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ABSTRACT:

Edges are a key feature employed in various computer vision applications namely segmentation, object recognition, feature tracking
and 3D reconstruction. Edges provide key information with regards to object presence, shape, form and detail which aid in many
computer vision tasks. While there are various edge detection techniques in literature, challenges in edge detection remain. Varying
image contrast due to non uniform scene illumination and imaging resolution affects the edge information obtained from any given
image. The edge detection results are characterised by missing edges, edge fragmentation and some false positive edges. Gradient
based edge detectors are the most commonly used detectors. These detectors all suffer from aforementioned challenges. In this,
paper we present an edge detection framework that aims to recover long unfragmented edges from satellite images. This is achieved
by using an edge accumulator that operates on the entire edge detection parameter space. Gradient based edge detectors rely on
thresholding to retrieve salient edges. This usually results in missed or noisy edges. To counter this, the accumulator is run over
a wide parameter space, growing edges at each accumulator level while maintaining edge position using a localisation filter. The
results are longer unbroken edges that are detected for most objects, even in shadowy regions and low contrast areas. The results
show improved edge detection that preserves the form and detail of objects when compared to current gradient based detectors.

1. INTRODUCTION

Edge features present contextual information and geometrical
properties that have been utilised in various computer vision
tasks. Application areas such as object detection and tracking,
road detection and 3D reconstruction rely on accurate edge fea-
tures. Edge features provide information with regards to object
form and detail which is required in the various applications.
Consequently, edge detection has remained an active area of
research with the main goal being the ability to retrieve good
edges from any given image (Ziou et al., 1998, Argialas and
Mavrantza, 2004, Ofir et al., 2019).

Various algorithms have been proposed in literature that yield
different results. Most edge detectors are gradient based and
thus rely on significant intensity variations to detect edges. Re-
cently, machine learning techniques have been explored in edge
detection with the aim of improving edge detection edges un-
der varying imaging conditions (Bertasius et al., 2015, Liu et
al., 2017). Since most edge detectors use intensity variations
in identifying edges, most of edge detection algorithms suffer
from issues arising from low image contrast, shadows and im-
age resolution. The effects of the aforementioned issues res-
ult in edge fragmentation, missing edges and incorrect edge
localisation. Gradient thresholding is used to optimally select
edge pixels in a given image while removing spurious pixels.
However, variation of intensities across large image limit the
global applicability of any given threshold. Thresholds vary
from scene to scene and thus the performance on any given de-
tector varies (Kaur et al., 2012). Canny edge detector has been
found to perform best under different conditions. Canny edge
detector has been widely used in various tasks that required sa-
lient, true edges with minimal false positives (Canny, 1986). To
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improve detection, the canny edge detector utilises a threshold
range with an upper and lower limit. This allows for the de-
tection of edges with varying gradient magnitudes. Machine
learning based techniques require training data for accurate de-
tection. The major drawback for most machine learning based
techniques is the lack of extensive training data sets that cater
for the many types of topography, landscapes, cityscapes and
imaging conditions.

This paper presents an edge detection framework that aims
to leverage existing gradient based edge detectors in retriev-
ing long unbroken edges which we will refer to as maximal
boundaries. The framework also reduces edge fragmentation
and missing edges while maintaining good localisation. This is
achieved by using an accumulator space that is run on the entire
parameter space. The main advantage of the proposed method
is the ability to retrieve edges in varying imaging conditions,
shadows and low contrast areas. In addition, any gradient based
edge detector can be used, eliminating the need to find one op-
timal edge detector for a given scene. Finally, an improved line
detection method is presented that preserves the true edge ori-
entation in addition to edge position.

The next section presents a summary of previous work in edge
detection. This is followed by a description of the methodology
proposed in this paper in Section 2. After the methodology,
results are presented in Section 3 together with a discussion of
results. Finally, conclusions are drawn in the final section.

1.1 Previous Work

Edge detection has served as one of the many prerequisites for
many computer vision tasks due to information contained such
as length, orientation and object boundaries (Savant, 2014, Ok,
2008). Because of this, a plethora of algorithms exist for edge
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detection. Various reviews of these detectors and their perform-
ance have been presented (Ziou et al., 1998, Koschan, 1995).
Mostly, edges in images are detected using a gradient operation
on an image, where areas of high gradient magnitude difference
indicate the possible presence of an edge. Consequently, dif-
ferent fist order gradient operators have been proposed for use
in edge detection namely Prewitt (Prewitt, n.d.), Sobel (Sobel
and Feldman, 3), Scharr (SCHARR, 2000), Kirsch and Roberts
(Roberts, 1963) . Other methods such as Laplacian zero cross-
ing (second order derivatives) and Hough transform exist for
detecting edges. The main variation with these algorithms are
the mathematical complexity of derivatives employed. Higher
order derivatives more computationally expensive (Baştürk and
Günay, 2009, Argialas and Mavrantza, 2004) compared to first
order derivatives. Multi-scale approaches aimed at improving
the performance of detectors at different scales, luminosity and
noise have also been proposed (Ren, 2008, Ofir et al., 2019).
More recently, edge detectors based on deep learning have been
proposed as an alternative (Waldner and Diakogiannis, 2020,
Wang et al., 2020, Liu et al., 2017, Bertasius et al., 2015, Xie
and Tu, 2015). With learning algorithms, the major drive is
to improve edge detection using training sets for different edge
contexts. However, having sufficient training data that caters for
all types of edges remains a drawback. Even with deep learn-
ing based methods, thresholding and post processing is at times
required to retrieve the final edges (Waldner and Diakogian-
nis, 2020). Other Various other edge detectors can be found in
(Bhatti et al., 2021, Abraham and Wloka, 2021, Adamos and
Faig, 1993, El-Sayed et al., 2013, Smith and Brady, 1997). The
limitation in edge detection is that there is no universal edge
detector that is invariant in different imaging contexts. This
has led to the proposal of task specific edge detectors that op-
erate optimally for a given context (Ziou et al., 1998). Canny
edge detector has been the widely accepted and used due to its
ability to detect edges using two thresholds. In addition, by us-
ing non-maxima suppression, canny edge detector returns pixel
wide edges which has been another challenge in edge detection
(Canny, 1986). Other detectors work well but require single
thresholds to filter out weak, non significant edges and noise
effects (Ofir et al., 2019). Due to the variance in imaging prop-
erties, different thresholds on the resulting gradient magnitude
values are required.

Three main operations characterise the edge detection pro-
cess. These operations are image smoothing, differentiation us-
ing first or second order derivatives, and finally labelling and
chaining. Prerequisite to edge detection is smoothing. Image
smoothing reduce the effects of noise from high frequencies as
a result of high signal to noise ratio (Szeliski, 2010). The level
of smoothing thus has a direct effect on the quality of edges
that are detected. Various smoothing operations exist with the
most popular ones being Gaussian smoothing and bilateral filter
(Goyal et al., 2012). Image smoothing introduces other undesir-
able effects such as information loss, edge smoothing and slight
feature displacement (Ziou et al., 1998). Some of the smoothing
effects are lose edge blending, contrast reduction, object dis-
placement. These effects can be reduced by selecting optimal
smoothing parameters. The same applies to gradient thresholds
(Kaur et al., 2012, Ofir et al., 2019). Good threshold ranges
have been proposed for various edge detectors such as Canny
(Lu et al., 2015, Biswas and Sil, 2012) that keep the most sig-
nificant edges while filtering out weak and noisy edges.

A variable filter approach has been adopted in some cases to
reduce the effects of noise on local small filters such as Sobel

filters, such that discontinuities are detected at varying scales
(Ali and Clausi, 2001). While these effects might be minimal
in small scenes typically acquired by ground based cameras,
they become more pronounced in large images with reduced
resolution such as satellite images. The inability to create con-
tinuous edge boundaries that describe an object fully from any
edge detector has been the major drawback in the global applic-
ability of edge detectors solely in object detection and boundary
delineation.

As previously mentioned, the problems encountered in edge de-
tection usually result in edge fragmentation, missed edges and
some spurious edge pixels. Due to these difficulties, differ-
ent edge detectors have been proposed each with advantages
and disadvantages. For example, Lu et al, (Lu et al., 2015),
presents and adaptive canny edge detector where the gradi-
ent thresholds are automatically computed using the Helmholtz
principle based on an input image. This improves the perform-
ance of the canny detector thereby reducing edge fragmenta-
tion. Similarly, Biswas et al, (Biswas and Sil, 2012), uses Type-
2 Fuzzy Sets to estimate the optimal thresholds for the canny
edge detector in an effort to improve the edges detected. Akin-
lar et al, (Akinlar and Topal, 2011), presents a parameter free
edge detection algorithms that detects edges by using extreme
parameter values for the Edge Drawing (ED) algorithm. Since
running the algorithm using parameter extrema results in false
positives, an ”a cantario” approach based on the Helmholtz
principle is utilised to remove outliers. Other efforts for auto-
mated edge detector selection have been explored (Bausys et al.,
2020). Topal et al, (Topal and Akinlar, 2012), presents a method
that creates a list of unbroken edge chains which are better than
the traditional canny edge detector. After smoothing the image
with a low pass filter, gradient magnitude and edge direction
maps are created. Anchors are extracted from the gradient maps
based on gradient magnitude. The anchors are then connected
based on direction and magnitude thereby creating an uninter-
rupted continuous edge. However, since thresholding is used to
eliminate weak pixels, edges are still under-detected at certain
thresholds. Even though the output is longer unbroken edges, a
single edge usually connects different object boundaries and do
not form closed boundaries. However, since single edge chains
are at times constituted from multiple object edge boundaries,
the edges lack semantic information about individual objects or
their boundaries in the image. For extracting chained vector
boundaries, this method performs well and will be incorporated
in this paper.

The main parameters associated with most edge detectors are
the smoothing parameter and the gradient magnitude threshold-
ing parameter. These parameters are usually fixed for a given
scene. However, this is not ideal, especially for large scenes
with varying illuminating conditions and contrast. In this re-
search, we propose the use of a multi-detector framework that
uses an edge growing function while maintaining good edge
localisation. This is achieved by growing the edges using a
wide parameter space in an accumulator space, which results
in maximal edge boundary retrieval.

2. EDGE DETECTION FRAMEWORK

Edge detection has been extensively explored with many al-
gorithms proposed. However, the major drawbacks presented
by varying image contrast and resolution still hamper the suc-
cessful retrieval of edges. What has not been fully explored
is how existing edge detectors can be used in a framework
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that results in maximal boundary extraction while maintain-
ing good edge localisation and positional consistency. This
paper presents a framework that allows for maximal bound-
ary retrieval, while eliminating the need for fixed parameters
for smoothing and gradient magnitude thresholds. To introduce
generecity, the algorithms uses any gradient operator and tra-
verses the entire parameter space building up the edges in an
accumulator space.

Generally, most edge detectors begin by an image smoothing
operation to avoid the effect of noise due to high frequencies
as a result of high signal to noise ratio. This is then followed
by applying a gradient operation on the smoothed image and
then thresholding the gradient values to identify areas of high
intensity changes, which is the property used in detecting edges.
The identified pixels are deemed to be the edge pixel. Finally,
a thinning operation is applied to reduce edge width since the
effects of smoothing, low resolution and ramp edges. Ramp
edges captured at low resolution results in the failure to dis-
tinguish the start and end of the ramp but results in connected
double edges. The thinned single pixel width edges are then
chained and vectorised.

The proposed approach in this paper follows a similar method-
ology rather than using a defined smoothing and gradient op-
erator with fixed thresholds, a set of operators can be defined
and applied to the image. In, addition, no thresholding or para-
meters inputs are required for any of the smoothing or gradi-
ent operators. The smoothing and gradient operators are ap-
plied in the entire parameter space. Since multiple paramet-
ers and threshold combinations are applied, the result of each
threshold and smoothing parameter combination is an accumu-
lator or edge layer. Each resulting layer of a given parameter
combination is merged with the previous layer. To avoid edge
positional differences when merging layers, a localisation fil-
ter is used. The localisation or positional filter ensures pos-
itional consistency of the edges across layers while growing
edges in the accumulator. The filter also avoids edge duplic-
ation in the resulting edges. The result is maximal boundaries
retrieved which capture form, detail and boundaries of objects
in an image. Line retrieval is then applied to the final edge layer.
The framework also allows any pre-processing operators before
edge detection to be applied. The following sections detail each
of the steps involved in the framework.

2.1 Image smoothing

Image smoothing has proven to yield better edge detection
results by suppressing noise while preserving edges (Szeliski,
2010, Goyal et al., 2012). One of most common smoothing
functions used are the Gaussian smoothing function, bilateral
filter and Green’s function. These smoothing functions require
the selection of ideal smoothing parameter, for example σ for
Gaussian smoothing and µ for Green’s function. Green’s func-
tion is defined as:

fgr(x) =
µ

2
√
2
e−µ|x|(cos

µ|x|√
2

+ sin
µ|x|√

2
) (1)

and the Gaussian function is given by:

fgs(x, y) =
1√
2πσ2

e
− x2+y2

2σ2 (2)

where x, y = kernel coordinate offsets

Since there is loss of information when suppressing noise, the
challenge comes to selecting optimal parameters for smoothing.
To overcome this bottleneck, we define a range for the smooth-
ing parameters. We can therefore define a set of smoothing
functions fs by changing the smoothing parameter to a func-
tion parameter. Using the Gaussian function as an example, the
set of smoothing functions fs can now be defined as

fs = {fg(x, y, ρ) | ρ ∈ [a, b]} (3)

where ρ = smoothing parameter as a function variable

This implies any smoothing function in the set can be applied
with varying smoothing parameters over a parameter space with
range [a, b]|. The range of a and b must be large enough to
contain the optimal and extreme values of µ and σ, assuming
we use Gaussian blurring or Green’s function.

2.2 Gradient Operators

Similar to smoothing, we define the gradient based operation
that establishes the gradient magnitude and direction as

G = g(x, ψ);ψ ∈ [m,n] (4)

where ψ = threshold value for identifying edge pixels
x = image

This also implies G exists in a parameter range [m,n]. The set
Gs of gradient operators can now be defined as

Gs = {Gg(x, ψ)} (5)

where x = gradient magnitude

2.3 Localisation Filter and Vectorisation Function

A localisation filter is a mask that ensures edges layers are
grown while maintaining the correct edge position. Using dif-
ferent operators and thresholds often results in a shift in the
edge position in the layers. For example, applying different
smoothing parameters, object resolution is reduced. In addition
to resolution reduction, object edges are slightly shifted. The
localisation filter serves the purpose of merging the same edges
albeit shifted as a result of smoothing. Directly merging two
edge layers created using different smoothing operators results
in double and spurious edges. This is illustrated in Figure 1.
Edge ea and eb is the same edges but with a slight positional
shift. Growing these two layers will result in the double edge
effect.

However, merging the layers must result in the single edge
without double or spurious edges as shown in Figure 2. This
is achieved by using a localisation filter that assesses the same
neighbourhood in both layers to ascertain if there are duplicate
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Figure 1. Effects of merging layers with edges ea and eb that
have shifted edge positions. The resulting edge eab has an

extra double edge created which results in noisy edges.

Figure 2. Correct merging is achieved using a localisation filter
that ensures no duplicates or double edges. The result is a

clean edge map as shown by resulting edge eab.

edge pixels that have been shifted. The result retains the main
edge without introducing noisy or shifted edges.

The localisation kernel, ω3x3, used in ensuring a clean edge
map is defines as

ω3x3 =

{
1 gx ≥ ψ
0 gx < ψ

(6)

The evaluation of the filter works by establishing the presence
of any edge pixels in the filter neighbourhood. The filter returns
true if any matching pixel exists in the neighbourhood.

The output from the filter is a binary image at each accumulator
level. The binary image is vectorised. The edges obtained from
the vectorisation are grown at every level. The growth function
uses a voting strategy to identify exiting and new edges. In this
paper, the vectorisation presented by (Topal and Akinlar, 2012)
is used. However, any vectorisation function can be used.

We define the vectorised layer lvt at level t in the accumulator
as.

lvt = νt(g(x, ψ)) (7)

where νt(g(x, ψ)) is the vectorisation operation at accumulator
level t. All the above mentioned functions are then implemen-
ted in the accumulator space in the edge growing process. This
is detailed in the next section.

2.4 Accumulator Function

Since many detectors exist, users have the onerous task of se-
lecting a fit for purpose detector. In addition, optimal paramet-
ers for image smoothing and gradient thresholding, which are
all data dependent, are required. To eliminate these require-
ments, an accumulator based approach has been developed.
The smoothing and gradient thresholding functions have been
defined over the parameter space as opposed to using con-
stants. The inputs to the accumulator function are smoothing
and thresholding parameter ranges. Other optional inputs are

smoothing and gradient computation functions. These func-
tions can also be fixed in the accumulator. Initially, the accu-
mulator space is empty, then starting from the highest values
in the parameter space for gradient threshold and lower values
the smoothing functions, an edge map is produced for each set
of parameters. This edge map, alternatively named edge layer,
is termed the anchor layer since we know that higher values of
ρ and low ψ values yield correct edges albeit with high edge
omission levels.

Iterating through the parameter space creates a layer with every
parameter set. When a new layer is created at every accumu-
lator level, the previous or anchor layer is grown using new
edges found in the current layer level while also voting for
duplicate edges. The voting is an accumulation of the num-
ber of hits an existing edge pixels receives at each layer level.
Edges are grown if, for an existing edge, partial votes are re-
ceived from the new edge leaving candidates in the new edge
that have no votes, which implies an extra edge section that has
been identified. Layers are not stored at each level, but rather
used to grow the anchor layer, based on the voting mechanism,
which preserves memory and storage. At every region growing
level, the localisation filter is applied to identify duplicate but
misaligned edge pixels and avoid pixel wide parallel edges. In
the process of creating layers at every level, new edges without
partial votes are encountered. These edges are added as new
edges after passing through the localisation filter. If no votes
are received, this implies a new edge that is added to the edge
layer. This eliminates the emergence of spurious edges down
the accumulator levels. In this paper, the accumulator gradient
and smoothing function sets are predefined in the accumulator
space.

The region growing function R, which is the applied to the vec-
torised edge layer obtained from Equation 7 and the vectorised
anchor layer, is defined as

Rvt = R(lvt, lvtanc , ω)) (8)

We make the localisation kernel ω, defined in section 2.3, a
function parameter to allow for new improved merging filters
to be to the accumulator function as a parameter.

where lvt = vectorised output edge layer at level tin the accumulator
lvtanc = vectorised anchor layer that is continually grown

The algorithm of the framework described here is summarised
in Algorithm 1. After the final layer is created, the result is
a detailed edge map with both edges showing object form and
detail. Since most of these edge are open curves, Edges that
are close together are snapped to form closed boundaries where
possible.

2.5 Line Retrieval

The edges produced from the accumulator framework are
curves or linestrings that have no descriptors or parameters at-
tached. These curves usually have a stair stepped appearance
from the edge thinning and vectorisation process. Image ob-
ject boundaries are known to be composed of connected line
and elliptical curve segments that are connected to form closed
boundaries. The final step is to retrieve true lines and curve seg-
ments while removing the stepped effects. For this a new line
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Algorithm 1 Accumulator Framework Algorithm
Require: lanc = Null
Require: t = 0
Require: ρstep = 1
Require: ψstep = 4
Require: x is not Null ▷ input image

for ρ = b to a do
for ψ = m to n do ▷ Start with highest threshold

for g in set gs do
ft ← fg(x, ρ) ▷ Smoothing filter set
gt ← g(ft, ψ)
if lvtanc is NULL then

lvtanc ← νt(gt)
else

lvtanc ← R(lvt, lvtanc , ω)) ▷ ω a variable
end if
t← t+ 1

end for
ψ ← ψ − ψstep

end for
ρ← ρ− ρstep

end for
llines ← L(lanc, lmin)

fitting algorithm is proposed. Most line fitting methods minim-
ise the point to line distance d for any given point on the line
using Equation 9.

f(t, θ) = argmin
θ

n∑
i=1

d(ti, θ) (9)

where θ = line parameters
ti = line point i

The line is then obtained by using the parameters θ to retrieve
the line ιa.

ιa = L(t, θ) (10)

where L = the line retrieval function
tn = point set of size n used in computing θ

The Lines detected with Equation 9 using image edge points
have a slight error in the direction of the line. This is as a result
of object corners. Points at object corners at times introduce a
slight rotation in the resulting line. This is because most line fit-
ting methods distribute the errors equally using a fixed distance
function. For example, suppose a line is fit with a maximum er-
ror threshold of ε, the line ιa is obtained since the corner edge
pixels fall within this threshold instead of ιb as illustrated in
Figure 3.

Figure 3. Rotational line fitting error introduced by corner
edge pixels that fall within error threshold ε defined for the

line ιa. The desired line is ιb.

To correct for this error, the pixel errors at the end of the line
need to be excluded in the fitting. This is achieved by perform-
ing another line fit from the midpoint of the line going outwards
towards the line endpoints. This allows less rotational freedom
of the line in the final result. Similarly in Figure 4. The desired
line is either ιb or ιc and not ιa which has a directional error
compared to the true direction.

Figure 4. Rotational line fitting error introduced by corner
edge pixels that fall within error threshold ε defined for the

line ιa. The desired line is ιb or ιc. As shown with ιb and ιc,
line direction is maintained.

A new fitting procedure is proposed in this research. Initially a
line is fit using Equation 9. This gives us the line which might
have the rotational error as a result of corner points. After ob-
taining this initial line, we correct for the rotational error if it
exists. This is achieved by reducing the line points on either
ends by a small percentage g and then computing f(t, θg). The
results are then used to compute δr, the difference in direction
between the directions computed by f(t, θ) and f(t, θg). If this
exceeds a set threshold ϵ, then parameters for f(t, θg) are ad-
opted otherwise f(t, θ) is kept as the correct parameters for the
line. This computation can be enhanced by changing the value
of g iteratively as long as δr remains less than ϵ with the first it-
eration as the reference direction. The initial iteration must con-
tain at least half the line points used to obtain f(t, θ) centered
around the line midpoint. Resultantly, parameters computed
from the last iteration with δr below ϵ are adapted as the cor-
rect parameters. This process is depicted in the Figure 5 below
where the last iteration before the directional error threshold is
exceeded is chosen. ϵ value is usually set to 2o.

Figure 5. Line fitting with directional error control. Fitting
starts from the midsection of the line going outwards

maintaining a line direction variation δrthat is less than a
threshold ϵ at each iteration Im.

This step is used to refine line direction for all lines obtained by
least squares and the improved line fitting results are shown in
the next section.

3. RESULTS

The framework was tested on 50cm satellite imagery. The focus
was on specific cases to test performance of the framework un-
der difficult conditions where most edge detectors would omit
valid edges. The range for ρ, for smoothing is automatically
computed from the window size ranging from 3 to 12 pixels us-
ing the Gaussian and Bilateral Filter. The gradient threshold ψ
ranges from 36 down to 2 for our experiments but may cover a
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large range. Three gradient operators are set in the accumulator
namely Sobel, prewitt and Scharr.

The first result was a test on line detection on a tennis court with
limited contrast. The results were compared with three most
popular line detectors namely Line Segment Detector (LSD)
(Grompone von Gioi et al., 2012), Edge Drawing Lines (ED-
Lines) (Akinlar and Topal, 2011) and Hough Lines. Hough
Lines makes use of the canny edge detector for detecting the
lines. Figure 6 shows the results obtained from all algorithms
including the method proposed in this paper. Top left are res-
ults from LSD using default parameters supplied by the authors.
Top right are the results from EDLines followed by Hough
Lines on the bottom left. Finally the algorithm presented here is
shown on the bottom right. The algorithm detects more bound-
aries compared to the other methods. In addition, the benefit of
the line fitting method is evidenced by the linear and perpendic-
ular nature of neighbouring lines.

Figure 6. Edge detection around a tennis court with varying
edge strength. Top left are edges detected using LSD, top right
are edges from EDLines. Bottom Left are edges obtained from
Hough lines and bottom right is the edge detection framework.

To illustrate the performance of the framework under varying
contrast and shadowy areas, a building shown in Figure 7 was
selected. Improved line detection is shown with the method
presented in this paper in the bottom right image. As seen from
the image, most boundaries that are missed by the other meth-
ods are detected by the method proposed in this paper. A line
is found for most of the building edges. This is an added ad-
vantage in boundary retrieval algorithms. However, some over-
detected edges can be seen on the topmost structure.

To, illustrate the line fitting results, an overlay of all 4 methods
was done on a building and this is shown in Figure 8. As shown
in the circled area, the corner edge pixel effect affects most of
the methods in retrieving correct line orientations. The method
detailed in section 2.5 improves line orientation. Finally, as
shown in the parking lot image in figure 9, small feature de-
tection with limited contrast was also achieved while long un-
broken lines are also retrieved.

3.1 Quantitative Evaluation

To evaluate the level of detection, the detected edges were com-
pared to ground truth edges. The ground truth edges of the ten-
nis court in 6 were manually digitised. The comparison was
based on assessing the true length of real edges against the

Figure 7. Edge detection in low contrast and shadowy areas.
Top left are edges detected using LSD, top right are edges

from EDLines. Bottom Left are edges obtained from Hough
lines and bottom right is the edge detection framework

Figure 8. Overlayed results of lines detected by LSD (Yellow),
EDLines(light blue), Hough Lines (Orange) and edge

accumulator (green). The effects of edge pixels can be seen
around the red circles on the slightly rotated lines.

detected edges. Firstly, detected and ground truth edges were
paired using a proximity threshold of 1.5 pixels. Pairs were es-
tablished by selecting the closest near parallel edges. A one to
one mapping was enforced to avoid one to many line pairings.
From these matches, the number of correct edges and overall
pixel coverage was computed and the results are presented be-
low.

All ground truth and detected edges were converted to pixels
and overlayed. Firstly the total edge pixels from the ground
truth was computed and used as the baseline. At each accumu-
lator level accL, the number of edges detected that has a match
in the ground truth edge list ED was recorded. The percentage
of matched edge pixel EP against the baseline was also com-
puted. Next, the pixel coverage PC which is the percentage
of detected edge pixels that where matched with the baseline
and finally the amount of extra pixels RG from each region
growing process at a given accumulator level. Only the accu-
mulator levels that returned valid edges where recorded out of
243 levels. From the table, the accumulator contributed approx-
imately 37% more edge pixels from the initially detected 52%
from a single parameter set. The blue edges in Figure 10 are
outliers that where not matched to any ground truth edges.
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Figure 9. Parking lot with small lines also detected with the
bulk of the parking edges detected

Figure 10. Ground truth image and detected Edges of tennis
court used in evaluation

3.2 Discussion

The framework presented in this paper has the ability to detect
more edges under difficult imaging conditions. This is achieved
by using the entire parameter space to discover edges while
minimising spurious edges. In this paper, two parameters are
traversed without the need for fixed threshold values. These
parameters are gradient magnitude and smoothing parameter.
The smoothing and gradient functions can also be added in as
accumulator parameters. In this paper, two smoothing and three
gradient operators are used. This allows for both strong and
weak edges to be retrieved while leveraging the advantages of
different gradient functions. There are no scaling requirements
of the input image. Since the resulting dense edge map has
more edges, any subsequent line detection and fitting benefits
from the edge map as illustrated in the different scenarios in the
result section.

The main advantage of the framework is the ability to produce
dense edge maps compared to other detectors. However, the
disadvantage is that run-time of the algorithm increases with
the number of smoothing and gradient operators. This can po-
tentially be reduced by running accumulator levels in a parallel
manner and then fusing more than two layers. The framework
improves detected edge lengths using edge growing, which in
turn improves detected edges of both object form and detail.
While the research presented here is limited to satellite images,
the framework can potentially be applied to other types of large
area images such as aerial and drone images and this will be the
subject of future research.

The line fitting with skewness control increases the line orient-
ation accuracy as shown in Figure 8. This is in addition to the
increase in the average length of the lines retrieved from the
framework. However, the robustness of the line fitting requires
further investigation. The main disadvantage is that there are
false positives found as with the other detectors. Current work
is on minimising false positives and detecting curves in the out-
put. A method for filtering out false positives is required. Cur-
rent research is on the use local neighbourhood gradients mag-
nitudes of salient edges to identify very weak edges. In addi-
tion, the use of line arrangements and local edge patterns based
on gestalt principles to identify edges that do not follow local
neighbourhood patterns is being explored.

Edge Detection Evaluation
accL ED EP (%) PC(%) RG(%)

0 28 52.2219 52.2219 0
1 3 4.63325 56.8552 4.63325
2 1 0.92665 57.7818 5.5599
4 1 2.34388 60.1257 7.90378
5 1 0.872141 60.9978 8.77592
6 1 0.599597 61.5974 9.37551
7 1 0.817632 62.4151 10.1931
9 1 0.654106 63.0692 10.8473

12 1 0.872141 63.9413 11.7194
13 1 1.09018 65.0315 12.8096
18 1 1.19919 66.2307 14.0088
19 1 0.981158 67.2118 14.9899
20 1 0.709952 67.9218 15.6999
27 3 4.03468 71.9565 19.7346
28 2 1.68388 73.6403 21.4184
30 1 0.708614 74.349 22.1271
32 1 4.52454 78.8735 26.6516
33 1 2.23486 81.1084 28.8864
36 2 1.79845 82.9068 30.6849
47 2 2.77995 85.6868 33.4648
50 2 1.47174 87.1585 34.9366
206 1 0.922637 88.0811 35.8592
224 1 0.708614 88.7897 36.5678
232 1 1.19919 89.9889 37.767

Table 1. Accumulator rate of detection and edge growth

4. CONCLUSION

This paper presents an edge detection framework that is neither
case specific nor fixed to any gradient operator. Instead, the
framework operates using generic operators that are executed
in the entire parameter space. Good edge localisation is main-
tained and maximal boundaries are retrieved even in dark shad-
owy areas. The need for selecting optimal parameters is elim-
inated by defining a parameter range where edge detection is
carried out. In addition, a line retrieval algorithms that reduces
line orientation errors is presented. The accumulator frame-
work aims to introduce genericity in edge detection, where new
detectors and smoothing operators can be added to the set and
used to detect edges in a region growing manner. The result is
an improved detection rate even in areas where objects are not
visible to the human eye.

The result is a dense set of edges that can be further processed
to retrieve lines and curves with one major advantage being
boundary completeness. While there might be many levels,
to reduce the memory footprint, only consecutive accumulator
level are kept and passed to the region growing function and
then retaining only the result. Since most edge points at each
level are duplicates they are not re-processed but rather passed
as votes to existing edges. The framework produces a dense
edge map which benefits the subsequent line detection process
as show in the results. The new line fitting approach produces
lines with less directional error. The skewness encountered with
the other methods is reduced.

Current work is on minimising framework runtime and detect-
ing and filtering out false positives. Future work will look at
improving curve retrieval from the dense edge network and re-
covering closed boundaries from the dense edge map. In addi-
tion, benchmarking the performance of the accumulator space
during region merge is required in order to optimise the frame-
work performance. Investigation on the impact if any on the
use of different functions and order in the accumulator will also
benefit this research.
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