10% 0.50† – – 0.41† 1.49† 1.07†

Dataset
0%

0.19 – 2.75 0.21 – 1.85
Prior Shape 0.17 1.06 1.68 0.15 1.70 2.20
Ours 0.34 0.90 0.99 0.33 0.88 1.58

MMS Dataset KITTI (trained on MMS)
method complete resolution Acc↓ Comp↓ Acc↓ Comp↓

supervision [m] [m] [m] [m]
Prototype Car 0% 32×64×32 – – 0.12 – – 0.09
Ours – – 0.03 – – 0.08
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Figure 8. Ablation study showing the influence of the loss terms
LGAN (G) and Lfeat(G) during training.

formance gap already appears at an early stage of the training
and then persists.

5. CONCLUSION

We have presented a method for self-supervised, adversarial
completion of partially observed 3D shapes. We assume that
the object class is known and has moderate shape variability,
such that it can be roughly aligned inside a bounding box. Two
ideas form the core of our method and make self-supervised
learning possible: (i) the overall volume is tiled into blocks,
such that blocks with well-sampled surfaces can be used as pos-
itive samples for the discriminator, whereas blocks with too low
point density serve as negative examples; and (ii) the set union
between an incomplete input and the predicted output of the
generator serves to condition the prediction on the input, by

steering the generator towards shapes that coincide with the in-
put, where available.

We have tested our method on ShapeNet, ModelNet and on real
scans of cars in road scenes, where >50% of the object surface
is in most cases unobserved. We have also shown that one can,
with standard computer vision machinery, automatically extract
car instances from raw scan data, such that the training set can
be assembled without human interaction. Our datasets com-
prise >9’000 cars extracted from high-density mobile mapping
data, and another >9’000 cars extracted from KITTI. An inter-
esting direction for future work is to include attributes of the
surface points beyond their location, such as colours or normal
vectors, perhaps even certain material properties. It may also be
useful to move away from the voxel representation and predict
completed shapes in the form of point clouds or continuous,
implicit occupancy functions.
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Criminisi, A., Pérez, P., Toyama, K., 2004. Exemplar-Based
Image Inpainting. IEEE TIP, 13(9).

Dai, A., Qi, C. R., Nießner, M., 2017a. Shape completion using
3d-encoder-predictor CNNs and shape synthesis. CVPR.

Dai, B., Fidler, S., Urtasun, R., Lin, D., 2017b. Towards diverse
and natural image descriptions via a conditional GAN. ICCV.

Firman, M., Mac Aodha, O., Julier, S., Brostow, G. J., 2016.
Structured prediction of unobserved voxels from a single depth
image. CVPR.

Getreuer, P., 2012. Total variation inpainting using split Breg-
man. Image Processing Online, 2, 147–157.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generat-
ive adversarial nets. NeurIPS.

Han, X., Li, Z., Huang, H., Kalogerakis, E., Yu, Y., 2017.
High-resolution shape completion using deep neural networks
for global structure and local geometry inference. ICCV.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Ho-
chreiter, S., 2017. GANs trained by a two time-scale update
rule converge to a local Nash equilibrium. NeurIPS.

Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift.
ICML.

Isola, P., Zhu, J.-Y., Zhou, T., Efros, A. A., 2017. Image-to-
image translation with conditional adversarial networks. CVPR.

Kingma, D. P., Welling, M., 2013. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114.

Kraevoy, V., Sheffer, A., 2005. Template-based mesh comple-
tion. Eurographics Symposium on Geometry Processing.

Lu, C., Dubbelman, G., 2019. Hallucinating beyond observa-
tion: learning to complete with partial observation and unpaired
prior knowledge. arXiv preprint arXiv:1907.09786.

Mirza, M., Osindero, S., 2014. Conditional generative ad-
versarial nets. arXiv preprint arXiv:1411.1784.

Mitra, N. J., Guibas, L. J., Pauly, M., 2006. Partial and approx-
imate symmetry detection for 3D geometry. ACM Transactions
on Graphics, 25(3), 560–568.

Mitra, N. J., Pauly, M., Wand, M., Ceylan, D., 2013. Symmetry
in 3d geometry: Extraction and applications. Computer Graph-
ics Forum, 32(6), 1–23.

Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y., 2018. Spec-
tral normalization for generative adversarial networks. ICLR.

Pauly, M., Mitra, N. J., Giesen, J., Gross, M. H., Guibas, L. J.,
2005. Example-based 3d scan completion. Eurographics Sym-
posium on Geometry Processing.

Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., Guibas, L. J.,
2008. Discovering structural regularity in 3D geometry. ACM
Transactions on Graphics, 27(3), 43.

Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S.,
Funkhouser, T., 2006. A planar-reflective symmetry transform
for 3D shapes. ACM Transactions on Graphics, 25(3), 549–559.

Qi, C. R., Su, H., Mo, K., Guibas, L. J., 2017a. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
CVPR.

Qi, C. R., Yi, L., Su, H., Guibas, L. J., 2017b. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space.
NeurIPS.

Rezende, D. J., Eslami, S. A., Mohamed, S., Battaglia, P., Jader-
berg, M., Heess, N., 2016. Unsupervised learning of 3d struc-
ture from images. NeurIPS.

Riegler, G., Ulusoy, A. O., Bischof, H., Geiger, A., 2017. Oct-
netFusion: Learning depth fusion from data. 3DV.

Sharma, A., Grau, O., Fritz, M., 2016. VConv-DAE: Deep
volumetric shape learning without object labels. ECCV.

Sipiran, I., Gregor, R., Schreck, T., 2014. Approximate sym-
metry detection in partial 3d meshes. Computer Graphics
Forum, 33(7), 131–140.

Stutz, D., Geiger, A., 2018. Learning 3d shape completion from
laser scan data with weak supervision. CVPR.

Sung, M., Kim, V. G., Angst, R., Guibas, L., 2015. Data-driven
structural priors for shape completion. ACM Transactions on
Graphics, 34(6), 175.

Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J., Catan-
zaro, B., 2018. High-resolution image synthesis and semantic
manipulation with conditional GANs. CVPR.

Wu, J., Zhang, C., Xue, T., Freeman, W. T., Tenenbaum, J. B.,
2016. Learning a probabilistic latent space of object shapes via
3d generative-adversarial modeling. NeurIPS.

Wu, R., Chen, X., Zhuang, Y., Chen, B., 2020. Multimodal
shape completion via conditional generative adversarial net-
works. ECCV.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao,
J., 2015. 3d shapenets: A deep representation for volumetric
shapes. CVPR.

Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li,
H., 2017. High-resolution image inpainting using multi-scale
neural patch synthesis. CVPR.

Yang, Y., Feng, C., Shen, Y., Tian, D., 2018. FoldingNet: Point
cloud auto-encoder via deep grid deformation. CVPR.

Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M., 2018. PCN:
Point completion network. 3DV.

Zhang, J., Chen, X., Cai, Z., Pan, L., Zhao, H., Yi, S., Yeo,
C. K., Dai, B., Loy, C. C., 2021. Unsupervised 3d shape com-
pletion through GAN inversion. CVPR.

Zhang, J., Zhan, R., Sun, D., Pan, G., 2018. Symmetry-aware
face completion with generative adversarial networks. ACCV.

Zhao, H.-K., Osher, S., Fedkiw, R., 2001. Fast surface recon-
struction using the level set method. IEEE Workshop on Vari-
ational and Level Set Methods in Computer Vision.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2022-143-2022 | © Author(s) 2022. CC BY 4.0 License.

 
150




