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ABSTRACT:

The amount of very high resolution optical satellite images at our disposal is continuously increasing. Besides, associated satellite
programs often come with high revisit rates and geometric properties that allow for either opportunistic or by-design 3D stereo
reconstruction. Digital Surface Models (DSM) computed from these satellite images offer new possibilities. In the past, the high
revisit rate has largely benefited glacier monitoring studies. Now, DSM with increased resolution provided on urban areas can be
used for smart city applications as well. However, most of these require 3D modeling of buildings with level of details ranging
from 0 to 2. This is where the need for better reconstructed buildings inside DSM arises. Indeed, building edges and corners tend
to be smoothed and softened by the stereo matching step of a DSM computation pipeline. This undesired behavior can mostly
be linked to the difficult task of optimizing the Disparity Space Image, thus finding good balance between smoothing untextured
areas while conserving sharp discontinuities where needed. In this paper, we show how the optimization can benefit from an input
building semantic segmentation. We also provide a method to create it from a very high satellite image in epipolar geometry using
a convolutional neural network. To help our network generalize well on unseen areas we propose an interactive learning method
based on clicked annotations. Eventually, we show that annotations can be automatically created, hence removing the need for an
operator and making our solution suitable for operational conditions.

1. INTRODUCTION

Very High Resolution (VHR) satellite images often are provided
by agile satellites that allow for 3D reconstruction from stereo
acquisitions. Data collected from WorldView2 and 3, Pléiades
or Pléiades Néo programs, to name a few, are of great interest
to help comprehend our environment and its evolution. Be-
sides, devoted stereo missions like CO3D (Melet et al., 2020)
are making a statement on the importance of 3D data for many
applications. These applications benefit from the ability to con-
stantly refresh the Digital Surface Model (DSM) with newly ac-
quired stereo pairs. The high revisit rate might open the door for
3D time series. Plus, the increasing DSM resolution obtained
from satellite imagery allows to focus on urban areas, where
new challenges arise from smart city to business intelligence ap-
plications. Monitoring the expansion of a city requires a level 1
of detail (LOD1) for 3D buildings representations while evalu-
ating solar rooftop potential would need LOD2 representations.

Many 3D reconstruction pipelines have recently been designed
to cope with satellite stereo pairs (De Franchis et al., 2014,
Qin, 2016) and focus on scalability for operational conditions
(Michel et al., 2020). However, resulting DSMs still present
noisy data and overly smooth transitions near building discon-
tinuities. One intuitive way to improve DSM quality is to com-
bine multiple stereo pairs. Multiple views methods mostly de-
pict two categories that we could call True MultiView (TMV)
and MultiView Stereo (MVS). In remote sensing community,
MVS seems to be the most efficient method (Zhang et al., 2019).
In fact, authors of (Facciolo et al., 2017) and (d’Angelo et al.,
2019), respective winners of the 2016 IARPA Challenge (Bosch
et al., 2016) and 2019 Data Fusion Contest (Bosch et al., 2019)
∗ Corresponding author

used MVS based methods. The idea is to compute pairwise
DSMs and then merge them together instead of building a single
point cloud from all images at once.

To collect multiple satellite views, a large period of time is re-
quired as evidenced by the datasets provided for 3D reconstruc-
tion challenges (Bosch et al., 2016, Bosch et al., 2019) where
more than a year separates first from last acquisitions. There-
fore inconsistencies between pairwise DSM are likely to appear
and complicate the DSMs merging step. Semantic segmenta-
tion (d’Angelo et al., 2019, Qin et al., 2019) and uncertainty
map (Qin et al., 2022) can help merge inconsistent DSMs but it
still consists in choosing one out of several plausible elevations
for the time period observed. For this reason, MVS methods
might not be suitable for scene monitoring as they hide changes
that end-users might want to analyze.

Another approach for DSM refinement is to use neural networks
to post process the DSM. In (Bittner et al., 2018) DSMs are still
computed from MVS methods but the amount of images, and
with it the acquisition period, is reduced. As so the DSM qual-
ity is reduced too, hence the need for a post processing refine-
ment step. Though the network architecture evolved between
the works of (Bittner et al., 2018) and more recent contributions
from (Stucker and Schindler, 2022) the idea is still to learn how
to make DSM ressemble rasterized LiDAR or City GML 3D
models. The main drawback from this approach being that such
ground truths are tree free models. So as the network learns to
create very sharp building edges, it also learns to discard the ve-
getation. Plus, so far generalization ability has only been tested
across two cities, namely Berlin in Germany and Zurich in the
German-speaking part of Switzerland (Stucker and Schindler,
2022).
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In this paper, we choose to focus on improving pairwise DSMs
as we target monitoring applications and operational conditions.
More precisely we aim to improve the Disparity Space Image
(DSI) from which a DSM is computed. We review the state of
the art stereo matching methods and propose a new contribution
to the stereo matching pipeline of CARS (Michel et al., 2020)
that is able to provide sharper building edges by using building
semantic segmentation prior. The segmentation is computed us-
ing a Convolutional Neural Network. To achieve good results
and ensure generalization on unseen areas and possibly differ-
ent sensors, we train our network using an interactive learning
method based on local annotations (points). We then demon-
strate the feasibility of automatically computed annotations to
remove the need of an operator. Eventually, we compare our
proposal against state of the art methods.

2. RELATED WORK

2.1 Stereo matching

Although stereo matching pipelines used in (De Franchis et
al., 2014, Qin et al., 2019, d’Angelo et al., 2019, Michel et al.,
2020) may differ, they all feature the common matching steps
as defined in the taxonomy of (Scharstein and Szeliski, 2002):

1. Disparity Space Image (DSI) computation
2. DSI optimization
3. Disparity Map computation

For 3D applications, especially on urban areas, the similarity
measure used for DSI computation must limit fattening effect.
Hence, the non parametric Census Filter with Hamming dis-
tance (Zabih and Woodfill, 1994) is often used. However us-
ing the Census Filter creates a rather noisy DSI that requires
an optimization. The most popular optimization method is the
Semi-Global Matching (SGM) (Hirschmuller, 2005) designed
by H. Hirschmuller. SGM is often part of 3D reconstruction
pipelines albeit with some adjustments (Facciolo et al., 2017,
Qin, 2016, Michel et al., 2020). In fact, SGM-based stereo
matching pipelines are top performers on both the IARPA Chal-
lenge of 2016 (Bosch et al., 2016) and the 2019 Data Fusion
Contest (Bosch et al., 2019).

The idea is to optimize the DSI on a given number of directions,
thus creating as much DSIs as there are directions. These DSIs
are then summed up to compose the final and optimized DSI. To
avoid undesired disparity jumps, two penalties named P1 and
P2 are proposed (see EQ.1 with notations from (Hirschmuller,
2005)). P1 will penalize small disparity jumps while P2 will
penalize larger ones. Then the disparity map is computed from
the optimized DSI by using a classic Winner Take All (WTA)
method. Ideally, this disparity map would display sharp trans-
itions near discontinuities (building edges) and smooth ones on
flat and slanted surfaces.

However, finding right values for P1 and P2 is far from an easy
task. Incorrect values may lead to dissolved building edges in
the disparity map and the DSM. As so, Hirschmuller introduced
variable penalties that depend on image gradients. The rather
strong underlying assumption being that depth discontinuities
are linked to radiometric discontinuities and vice versa. Fur-
ther studies compared different penalty functions (Banz et al.,
2012) based on the same assumption. Unfortunately success-
ive strong radiometric discontinuities may appear on agricul-
tural fields while shadowed transitions between buildings and
ground can lead to small radiometric gradients.

In (Scharstein et al., 2017) surface priors are used to enforce
accommodation to slanted surfaces that are mainly present on
datasets designed for autonomous vehicles. Penalties are no
longer set depending on disparity jumps, rather P1 and P2 are
used to penalize divergence from the surface assumption. Obvi-
ously the result depends on the ability to extract correct surface
priors. Hence our proposed method adapts SGM equation to
add geometric priors in the form of building semantic segment-
ations that clearly identifies discontinuities near building edges.
With this proposition arises a new challenge that is the creation
of this building semantic segmentation.

2.2 Building semantic segmentation neural networks

Semantic segmentation is an important task within computer
vision and remote sensing community for it helps to better com-
prehend the world we live in. Using Convolutional Neural Net-
work (CNN) promising results have been reached even in the
field of satellite imagery (Kussul et al., 2017). However, the
major challenge remains to find a solution that will be robust
enough to face the rich visual variations of landscapes and man-
made structures that satellite imagery can unveil around the
globe. Though the amount of images is large enough to train
deep CNN, ground truth labels are still very sparse. Challenges
(Demir et al., 2018) provide some but those are often not enough
for the network to generalize well to unseen areas or, in the case
of building semantic segmentation, unseen architectures. To
overcome this limitation, new machine learning paradigms have
been designed to reduce the volume and sometimes the qual-
ity of ground truth labels required to train such CNNs. Among
these is interactive learning that allows the network to learn con-
tinuously. Assuming one cannot train a robust enough network
to the task of building semantic segmentation then interactive
learning provides hope in the form of an interaction between
the machine and the operator. Thus, the benefit of this method
comes at the price of a human-in-the-loop. Indeed, the operator
will be asked to provide ground truth annotations or validations
that will help the network improves its inner parameters and
refines its future predictions.

The first framework designed for this purpose is the work of
(Xu et al., 2016). The authors proposed a method called DIOS
that concatenates two additional channels to the input image.
These channels respectively contain positive and negative an-
notations for a mono-class task. Both channels then act as a
binary mask. Originally thought for binary classification, DIOS
has been extended to multi-classes segmentation and aerial data
with the work of (Lenczner et al., 2020). The author proposes
a framework named DISCA, allowing the operator to smoothly
interact with the network by providing left and right clicks to
create the annotated masks. This annotation process results in
local points (on clicked areas). The number of points, their sizes
and locations greatly affect the network learning improvements.
In (Benenson et al., 2019) the authors investigate many aspects
of this human-machine collaboration and give insights to re-
duce the burden of this interaction and demonstrate large-scale
feasibility.

Although the work of (Benenson et al., 2019) constitutes a big
leap forward towards quick and efficient annotations, it still is
incompatible with constraints of an image ground segment. In-
deed, it would require one operator to interact with the network
in operational conditions. Hence, we propose an algorithm to
create automatic annotations from sparse elevation clues that
are deduced from early steps of the 3D reconstruction pipeline.
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3. PROPOSED ALGORITHMS

The main idea of our proposal (illustrated in FIG. 1) is to cre-
ate a building semantic segmentation from the left epipolar im-
age and use it to optimize the DSI. We then propose a slight
modification of SGM optimization method to incorporate the
semantic segmentation. We refer to this new SGM-based op-
timization as Semantic Segmentation for SGM (3SGM). We
propose the use of a LinkNet (Chaurasia and Culurciello, 2017)
to create the building semantic segmentation. We train the net-
work on a rather limited dataset (see section 4.2.1) and call this
trained network the Initial Neural Network (INN). Because it
does not generalize well to unseen architectures, we improve
it using annotations and the DISCA interactive learning frame-
work from (Lenczner et al., 2020). Aiming for our solution to
be used in operational conditions, we propose to automate the
creation of annotations by using sparse elevation clues deduced
from a rough Disparity Space Image (DSI), that is the non op-
timized DSI. We call ARNN (Automatically Refined Neural
Network) the INN refined with automatic annotations. Com-
bined together, the 3SGM method and the ARNN constitute our
proposed stereo matching pipeline. They are individually and
jointly evaluated section 4.

Figure 1. Our stereo pipeline: 3SGM optimization with labels
from an Automatically Refined Neural Network (ARNN).

3.1 3SGM: Semantic Segmentation for SGM

To introduce the building semantic segmentation inside the ori-
ginal SGM equation (EQ. 1) we simply stop the optimization
of a given path every time this path crosses a building edge as
illustrated on FIG. 2. Then the optimization starts again from
the very next pixel.

Lr(p, d) = C(p, d) +min


Lr(p− r, d),

Lr(p− r, d− 1) + P1,

Lr(p− r, d+ 1) + P1,

Lr(p− r, i) + P2,

(1)

Figure 2. Illustration of classic SGM (left) and our
implementation (right) with 4 directions. History of previous

pixels along the path is discarded when a building edge is met.

This methodology can be resumed by EQ. 2, where the history
of the current path is discarded when the segmentation values
of two consecutive pixels differ. In the meantime, we keep fixed
values for both penalties and for every stereo pairs and we use
no relation between image radiometric information and the pen-
alties. Optimizing the DSI per segment obviously requires a
strong confidence in the segments quality. Nevertheless, having
a look at extreme possibilities, it is easy to see that in the worst
case scenario no optimization is done. This would be when
the semantic segmentation always alternates between building
and ground labels. On the other hand, if the segmentation only
contains a single segment then the classic SGM optimization is
performed.

Lr(p, d) = C(p, d) + β ∗min


Lr(p− r, d),

Lr(p− r, d− 1) + P1,

Lr(p− r, d+ 1) + P1,

Lr(p− r, i) + P2,

(2)
with β = (Seg(p− r) == Seg(p)).

3.2 ARNN: Automatically refined Neural Network

The chosen neural network architecture (LinkNet) only takes
RGB as input channels. Hence we can assume it will try to
detect building pixels mainly based on roof and neighborhood
colors. While this shall not prevent the network from detecting
building edges and corners, we believe there is a strong possib-
ility for the network to entirely miss buildings of unseen archi-
tecture.

To prevent this from happening, we use interactive learning
following the DISCA workflow (Lenczner et al., 2020) to re-
fine the initial neural network (INN) and with it, its predic-
tions. In the work of (Lenczner et al., 2020) annotations are
manual clicks provided by an operator. To remove the need
for a human-in-the-loop we propose to automate the annota-
tion process. A parametrizable disparity threshold is applied to
a disparity map computed from a DSI that has yet to be optim-
ized. The threshold helps differentiate between ground and roof
pixels. Disparities above the threshold are translated to building
annotations. We then filter the building annotations to remove
false positive on high vegetation areas using a simple veget-
ation mask (NDVI indicator) computed from the left epipolar
image (see FIG. 1). We also remove annotations associated
to wrongly matched pixels according to the confidence map
presented in (Sarrazin et al., 2021). Because wrong matches
tend to occur near building edges, we are left with building an-
notations mostly located in the middle of building roofs. We
assume these are enough for the network to learn new architec-
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tures and propagate this knowledge to building edges as shown
by the work of (Benenson et al., 2019).

Since the INN has no trouble labelling the ground and because
ground is often the most common area, we limit the number
of ground annotations we make. The only pixels annotated as
ground are the ones that have been assigned a building label by
the INN but whose disparities are below the disparity threshold.
The underlying idea is that ground disparities are mostly cor-
rect matches, albeit noisy ones, while building disparities, es-
pecially near building edges, might belong to incorrect matches
due to fattening effect.

4. EXPERIMENTS AND RESULTS

In this section, we evaluate the combination of the 3SGM op-
timization method and the ARNN presented section 3. First
(4.1) we evaluate 3SGM using ground truth building labels ob-
tained from Open Street Map (OSM). Then on subsection 4.2
we compare the ARNN against the INN and a Manually Refined
Neural Network (MRNN), that is the INN refined using the
DISCA interactive learning workflow and manual annotations.
Eventually, section 4.3, we display disparity maps and DSMs
to compare our stereo matching pipeline, e.g. with 3SGM and
ARNN, against state of the art method.

In subsections 4.1 and 4.3, we use CARS (Michel et al., 2020)
and its embedded stereo matching framework, Pandora, for our
experiments. Both are open source software 12 and part of the
CO3D (Melet et al., 2020) image processing chain. CARS
rectifies the input stereo pair into epipolar geometry. Then we
use different stereo matching pipelines created with Pandora to
compute and optimize the DSI and evaluate our 3SGM method.
To observe and quantify the impact on DSM quality we use
CARS to triangulate the disparity maps and create the DSMs.

4.1 3SGM evaluation

To observe how 3SGM behaves, we use a dataset on Montpel-
lier (France) where Pléiades stereo acquisitions, LiDAR, and
OSM labels are available. For quantitative evaluation on the
Disparity Maps we use 83 stereo pairs of size 1840x1840 cre-
ated with CARS rectification step. Ground Truth disparities are
computed using LiDAR and the process detailed in (Cournet
et al., 2020). The same methodology is applied to project OSM
labels into epipolar geometry so we can use them with 3SGM.

In TAB. 1 are shown the results of five different stereo match-
ing pipelines. Four of them are combinations of either Census
Filter (Zabih and Woodfill, 1994) or MCCNN (Zbontar et al.,
2016) matching costs with either SGM optimization (see EQ.
1)) or our 3SGM optimization (see EQ. 2). The last pipeline
uses Census matching costs and the More Global Matching op-
timization presented in (Facciolo et al., 2015).

Census matching costs are computed on 5x5 windows. For MC-
CNN we use the plugin for Pandora3 trained on the Middleburry
dataset with an 11x11 patch size. Results and analysis of this
MCCNN training and its generalization to satellite images are
presented in (Defonte et al., 2021). For the MGM optimization
we use the original code 4 to make sure we emulate the s2p de-
fault stereo matching pipeline. For all optimizations of Census
1 https://github.com/cnes/cars
2 https://github.com/cnes/pandora
3 https://github.com/cnes/pandora plugin mccnn
4 https://github.com/gfacciol/mgm

matching costs, the penalties are set to CARS and s2p default
values (P1=8; P2=32). Penalties used for the optimization of
MCCNN matching costs are set according to the original paper
of Zbontar & LeCun (Zbontar et al., 2016).

Results show MCCNN performs slightly better than Census,
which is consistent with the work of (Defonte et al., 2021).
We can also notice that less disparity errors are produced when
using 3SGM with OSM labels. Eventually, using MGM optim-
ization on top of Census matching costs decreases errors with
a magnitude higher than a pixel, however the mean, standard
deviation and 70 percentile seem to reveal the presence of more
outliers.

Methods
% Error
≤ 1px

Mean
error

Std
error 70 p

CENSUS with SGM 64.02 1.61 2.64 1.31
CENSUS with 3SGM 66.46 1.50 2.51 1.19
MCCNN with SGM 65.44 1.49 2.34 1.24
MCCNN with 3SGM 67.24 1.40 2.27 1.12
CENSUS with MGM 66.20 1.60 2.79 1.23

Table 1. Disparity errors (in pixels) on Montpellier (France). All
pixels are considered (no rejection criteria). Optimization with

3SGM uses OSM labels.

To make sure these improvements are still visible in the output
DSMs, we use CARS to triangulate the disparity maps created
for TAB. 1. On FIG. 3 and 4 we choose to present meshed DSM
to better observe building edges and corners. We show CARS
default stereo matching pipeline (Michel et al., 2020) along
with the pipeline from (Defonte et al., 2021) and the MCCNN
with our 3SGM optimization.

On FIG. 3 we can see that using 3SGM edges are sharper and
building shapes are less complex. Interestingly enough, build-
ing labels also prevent 3D reconstruction pipelines from com-
pletely missing buildings, as evidenced by the elongated one in
the middle of the scene. We believe this case indicates that pen-
alties used for the optimization of MCCNN costs, though very
efficient on untextured areas (Defonte et al., 2021), tend to be
too high for urban scenes. This further demonstrate the diffi-
cult task of choosing adequate penalties values for operational
conditions.

Consequently we observe that sharper building edges help to
better recover the correct elevation of the main streets (see FIG.
4). We can also notice that using Census instead of MCCNN
with the same optimization method visually gives better results
on building edges and streets. We believe this is another demon-
stration of too high penalties values for MCCNN. Higher values
help remove noise on roofs and ground areas thus improving
overall metrics as seen TAB. 1 and in (Defonte et al., 2021).
The drawback being a tendency to blur building edges and dis-
courage sharp discontinuities. 3SGM then seems to remove
noise while still allowing sharp discontinuities where needed.

4.2 ARNN evaluation

4.2.1 Experimental setup We start by training the INN (a
LinkNet (Chaurasia and Culurciello, 2017)) with two combined
datasets listed in the TAB. 2. The first one is made of 1496 rec-
tified stereo pairs created from the Track3 US3D WorldView-
3 dataset (Bosch et al., 2019). These products cover cities of
Atlanta, Jacksonville and Omaha (USA). The second one is
composed of 327 rectified stereo pairs acquired from Pléiades
products on Montpellier (France). Images are tiled into patches
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Left image Census with SGM

MCCNN with SGM MCCNN with 3SGM

Figure 3. Meshed DSMs on Montpellier (France). DSM
building edges and corners are better reconstructed with 3SGM.

Left image Census with SGM

MCCNN with SGM MCCNN with 3SGM

Figure 4. Meshed DSMs on Montpellier (France). Our proposed
3SGM optimization helps recover main streets elevations.

of size 1024x1024. For WorldView-3 products, ground truth
building labels are provided by the 2019 Data Fusion Contest
(Bosch et al., 2019) while for Pléiades products they are created
using OSM labels and the methodology exposed in (Cournet et
al., 2020) to obtain the labels in epipolar geometry.

We use the stochastic gradient descent (SGD) optimizer with
a base learning rate of 0.1 divided by 10 when the loss has
stopped improving. The network is trained with Dice Loss, for
70 epochs with a batch size of 8.

Then we refine the INN over the city of London (UK). We use
6 Pléiades patches of 2500 x 2500 pixels for which we com-
pute semantic segmentation with the INN. Each segmentation is
then annotated twice: manually and automatically. For manual
annotations, we limit the operator to a 20 minutes time-frame
resulting in 150 annotations each on average. Automatic an-

Areas Samples Sensor Median B/H
Atlanta 1117 WorldView 3 0.22
Jacksonville 194 WorldView 3 0.24
Omaha 185 WorldView 3 0.25
Montpellier 327 Pléiades 0.68

Table 2. List of products used to train the LinkNet INN.

notations on the other hand are computed as explained in sub-
section 3.2. Eventually we obtain two refined networks: the
MRNN and the ARNN.

4.2.2 Results We use qualitative observations and quantit-
ative measures to evaluate the impact of annotations and in par-
ticular to assess our ARNN.

Ground Truth (OSM) INN

Manual annotations MRNN

Automatic annotations ARNN

Figure 5. Annotations produced by the manual and automatic
annotation strategies: red points indicate ”Buildings” class while

green ones indicate ”Not buildings” class.

On Fig. 5, we display the building semantic segmentation gen-
erated with the INN, the MRNN and the ARNN from Pléiades
product on London (UK). Though we only showcase one il-
lustration, we have observed similar behavior for every cities
considered far from the training dataset. We can see that both
manual and automatic annotations improve the initial segment-
ation map. Not only building shapes are better identified but
more buildings are well detected. Visual comparison of both re-
fined labels shows no relevant difference, whereas much more
annotations are created with the automatic strategy. This seems
to indicate that few annotations are required to improve the
model accuracy which is on par with the conclusions of (Ben-
enson et al., 2019). It should also be noted that some automatic
annotations are wrongly identified as buildings. However this
does not seem to impact the accuracy of the refined network,
presumably because only a few mistakes are made.
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For the quantitative evaluation, we use three cities unseen by the
INN during training phase, namely Toulouse, Rennes (France),
and London (UK). The products have been acquired by Pléiades.
TAB. 3 shows best results are obtained with the MRNN pre-
sumably because manual annotations are of better quality. The
refinement over London helps improve the IoU on Rennes but
results obtained on Toulouse remind us the network must be re-
fined for every stereo pairs, hence our proposed pipeline (see
FIG. 1). On another topic we can notice the relative difference
between both refined networks that seems to validate our pro-
posal for automatic annotations.

Sites Neural network IoU building IoU not
building

Toulouse
B/H = 0.65
38km2

INN 59.20 82.10
MRNN 60.40 81.49
ARNN 59.12 81.65

London
B/H = 0.66
14km2

INN 49.77 93.70
MRNN 55.54 93.72
ARNN 53.19 93.29

Rennes
B/H = 0.60
18km2

INN 61.09 88.74
MRNN 64.09 89.00
ARNN 63.45 88.95

Table 3. Mean IoU obtained with and without annotations.

4.3 Combined 3SGM and ARNN evaluation on DSM

On subsection 4.1 we showed how using 3SGM with OSM can
limit noise and sharpen building edges. We now focus on op-
erational and more realistic conditions where OSM labels are
not available or outdated. So we use the pipeline shown FIG. 1
and analyse the behavior of 3SGM with labels from the ARNN
detailed in subsection 4.2.

For the quantitative results presented in TAB. 4, we use a 14km2

area over London (UK) as it is where the ARNN perform worst.
We use the same stereo pipelines and parameters as the ones
previously detailed in subsection 4.1. First, we can observe in
TAB. 4 that the results over London are consistent with the ones
obtained on Montpellier (France) (see TAB. 1). Then we can
notice that of the three pipelines based on 3SGM, the best res-
ults are obtained with labels inferred by the MRNN or ARNN.
We assume this comes from the time lapse between Pléiades ac-
quisition and OSM last update. Lastly, we can see that MRNN
and ARNN give comparable results. This observation encour-
ages us to believe the segmentation neural network can effi-
ciently be refined to new areas and architectures without the
need for an operator. Or at the very least, it can be refined for
the purpose of 3D reconstruction with 3SGM optimization.

Methods
% Err.
≤ 1px

Mean
error

Std
error 70p

CENSUS with SGM 57.40 4.10 7.85 2.68
CENSUS with MGM 59.74 4.20 8.07 2.57
MCCNN with SGM 63.43 2.30 4.89 1.64
MCCNN with 3SGM (OSM) 64.86 2.19 4.82 1.49
MCCNN with 3SGM (MRNN) 64.89 2.19 4.81 1.50
MCCNN with 3SGM (ARNN) 64.99 2.18 4.78 1.49

Table 4. Disparity errors (in pixels) on London (UK). All pixels
are considered (no rejection criteria).

The visual results showcased in FIG. 6 and 7 are consistent with
the overall metrics of TAB. 4. Both figures present DSMs ob-
tained with MCCNN matching costs and different optimization
methods. As anticipated, building edges and corners are bet-
ter reconstructed with 3SGM whether labels are inferred with

LiDAR MCCNN with SGM

MRNN labels MCCNN with 3SGM (MRNN)

ARNN labels MCCNN 3SGM (ARNN)

Figure 6. DSMs computed on London (UK) with different
optimizations. 3SGM method performs best.

LiDAR MCCNN with SGM

MRNN labels MCCNN with 3SGM (MRNN)

ARNN labels MCCNN with 3SGM (ARNN)

Figure 7. DSMs computed on London (UK) with different
optimizations. ARNN errors do not impact 3SGM.

MRNN or ARNN. Yet, FIG. 7 exposes automatic refined seg-
mentation flaw. Indeed, in the top right corner of the scene, part
of the road is labelled as building. This is because this road is
actually a bridge with a disparity higher than our manually set
disparity threshold so that automatic building annotations have
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been added in this area. Though this prevent ARNN from reach-
ing expected results, it does not degrade the DSM produced by
3SGM with ARNN labels. In fact, it could actually improve it
as it helps identify what might be a strong discontinuity.

The next experiment measures the impact of the 3SGM optim-
ization with ARNN on the DSM quality. We use the MCCNN
matching costs for it gives the best results according to TAB. 4.
We compare our results with the ones obtained with s2p config-
uration: a CENSUS matching costs on a 5x5 window followed
by a MGM optimization (P1=8; P2=32) (Facciolo et al., 2017).
We use CARS to rectify the images, triangulate the disparity
maps, and rasterize the DSM in 2.5D. This way we make sure
to observe only the impact of both stereo matching pipelines.
Nevertheless and to the best of our knowledge, CARS and s2p
rectification, triangulation and rasterization are very similar al-
gorithms for small stereo pairs. In TAB. 5 results are obtained
using a LiDAR as elevation ground truth. As expected based on
the previous results, our proposal compares favorably against
state of the art method for pairwise DSM reconstruction.

Methods
Mean
error

STD
error

RMSE
error

DSM with s2p stereo pipeline -0.55 3.58 3.61
DSM with our stereo pipeline -0.10 3.39 3.35

Table 5. Evaluation of our stereo matching pipeline (MCNN
with 3SGM and labels from ARNN) against state of the art

method (s2p) on London (UK).

Eventually, on FIG. 8 and FIG. 9 one can observe meshed DSMs
on two distinct areas. Along with the ground truth and the res-
ults obtained with the two methods compared in TAB. 5, we
expose the DSM computed by CARS with its default stereo
pipeline (CENSUS with SGM optimization). DSMs computed
with 3SGM, and labels from the ARNN, not only are less noisy
than with the classic, CARS default stereo pipeline, but also
display sharper building edges. Noise reduction, as previously
shown, can be due to the MCCNN matching cost and the high
penalties values as suggested by earlier work (Defonte et al.,
2021). Sharp discontinuities however are due to 3SGM optim-
ization that relaxes the constraints imposed by high penalties
near building edges. This visual impression corroborates with
the profiles presented on FIG. 8 since our 3SGM optimization
combined with ARNN labels allows discontinuities to appear
between successive buildings.

5. CONCLUSIONS AND PERSPECTIVES

In this article, we have shown that pairwise DSM quality can
be improved using 3SGM: a proposed SGM-based optimiza-
tion guided by a building semantic segmentation. Because this
proposal requires an input segmentation in epipolar geometry,
we proposed the use of an automatically refined neural network
(ARNN). We embedded the automatic refinement inside the ste-
reo matching step so that the network can learn continuously.
We then showed that DSM computed with 3SGM and labels
from our ARNN are less noisy and contain sharper building
edges even on geographical site not previously seen by the seg-
mentation network.

Future work will focus on demonstrating how our DSMs can
ease the creation of LOD0 to LOD2 building reconstructions.
We will also focus on automating the process of setting the right
disparity threshold to create annotations.

Meshed Ground Truth CARS with default stereo pipeline

CARS with s2p stereo pipeline CARS with our stereo pipeline

Figure 8. Comparison of meshed DSMs with different stereo
matching pipelines. Both visual comparison and the profiles

show our proposal, MCNN with 3SGM optimization and labels
from an ARNN, provides the best results.

Meshed Ground Truth CARS with default stereo pipeline

CARS with s2p stereo pipeline CARS with our stereo pipeline

Figure 9. Comparison of meshed DSMs with different stereo
matching pipelines. Our method based on MCCNN matching

costs and 3SGM optimization with labels from an ARNN
provides the best visual result.
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