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ABSTRACT: 

 

As a result of the success of Deep Learning (DL) techniques, DL-based approaches for extracting information from 3D building point 

clouds have evolved in recent years. Despite noteworthy progress in existing methods for interpreting point clouds, the excessive cost 

of annotating 3D data has resulted in DL-based 3D point cloud understanding tasks still lagging those for 2D images. The notion that 

pre-training a network on a large source dataset may help enhance performance after it is fine-tuned on the target task and dataset has 

proved vital in numerous tasks in the Natural Language Processing (NLP) domain. This paper proposes a straightforward but effective 

pre-training method for 3D building point clouds that learns from a large source dataset. Specifically, it first learns the ability of 

semantic segmentation by pre-training on a cross-domain source Stanford 3D Indoor Scene Dataset. It then initialises the downstream 

networks with the pre-trained weights. Finally, the models are fine-tuned with the target building scenes obtained from the ArCH 

benchmarking dataset. Our paper evaluates the proposed method by employing four fully supervised networks as backbones. The 

results of two pipelines are compared between training from scratch and pre-training. The results illustrate that pre-training on the 

source dataset can consistently improve the performance of the target dataset with an average gain of 3.9%. 

 

 

1. INTRODUCTION 

The digital representation of the building point clouds enables 

and facilitates new applications in a variety of subsequent tasks, 

including simulation (Hong et al., 2018), smart city (Ruohomäki 

et al., 2018), monitoring (Begić et al., 2021), reconstruction 

(Previtali et al., 2018), and geographic information systems (GIS) 

update (Dukai et al., 2020). In these applications, the automatic 

classification of high Level-of-Detail (LoD) buildings is a 

fundamental and critical task. Inspired by the success of Artificial 

Intelligence (AI) approaches applied to subset tasks in Computer 

Vision (CV) (e.g., classification, object detection, and semantic 

segmentation), Deep Learning (DL) has been used in the last few 

years to extract information from 3D building point clouds in 

various applications , such as building modelling (Czerniawski et 

al., 2020), energy estimation (Ham et al., 2015), and cultural 

heritage (Sánchez-Aparicio et al., 2016; Pierdicca et al., 2020; 

Teruggi et al., 2020). 

 

Existing DL-based approaches for analysing and interpreting 

point clouds have been developed, such as techniques for 

registration (Aoki et al., 2019; Lu et al., 2019), classification 

(Joseph-Rivlin et al., 2019; Thabet et al., 2020), and semantic 

segmentation (Qi et al., 2017a, 2017b; Landrieu et al., 2018). 

However, applying DL methods to the semantic segmentation 

task of 3D building point clouds remains a challenging task, as 

DL-based methods heavily rely on large-scale labelled datasets. 

For instance, ImageNet (Deng et al., 2009) in the 2D CV domain 

contains more than 14 million images classified into 2000 

categories. In contrast, one of the most prominent 3D indoor 

point cloud datasets, the Stanford 3D Indoor Scene Dataset 

(S3DIS), only contains 270 rooms from 6 areas (Armeni et al., 

2016). Moreover, for the 3D building point cloud field, the 

existing dataset with high LoDs collected by Matrone et al. 
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(2020), the Architecture Cultural Heritage Dataset (ArCH), 

comprises only fifteen training scenes and two testing scenes. 

The data magnitude mismatch between the 3D and 2D domains 

may limit the capability of DL models trained on 3D point cloud 

datasets. 

 

The challenges associated with labelling hundreds of million 

points in building scenes restrict the implementation of DL-based 

point cloud models into building-related applications where 

annotated data is extremely scarce. There is no doubt that transfer 

learning is one of the most fruitful fields of deep learning 

research. The insight that pre-training a network on a typically 

large source dataset can help enhance performance once it has 

been transferred to downstream tasks and fine-tuned on target 

datasets where labels are scarce has proven essential in 

developing numerous tasks in Natural Language Processing 

(NLP) and 2D Vision. However, training from scratch on the 

target data remains the dominant approach in 3D point cloud 

fields (Xie et al., 2020), indicating that in all 3D scene 

understanding tasks, DL-based 3D point cloud understanding 

continues to lag compared to their 2D counterparts. 

 

Informed by the recent advances in pre-training (Xie et al., 2020; 

Zhang, 2021), this paper proposes the use of a straightforward 

but effective pre-training approach. To improve the performance 

on the label-scarce target 3D building dataset, we first learn the 

semantic segmentation capacity on the source dataset and then 

transfer the learned capability to the target dataset. Rather than 

establishing pretext tasks to capture prior knowledge in self-

supervised learning networks (Xie et al., 2020; Zhang et al., 

2021), we ask: can the ability of semantic segmentation acquired 

from other datasets be transferred to target datasets? To test this 

hypothesis, this work employs fully supervised learning 

networks to learn the semantic segmentation capability from a 
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cross-domain dataset. Since we observe that prior knowledge 

regarding distinguishing different objects can be transferred from 

a cross-domain dataset via pre-training, we refer to our method 

as “learn-to-distinguish”.  

 

The proposed pre-training method is composed of three simple 

steps:  

 

1. Training DL models on a large indoor source dataset, 

i.e., the Stanford 3D Indoor Scene Dataset (S3DIS – 

Armeni et al., 2016);  

2. The pre-trained weights are used as the initialisation for 

the downstream point cloud semantic segmentation 

task; and 

3. Fine-tuning models using the smaller Architecture 

Cultural Heritage Dataset (ArCH – Matrone et al, 

2020).  

 

The proposed approach is evaluated by comparing the results of 

two pipelines: (1) training from scratch (without pre-training) and 

(2) training with pre-training. To provide more convincing results, 

four networks - PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 

2017b), DGCNN (Wang et al., 2019), and KPConv (Thomas et 

al., 2019) - are trained in each pipeline using varied proportions 

of training data (4%, 10%, 100%). The results show that 

transferring prior knowledge of pre-trained networks, even if it is 

acquired from a cross-domain dataset, can consistently improve 

the performance of the target building dataset. 

 

Our contributions can be summarised as follows: 

 

1. We present a straightforward but effective pre-training 

method to transfer the prior knowledge of semantic 

segmentation learned from a cross-domain dataset to 

the target dataset; and 

2. In this study, empirical experiments were conducted to 

validate the effectiveness and practicality of the 

proposed method.  

 

 

2. RELATED WORKS 

Laser scanning techniques can collect point clouds of buildings. 
At the same time, the massive amount of data requires semantic 
interpretation at a high Level-of-Detail (LoD) to maximise the 
exploitation of these datasets. While Deep Learning (DL) 
algorithms for 3D point cloud analysis are constantly being 
developed and refined, labelled building point cloud datasets are 
rare. As a result, Deep Neural Networks (DNNs) have been 
limited in their applicability to architectural point clouds. In this 
section, the state-of-the-art of DL methods and pre-training 
approaches is discussed to determine the feasibility of using DL 
and pre-training methods applied to architectural point clouds.  
 

2.1  DL-based Methods 

Inspired by the diverse types of DNNs that are continuously 

being developed and improved in 2D image analysis, the ability 

to extract features effectively and automatically from DNNs 

enables the application of these promising algorithms for 

semantic segmentation of 3D point clouds. According to the 

architecture of the DNNs, existing methods for 3D point cloud 

semantic segmentation can be divided into multilayer perceptron 

(MLP) networks, convolutional neural network (CNN) networks, 

and graph convolutional networks (GCN). 

 

Recently, the ground-breaking approach PointNet (Qi et al., 

2017a) that can operate directly on point clouds was proposed. 

PointNet uses the MLP to learn pointwise high-dimensional 

features, and the max-pooling operation is used to address the 

disorderly inherent nature of 3D point clouds. However, since 

pointwise features are extracted and updated individually from 

each point in PointNet, the local context information between 

points in spatial space is neglected. This work has now been 

extended in a variety of ways to allow for the extraction of local 

and neighbouring information inside a point cloud. For instance, 

PointNet++ (Qi et al., 2017b) constructs a sampling and grouping 

scheme to learn hierarchical features at increasing spatial scales. 

Because point clouds are irregular and points in point clouds are 

continuous in space, making fixed-grid convolution in 2D cannot 

be used directly on point clouds. To address this, KPConv 

(Thomas et al., 2019) proposes using kernel points as 

convolutional filters and operating on points without 

transformation. The weights of convolution are learned from 

kernel points and their neighbours in the Euclidean space. On the 

other hand, GCNs can naturally extract geometric information 

from their surroundings. For example, EdgeConv (Wang et al., 

2019) enhances semantic segmentation performance via graph 

convolution, which performs a convolution operation on the 

edges that connect points and their neighbours. Thus, the 

correlation between points and their 𝐾-nearest neighbours can be 

computed by operating the convolution on the edges of the 

constructed local graph. The features of input point clouds are 

then updated by aggregating edge features together through a 

local max-pooling layer. 

 

In regard to the building domain, the deep competition network 

(Khoshboresh-Masouleh et al., 2019) uses encoder-decoder 

blocks to extract robust super-pixel representation from multiple 

building scenes. Then five blocks are stacked together to extract 

the building footprint from the building’s LiDAR point clouds. 

Pierdicca et al. (2020) proposes employing DGCNN (Wang et al., 

2019) to perform the point cloud semantic segmentation task 

applied to an architectural cultural heritage dataset, the ArCH 

Dataset (Matrone et al., 2020). In 3DLEB-Net (Cao and Scaioni, 

2021a), they proposed a two-step label-efficient DL-based 

network to obtain per-point semantic labels for the point clouds 

of LoD3 buildings. Specifically, 3DLEB-Net first utilises an 

Autoencoder (AE) to learn discriminative representations by 

reconstructing the input unlabelled point clouds. Then, the 

learned representations are used as the inputs of the classifier in 

the second step, thus decreasing the demand for a large amount 

of labelled data in conventional DL methods. 

 

2.2  Pre-training Methods 

Several techniques have been developed to address the lack of 
data and finely-annotated label problems in the 3D domain. In the 
2D image (He et al., 2019) and natural language processing (NLP) 
(Devlin et al., 2018) domains, pre-training is one of the critical 
components in today’s innovative approaches. Pre-training is 
defined as training on a typically large-source dataset and then 
transferring the acquired prior knowledge to a downstream task 
and fine-tuning it on a smaller target dataset to improve the 
performance of the network. This notion motivated the idea of 
using pre-training methods to improve the performance of DNNs 
in architectural domains where data and labels are scarce.  
 
Existing pre-training methods attempt to extract robust features 
from enormous amounts of unlabelled data by designing 
unsupervised or self-supervised pretext tasks. For example, 
OcCo (Wang et al., 2021) trained a point cloud completion model 
to reconstruct the occluded point clouds from the given portion 
of the observed data. Using the contrastive loss to capture point-
level correspondences, both PointContrast (Xie et al., 2020) and 
DepthContrast (Zhang et al., 2021) demonstrate that joint pre-
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training can improve the performance of DNNs. On the LoD3 
buildings, 3DLEB-Net (Cao and Scaioni, 2021a, 2021b) utilised 
an Autoencoder (AE) based unsupervised learning method. It 
consists of two steps. The initial step is to create an AE-based 
point cloud reconstruction task that will extract discriminative 
features from unlabelled input point clouds. The weights of the 
pre-trained AE are then used as initialisation for the semantic 
segmentation network in the second step. In this way, these 
unsupervised learning methods can learn a pre-trained model able 
to identify the visual constraints inherent in real-world point 
clouds. 
 
The findings of these methods indicate that the pre-training 
method is one of the potential solutions to the lack of labels issue. 
However, the approaches outlined above require the creation of 
pretext tasks and the corresponding datasets (e.g., half point 
clouds, augmented point clouds), and then the learned knowledge 
or model weights are used for downstream tasks. With this in 
mind, this paper presents a “learn-to-distinguish” method that 
attempts to directly transfer the capabilities of semantic 
segmentation acquired by training fully supervised learning 
methods. To be more specific, we first train on a cross-domain 
but existing and annotated source dataset to learn the ability of 
semantic segmentation using four different fully supervised 
learning methods. Then, we transfer the prior knowledge 
obtained in the first step to our target dataset by using the pre-
trained weights as the initialisation of the downstream network. 
Finally, fine-tuning is performed on the labelled target dataset.  

 

 

3. METHOD 

3.1  Overview 

In this paper, we propose applying a pre-training method to 
enhance the semantic segmentation performance of existing fully 
supervised methods when labels are insufficient. Deep learning 
networks (DLNs) can learn prior knowledge about the ability to 
distinguish between different objects from a source dataset. We 
believe this can be transferred to the target dataset. For example, 
we used an indoor dataset as the source dataset and an outdoor 

dataset as the target dataset in this study. To validate such a 
hypothesis, this paper compares the results obtained from two 
pipelines with and without the pre-training method (training from 
scratch). As shown in Figure 1a, we use the ArCH Dataset 
directly in the first pipeline to train different fully supervised 
learning methods. Our pre-training pipeline is straightforward 
but effective, requiring only three steps, as illustrated in Figure 
1b. We begin by training four fully supervised methods on the 
source indoor dataset (S3DIS). And then we use the pre-trained 
networks as an initialisation of the downstream network. Finally, 
fine-tuning is performed on the target ArCH Dataset.  
 

3.2 Backbone DL Methods 

Diverse types of state-of-the-art DLNs as our backbones are 
selected to assess the effectiveness of the proposed method and 
its adaptability to different DNN architectures, including two 
MLP-based networks – PointNet (Qi et al., 2017a) and 
PointNet++ (Qi et al., 2017b), a CNN-based network – KPConv 
(Thomas et al., 2019), and a GCN network– DGCNN (Wang et 
al., 2019). For more information, please refer to the source 
papers. 
 
3.2.1 PointNet and PointNet++: Both PointNet and 

PointNet++ are proposed by Qi et al. (2017a, 2017b). As 

illustrated in Figure 2a, to directly manipulate unordered point 

clouds, PointNet proposes to leverage the MLP to learn high-

dimensional features for each point individually. Afterwards, 

pointwise features are aggregated into a global feature through a 

symmetric function called max pooling, which solves the 

unordered inherent characteristic of point clouds. Due to the fact 

that the features of each point in the point cloud are learned 

independently in PointNet, the local context information between 

points is neglected. Taking this into account, PointNet++ adds 

relations between points in local regions. Specifically, it stacked 

several Set Abstraction (illustrated in Figure 2b) blocks to 

hierarchically sample, group, and extract fine geometric 

structures from the neighbours of each point through the 

sampling layers, grouping layers, and PointNet layers. 

 

 
(a) 

 
(b) 

Figure 1. An illustration of the proposed pre-training method for building point cloud semantic segmentation. Our approach 

compares two pipelines: the top row represents the training from the scratch pipeline, while the bottom row represents the three steps 

of training with the proposed pre-training method pipeline: Pre-training with the Stanford 3D Indoor Scene Dataset (S3DIS – Armeni 

et al., 2016); using the pre-trained network to initialise the downstream task; and fine-tuning with the target Architecture Cultural 

Heritage Dataset (ArCH – Matrone et al, 2020). 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2022-219-2022 | © Author(s) 2022. CC BY 4.0 License.

 
221



 
(a) 

 
(b) 

Figure 2. An illustration of PointNet (Qi et al., 2017a) and PointNet++ (Qi et al., 2017b). Top: a demonstration of how to use 

multilayer perceptron (MLP) layers to learn pointwise features and utilise a max pooling layer to learn and aggregate the global 

features in PointNet. Bottom: a 2D explanation of how to use a Set Abstract block in PointNet++ to sample, group, and extract local 

geometric information from input points and their neighbours. 

 

3.2.2 KPConv: CNNs are utilised in the majority of state-of-

the-art 2D DLNs for the purpose of understanding 2D images. As 

seen in Figure 3(a), an image is a 2D grid (5 × 5) of pixels in 

which each pixel is allocated three channels representing three 

colour values (RGB). Furthermore, the distance between adjacent 

pixels is always constant, so that the 2D convolution kernel can 

be designed to fit fixed-size grids (3 × 3). 3D point clouds, on 

the other hand, are unstructured since each point in a point cloud 

is sampled independently, and its distance to its neighbours may 

vary. This makes designing the convolutional kernels for 3D 

point clouds difficult and prevents us from using the kernels of 

2D CNNs directly on 3D point clouds.  
 
KPConv (Thomas, 2019) overcomes these challenges by 
defining convolutions in continuous 3D space, where the weights 
for neighbouring points are proportional to the spatial 
distribution of the centroid point in the Euclidean space. Each 
pixel in 2D CNN is represented by a list of values referred to as 
RGB channels and is processed through 𝑘  filters. As seen in 

Figure 3(a), the new representation of the pixel is the dot product 
of the channels of adjacent pixels by the filters. Similarly, each 
point in a KPConv layer has 𝑓ᵢ features (e.g., coordinates 𝑥𝑦𝑧, 
RGB values, and intensity) that correspond to channels in 2D 
images and is multiplied by 𝑘 kernel points (similar to filters), as 
seen in Figure 3b. The new representation of the point equals the 
sum of all the kernel values multiplied by the features of its 

neighbours and itself. The neighbourhood of a point is defined by 
all the points that are located in a sphere with a fixed radius 
around that point.  
 
3.2.3 DGCNN: The GCN treats each point in a point cloud as 

a node of a graph, with edges formed by the relations between 

the neighbours of each point. As illustrated in Figure 4a, a typical 

graph-based network initially constructs a graph from input 

points and connected edges. We use DGCNN (Wang et al., 2019) 

as one of our backbones, which is one of the state-of-the-art 

GCNs. As depicted in Figure 4b, the EdgeConv layers in 

DGCNN are used as the representation learning functions for 

each graph edge. The edge function of EdgeConv captures the 

global shape by encoding the coordinates of 𝑝𝑖 and then obtains 

the local information by encoding 𝑝𝑗 − 𝑝𝑖 . The output feature 

inside each local region is aggregated by a local max-pooling 

operation on the edge features from each connected vertex and 

itself in the constructed graph. This enables DGCNN to capture 

local geometric features and global information inside each local 

region. Furthermore, by dynamically constructing a graph in each 

layer and stacking several EdgeConv layers, the receptive field 

becomes larger, and information is aggregated in different 

receptive fields. Thus, DGCNN can combine the global shape 

structure information with hierarchical local neighbourhood 

information. 

 
                                                     (a)                                                                                                     (b) 

Figure 3. The simplified 2D illustration of convolution. Left: the use of a 2D filter on an input image. Right: using a 3D rigid 

convolution kernel on the input point cloud, where the weights for neighbouring points are proportional to the spatial distribution of 

the centroid point in Euclidean space, shown in the gradient colours in the neighbour points of the centroid. 
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(a) 

 
(b) 

Figure 4. An illustration of the graph construction process and 

edge features’ learning process in a local region on the 

contrasted graph. 

 
 

4. EXPERIMENT 

4.1 Datasets 

Pre-training approaches can use either in-domain or cross-

domain datasets as the source and target data. We use the 

Stanford 3D Indoor Scene Dataset (S3DIS) as the source dataset 

and the Architectural Cultural Heritage Dataset (ArCH) as the 

target dataset to prove our hypothesis that the semantic 

segmentation capabilities learned from pre-training can be 

transferred to the target dataset while using a rich source dataset 

as input to the pre-trained network, even if both datasets are 

cross-domain. We will introduce the aforementioned datasets in 

this subsection. 

4.1.1 S3DIS Dataset: This dataset consists of a large-scale 

indoor environment including six indoor areas with 271 rooms 

for a total of 695 million points. These rooms cover office areas, 

educational and exhibition spaces, conference rooms, personal 

offices, restrooms, open spaces, lobbies, stairways, and hallways. 

Each point in the scene point cloud is annotated with one of the 

13 semantic categories, which are structural elements (ceiling, 

floor, wall, beam, column, window, and door), furniture (table, 

chair, sofa, bookcase, and board) and clutter for all other 

elements.  

 

4.1.2 ArCH Dataset: This dataset consists of seventeen 

classified indoor and outdoor scenes, fifteen for training and two 

for testing purposes, respectively. It includes a variety of building 

scenes, including churches, chapels, cloisters, pavilions, squares, 

and porticoes. Each point in the scene point cloud is labelled with 

one of the 10 semantic categories with a level of semantic detail 

at LoD3, including the “arch,” “column,” “mouldings,” “floor,” 

“door_window,” “wall,” “stairs,” “vault,” “roof,” and “others” 

categories for remaining elements.  

 

The target ArCH Dataset is relatively small and contains both 

outdoor and indoor point clouds representing cultural heritage 

building. The content of this dataset, to be used as target, is 

significantly different from the source dataset (S3DIS). 

Therefore, we compare the discrepancies in Table 1. As we can 

see, the number of points (“N. of Points”) in the S3DIS Dataset 

overcome the one of the target ArCH Dataset by a factor of five. 

Secondly, while both datasets are in the architectural domain, the 

S3DIS Dataset is a large-scale dataset for the indoor environment. 

In contrast, the ArCH Dataset primarily contains the exteriors of 

cultural heritage buildings, resulting in considerable differences 

in the semantic labelling (“Categories”) of the points in their 

point clouds. Finally, the acquisition methods are different in the 

two datasets, which may produce domain gaps. 

 

Dataset ArCH S3DIS 

Type Outdoor & Indoor Indoor 

N. of Points 136,138,423 695,878,620 

Categories 

“arch”, “column”, 

“mouldings”, 

“floor”, 

“door_window”, 

“wall”, “stairs”, 

“vault”, “roof”, and 

“others” 

“ceiling”, “floor,” 

“wall”, “beam”, 

“column”, “window”, 

“door”, “table”, 

“chair”, “sofa”, 

“bookcase”, “board”, 

and “cluster” 

Acquisition 

method 

TLS + UAV + 

Terrestrial 

photogrammetry 

Matterport Camera 

Table 1. Comparison of two datasets: The ArCH Dataset and 

the S3DIS Dataset. The “N. of Points” column denotes the total 

number of points in each dataset, except for the points classified 

as “others” in the ArCH Dataset. 

 

4.2 Experiment Settings 

The 3D scenes in the ArCH Dataset are too large to be used as 

input to the network, and therefore need to be segmented before 

training. Specifically, we chose a block size of 1 ×  1 square-

metre area for splitting each building scene into the horizontal 

blocks for PointNet, PointNet++, and DGCNN. In addition, the 

points in each block are subsampled into a uniform number of 

2,048 points. In particular, the point clouds are segmented in 

KPConv (Thomas et al., 2019) using spheres (the sphere radius 

is chosen to be 50 × 4 cm) in accordance with the original 

processing of the data. During training, spheres are randomly 

chosen from the scene. During testing, the spheres are picked 

regularly in the testing point cloud to ensure that each point is 

tested multiple times at different sphere locations. For the S3DIS 

Dataset, this paper follows the same configuration as the original 

networks, see the papers on PointNet, PointNet++, KPConv, and 

DGCNN for details (Qi et al., 2017a; Qi et al., 2017b; Thomas et 

al., 2019; Wang et al., 2019). 

 

In the experiments, different proportions of the ArCH Dataset are 

used as training data to evaluate the model’s performance when 

labelled data is scarce. Specifically, we select one scene 

(“SMV_chapel_28”), three scenes (namely, “SMV_chapel_1”, 

“SMV_chapel_24”, and “SMV_chapel_28”), and all scenes from 

the fifteen labelled scenes, representing 4%, 10%, and 100% of 

the total number of points, respectively, as training data. We use 

one unseen scene (“B_SMV_chapel_27to35”) as our test data. As 

shown in Figure 5, the test data represents a complicated and 

asymmetrical building that includes both in the indoor and 

outdoor (Matrone et al., 2020). 
 

While training the S3DIS Dataset and the ArCH Dataset from 

scratch, the data augmentation strategies, the hidden layer sizes, 

and training parameters are kept constant across different 
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networks according to the original respective settings. During 

fine-tuning, we also maintain the hyper-parameters like learning 

rate and optimizing strategy unchanged. We set the training time 

for fine-tuning to 100 epochs. There are only two distinctions 

during training: 

 

● The batch sizes in different backbones are accordingly 

altered to 4 to fit our computational resources, which 

may limit the performance;  

● Since the linear function of the last layer in the network 

takes the possibility of each point being classified into 

each category as output, the last layer’s size 

corresponds to the number of categories contained in 

the dataset. The categories of S3DIS and ArCH are 

different (13 vs. 10), and therefore the size of this layer 

is different in the pre-trained networks and the 

downstream networks. Due to this reason, the pre-

trained weights are not transferred in this layer. 

 

The Mean Intersection-over-Union (mIoU) evaluation matrix is 

calculated on the ArCH Dataset, which first computes the ratio 

between the intersection of the pointwise classification results 

with the ground truth to their union for each semantic class, and 

then computes the average over all classes.  

 

  
(a)                                       (b) 

Figure 5. Pictures of the test scene from ArCH Dataset. Left: 

“B_SMV_chapel_27to35 south side”. Right: 

“B_SMV_chapel_27to35 indoor part” Copyright © 2022 ArCH 

Dataset). 

 

4.3  Results 

We train four DL-based methods using different subsets of 

training data and compared the results of the two pipelines 

described above on the ArCH Dataset. Firstly, we train four DL-

based methods from scratch on one selected scene, three selected 

scenes, and all scenes in the ArCH Dataset. Then, the pre-training 

method is applied to four DL-based methods using the labelled 

S3DIS Dataset. Finally, the pre-trained models are fine-tuned 

using different portions of the ArCH Dataset, which is the same 

as the training from the scratch pipeline. 

 

Table 2 summarises the mIoU performances of the two pipelines 

on the ArCH Dataset. By comparison, we find that the pre-

training method always performs better. The results show that 

prior knowledge learned from the cross-domain S3DIS Dataset 

can be used to reliably improve the performance of the target 

architectural dataset, with an average gain of 3.9%. Furthermore, 

we observe that in the case of training DL-based models using 

only three scenes (approx. 10% of the total number of points of 

all scenes) and utilising the proposed pre-training approach, the 

models obtain comparable results to those training from scratch 

using all scenes in the Arch Dataset (0.395 vs. 0.325). 

 

The qualitative result of the DGCNN’s semantic segmentation is 

represented in Figure 6 - 8 when different pipelines and different 

sections of training data are used. As can be seen, our proposed 

pre-training approach produces more accurate results than 

training from scratch. 

Table 2. Comparing two pipelines while utilising distinct deep 

learning (DL) pipelines and various subsets of training data, 

using the ArCH Dataset as a benchmark. “N. of Scenes” denotes 

the used scenes in the DL training stage. 

 

 
Figure 6. Qualitative outcomes for semantic segmentation of 

“B_SMV_chapel_27to35” while training with a single scene 

from the ArCH Dataset. From left to right: ground truth (a), the 

prediction of training from the scratch pipeline (b), and the 

result obtained by the pre-training pipeline (c). 

 

 

Figure 7. Qualitative outcomes for semantic segmentation of 

“B SMV chapel 27to35” while training with three scenes from 

the ArCH Dataset. The picture in each column represents the 

same meaning as each column of Figure 6. 

 

 

Figure 8. Qualitative outcomes for semantic segmentation of 

“B SMV chapel 27to35” while training with all scenes from the 

ArCH Dataset. The picture in each column represents the same 

meaning as each column of Figure 6. 

N. of 

Scenes 
Models 

Scratch 

(mIoU) 

Pre-

training 

(mIoU) 

Gain 

(%) 

One 

Scene 

PointNet 0.165 0.224 5.867 

PointNet2 0.207 0.246 3.949 

KPConv 0.430 0.456 2.589 

DGCNN 0.290 0.307 1.757 

Three 

Scenes 

PointNet 0.226 0.235 0.909 

PointNet2 0.246 0.288 4.175 

KPConv 0.589 0.642 5.300 

DGCNN 0.331 0.395 6.389 

All 

Scenes 

PointNet 0.267 0.309 4.148 

PointNet2 0.269 0.237 -3.204 

KPConv 0.611 0.645 3.411 

DGCNN 0.357 0.472 11.492 
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 mIoU arch column mouldings floor door_window wall stairs vault roof 

Scratch 58.9 19.0 75.0 26.5 81.3 42.5 75.1 70.4 59.4 81.0 

Pre-training 64.2 30.1 85.5 29.1 87.5 40.6 81.0 76.2 63.0 84.8 

Gain 5.3 11.1 10.5 2.6 6.2 -1.9 5.9 5.8 3.6 3.8 

Table 3. Comparing the per-category prediction results of two pipelines utilising KPConv as the backbone and three scenes from the 

ArCH Dataset as training data. 

 

 

5. DISCUSSION 

The source S3DIS Dataset is an indoor dataset. In contrast, the 

target ArCH Dataset is primarily the exterior of a cultural 

heritage building with three overlapping objects in their point 

clouds – “columns”, “floors”, and “walls” - while the other 

categories do not overlap. Table 3 provides the semantic 

segmentation results for the training from scratch and pre-

training pipelines in each category, using KPConv as the 

backbone and the three scenes as training data. We can see that 

the improvement in the overlapping categories is more significant 

than the average improvement. Also, for the non-overlapping 

categories, our performance still improves. The result supports 

our hypothesis that pre-training can learn from distinct categories. 

It is worth noting that the drop in performance for the 

“door_window” category (-1.9%) may be explained by the fact 

that in the source dataset, both categories were separately labelled. 

However, they are combined in the target dataset, considering the 

small number of point clouds in both of them (Matrone et al., 

2020). This conflict between labels significantly interferes with 

the predictions, with a resulting drop in performance. 

 

Compared to the source dataset, the target dataset is smaller and 

has a different structure. Consequently, learning rates should be 

adjusted. We keep the learning rate the same because: (1) all 

backbones use adaptive optimizers; and (2) we use a smaller 

batch size to fit the memory size and provide implicit 

regularization for the models by adding noise to convergence. 
 
 

6. CONCLUSION AND FUTURE DEVELOPMENT 

This paper presents a straightforward and effective pre-training 

approach for 3D building point cloud semantic segmentation. To 

be more specific, our paper conducted solid experiments to 

evaluate the proposed method by comparing the semantic 

segmentation results of a 3D building point cloud from two 

pipelines: training from scratch vs. fine-tuning. The results show 

that pre-training a network on a large source dataset might 

consistently enhance performance when it is fine-tuned on a 

typically much smaller target dataset. We also observed that 

using three scenes from the ArCH dataset to fine-tune the pre-

trained network has gained comparable results to training from 

scratch using all scenes, which suggests that pre-training is also 

beneficial to the data and label-scarce 3D building point cloud 

domain. 

 

In future work, we will extend our work in several aspects: (1) 

different source datasets like ScanNet (Dai et al., 2017) and 

different amounts of training data in the pre-training stage could 

be involved to distinguish the impact of using different source 

datasets; (2) exploring hyperparameter settings such as learning 

rate, augmentation strategies, and layers for fine-tuning using 

control experiments; and (3) comparing the approaches that learn 

from pretext tasks (e.g., contrastive learning) with the proposed 

pre-training method. 
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