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ABSTRACT:

A huge archive of historical images of the Antarctica taken by the US Navy between 1940 and 2000 is publicly available. These
images have not yet been used for large-scale computer-driven analysis as they were captured with analog cameras. They were
only later digitized and contain no semantic information. Most modern deep-learning based semantic segmentation algorithms are
trained on modern images and fail on these scanned historical images, due to varying image quality, lack of color information, and
most crucially, due to artifacts in both imaging as well as scanning (e.g. Newton’s rings). The analysis of such historic data can
give a view on Antarctica’s glaciers predating modern satellite imagery and provide a unique insight into the long-term impact of
changing climate conditions with essential validation data for climate modelling. An important first step for analysis of such data
is the extraction and localization of semantic information, e.g. where in the image is water, rocks, or snow. In this work we present
the first deep-learning based method to perform semantic segmentation on historical imagery archives of the Antarctic Peninsula.
Our results show that our method can handle very challenging images even after being trained with only a low number of training
data and catch the general semantic meaning of a scene. For eight test images we achieve an accuracy of 74%, where the majority
of errors can be explained by the classification of ice as snow.

1. INTRODUCTION

In the 1940s, the U.S. Navy began flight campaigns over Ant-
arctica to take images from airplanes. Until 2000, over 330.000
images were taken and stored in the so called TMA (trimetro-
gon aerial)-archive, with the majority of the images from the
1960s. These images give valuable insights into the state of
Antarctica before the satellite era. However, these images are
only available as scanned image files and do not contain any
semantic information, which makes it difficult to use them for
research purposes.

To support the use of this image archive, semantic informa-
tion can be added to the images by semantic segmentation. In-
stead of looking at all pictures file by file, researchers could
then filter for images with certain classes (for example search-
ing only for images containing water or excluding all images
with cloud coverage over a certain percentage). Even though
there are many algorithms available for semantic segmentation
of imagery, these algorithms fail for the available imagery due
to the following reasons:

1. Poor image quality: Many of these images have flaws, for
example low contrast, over/under exposure or Newton’s
rings from scanning. See Lu et al. (2013) for an explana-
tion of this phenomenon.

2. Limited spectral information: The images are only avail-
able in grayscale with a limited number of information
(256 possible pixel values).
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3. Different image angles: The images are not only shot per-
pendicular to the ground, but are also oblique. Further-
more, some images are upside down with the sky at the
bottom.

4. Difficult semantic classes: The combination of classes
(snow/clouds: white pixels or rocks/water: black pixels)
is difficult in a spectral sense.

Even though each of these individual segmentation problems
have already been tackled and solved by researchers, the inter-
action of all four problems at the same time makes this very
challenging. In this paper we present a workflow for semantic
segmentation to tackle all four problems simultaneously. Our
contributions are therefore three-fold: First, we create labelled
training data for the segmentation of historical cryospheric im-
agery. Second, we develop an easy-to-use workflow for se-
mantic segmentation of historical imagery. Last, we provide
and train a U-net which successfully segments the images un-
der challenging conditions. Our implementation and labeled
data will me made available after sufficient testing1.

2. RELATED RESEARCH

There are numerous examples of successful image segmenta-
tion algorithms and tools, starting with simple mathematical
operations to the latest trends of using deep learning based U-
nets, compare Hao et al. (2020) or Minaee et al. (2021). This
section will put focus on semantic segmentation especially of
cryospheric imagery as well as for historical imagery.
1 Please see https://github.com/fdahle/antarctic segmentat

ion
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As the cryospheric regions (mainly the Arctic, Antarctica and
Greenland) are located at remote areas that are difficult to reach,
semantic segmentation is usually applied on satellite imagery
and less on aerial imagery. Examples can be found at Hartmann
et al. (2021), Holzmann et al. (2021), Dirscherl et al. (2021) or
Mohajerani et al. (2019). All of them are using machine learn-
ing based approaches for image segmentation, however always
with the goal of finding a certain class (and therefore only ap-
plying binary segmentation with two classes).

An good example for semantic segmentation of the cryosphere
with multiple classes can be found at Marochov et al. (2021), in
which CNNs are used for automated classification of Sentinel-
2 satellite imagery in different classes. Due to the combination
of RGB and near infrared data they can achieve an accuracy
of over 90%. This approach can also be used for non satellite
imagery, as described by Dowden et al. (2021). RGB imagery,
captured with a Go-Pro attached to a ship, is used to classify
the sea-ice in front of the ship. Using a U-Net architecture with
transfer-learning an accuracy of 97.7% was achieved.

In comparison to cryospheric imagery, semantic segmentation
for historical imagery is more rare for several reasons: It is
more difficult to collect enough labelled data for a successful
training of a segmentation model. Furthermore, historical im-
agery is often only available in grayscale and with less contrast
and contains therefore less information that can be used for the
segmentation. However, some examples for semantic segment-
ation of historical imagery can be found at Mboga et al. (2020)
and Dias et al. (2020).

In the first paper, a U-Net was used for semantic segmentation
as well as for classification of historical aerial photographs in
central Africa with a high accuracy of over 90%. In the second
paper an approach was described using a W-Net to simultan-
eously segment and colorize grayscale aerial imagery of Pots-
dam with a high accuracy of around 90% as well. Both papers
however worked with images that depicted a very diverse envir-
onment with very distinct classes.

3. INPUT DATA

As input data we utilize aerial images from the TMA archive
by the USGS (2018), a vast archive of historical imagery of
Antarctica collected by the U.S. Navy between 1946 and 2000.
TMA photography is a camera system that collects a left-
oblique, on-nadir (straight down), and right-oblique image, as
shown by Figure 1. These photographs were used for early to-
pographic mapping and provide an historical snapshot of many
parts of Antarctica. This archive was digitally scanned by the
USGS with a resolution of 25 micron/1000dpi and is publicly
available at their website2. Note that these images are not geo-
referenced. This archive has not yet been used for semantic seg-
mentation but only for small scale point cloud reconstructions,
as done by Child et al. (2020) or Kunz et al. (2012).

For semantic segmentation, the images should be segmented in
one of the classes described in table 1 (A legend of the classes
can be found in figure 6). Random images from the archive are
used as training data. As can be seen in the second column of
the table, the class distribution of this data (but also of the whole
archive) is very imbalanced. The last class unknown is only
2 see https://www.pgc.umn.edu/data/aerial/ for a description

and https://data.pgc.umn.edu/aerial/usgs/tma/photos/

for the images

Figure 1. Example image triple from Antarctic TMA, consisting
of a left-oblique, an on-nadir and a right-oblique image.

prevalent in the training data and is not a valid output class. It
is used as a class, if the pixels cannot be assigned with a certain
confidence to another class.

Class Percentage
Ice 5

Snow 69
Rocks 2
Water 7
Clouds 8

Sky 6
Unknown 2

Table 1. Class distribution of all training images used to train the
model

These images are only available in grayscale with 8-bit (=256
different shades of gray) resolution. Often, the images cannot
provide a good contextual meaning, e.g. it is difficult to dis-
tinguish between different classes: snow/clouds (both white) or
rocks/water (both black).

4. METHODOLOGY

Figure 2 depicts the workflow of this method in a flow chart.
As a first step (4.1) initial training data must be generated. Af-
terwards, the actual training of the model (4.3) can begin with
a U-net based model (4.2). It is followed by a post-processing
step to improve the quality of prediction, (4.4). In the last step,
the model is evaluated (4.5).

All steps in this workflow are applied in an iterative process, in
which training data is gathered and a model is trained with this
data. This model is evaluated with some unseen images and if
necessary trained again (because the classification failed) with
more training images.

4.1 Pre-processing

As a first pre-processing step, the prevalent borders in the im-
ages (as can be seen in figure 1) must be removed. These bor-
ders do not contain any semantic information for the scenes and
will only limit the efficiency of the model. All images contain
fiducial marks that describe the limits of the borders. Using the
free library of dlib described in King (2009), these fid-points
can automatically be recognized and used to separate the inner
part of the images from the borders.

Having the raw images without borders, the next step is to cre-
ate the training data manually. To support this creation of train-
ing data, an unsupervised neural network for image segment-
ation was applied on the raw images. This will create initial
segments of the images, based on matching parts of the images.
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Figure 2. Flow chart of the processing chain from aerial imagery to trained model. All steps inside the dashed rectangle are applied in
an iterative process.

In this paper the end-to-end network of unsupervised image
segmentation from Kanezaki (2018) was used. This method
works with the following criteria:

1. Pixels of similar features should be assigned the same label

2. Spatially continuous pixels should be assigned the same
label

3. The number of unique labels should be small

In order to use the unsupervised segmented images for training,
they must be further processed. The created segments do have
errors and do therefore not match the images perfectly. Further-
more, these segments do only have consecutive numbers as la-
bels and contain no semantic information. The following steps
were applied:

1. Renumbering segments: The segments created by the un-
supervised segmentation could consist of multiple, non
connected parts. These parts will be assigned with a new
number, so that every unique segment has its own number
as label.

2. Removing small segments: Small segments under a certain
threshold size of 20 pixels will be removed.

3. Filling the removed segments: The removed segments
from the previous step will be filled with their surround-
ing pixels (by using the watershed algorithm).

4. Separating segments: Sometimes only one segment is cre-
ated, where in reality two different classes are present (See
the left images in figure 3: The classes sky and snow at the
top are wrongfully merged in one big segment). These
segments will be separated manually.

To make the labelling as easy and quick as possible, a tool was
written in Python that allows to segment images with the pre-
viously described steps3. Figure 3 shows some examples of
self-labelled training data.

Figure 3. Examples of self-labelled images with raw images at
the top, the unsupervised segmentation in the middle (colours

are assigned randomly) and the final ground truth at the bottom.

3 This tool enables for example relabelling of already labelled images
together with adapting segments (e.g. separating)
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4.2 Architecture of the U-net

In order to apply image segmentation on these images, a classi-
fier was developed that uses both pixel values and spatial con-
text for classification. The basic structure of this algorithm
is based on the U-net from Ronneberger et al. (2015), origin-
ally developed for bio-medical purposes. This neural network
is based on fully convolutional networks and works especially
good for precise segmentation with few training images like in
Xu et al. (2020), as equivalent for this scenario. It consists of
a contracting path followed by an expansive path, resulting in a
U-shaped network structure.

Figure 4 visualizes the U-net used in this paper. It is based on
Kattenborn et al. (2019) and contains four encoders (contract-
ing path) and four decoders (expansive path). Small modific-
ations were applied to their approach: (1) An additional en-
coding/decoding layer was added (2) Different number of input
layers and output layers were used (3) A bigger input-size was
used for the images.

Each encoder/decoder in the network is built with the same
components sharing the same attributes:

• Conv2D: A convolutional layer with a kernel-size of 3, that
convolutes to additional feature maps. After convolution a
stride of 1 is added to maintain image size.

• BatchNorm: The input batch is normalized by re-centering
and -scaling to make the network more stable and converge
faster, as described by Ioffe and Szegedy (2015).

• ReLU: The activation function used in this network. Short
for rectified linear units.

• MaxPool2D: Downsizing of the image in order to reduce
the computational cost. The kernel size is 3 with a stride
of 2 which results in halving the image.

• ConvTranspose2D: A transposed convolutional layer. The
kernel size is 3 with a stride of 2 so that the output image
size is doubled in comparison to the input image size.

With each encoding block, the image size is halved, whereas
the number of feature maps is doubled (except for the first en-
coder/decoder). This allows to reduce the image size and there-
fore reduces the computational cost. With each decoding block,
the image size is doubled, but the number of feature maps is
halved. Note that for decoder 1-3, the number of input feature
maps is doubled as the output of the previous decoder is con-
catenated with the output of the respective encoder.

After all encoders/decoders are applied, the output image size
equals the input image size, and consists of 6 channels, one
per class, each containing each containing a value describing
how likely it is for each pixel to belong to that particular class.
To create the final segmented image, sigmoid is applied on the
data and for each pixel the class with the highest probability is
selected.

Instead of using dropout layers against overfitting, as done in
Baumhoer et al. (2019), batch normalization is used in every
encoder/decoder. As described in Garbin et al. (2020), this im-
proves the training speed while also resulting in a better gener-
alization.

In this work we resize the images from different sizes around
10000 × 10000 to 1200 × 1200. We found this to be the best
compromise between speed and quality of the model. In total,
this network contains around two million trainable parameters.
With this structure, the receptive field for one pixel is 155 ×
155.

4.3 Training

To train the model, the images were resized to 1200 × 1200
pixels and fed to the network with one input channel. The res-
izing of the images was necessary, as original-sized images did
not fit the GPU memory.

In total, a number of 67 images were used, split in training and
validation data with respective 80% and 20% of the images. As
the number of classes in the images is very imbalanced, random
split could not be used, instead stratified sampling was applied,
inspired by Yuan et al. (2018): This ensures a equal distribution
of the classes for all different sets.

During training, augmentation is applied to artificially increase
the number of images and make the model generalize better on
unseen data. We randomly augment our data with the following
operations:

• Flipping: The images are randomly (p=0.5) flipped ver-
tical and/or horizontal

• Rotation: The images are randomly (p=0.5) rotated around
a random degree

• Brightness: The pixels in the images are randomly (p=0.5)
increased or decreased by a random number (from 1 to 10)

• Noise: Gaussian noise is added randomly (p=0.5) to the
images

For the final iteration, 67 images are used, split in 52 training
images and 15 validation image, Each model is trained for a
maximum of 10000 epochs. For the final iteration, after around
6000 epochs and 78h training time the model converges and
training was stopped in order to prevent overfitting.

We utilize the Adam optimizer with an initial learning rate of
0.001. The models were trained on a NVIDIA Tesla P100 with
16GB of video memory. As this image segmentation is a multi-
class classification problem with imbalanced classes, the aver-
age weighted cross-entropy as described for example in Phan
and Yamamoto (2020) is used as loss4:

After a training round, the model was applied on unknown im-
agery and evaluated visually. If big discrepancies could be seen
between the raw image and the predicted outcome, this respect-
ive image was manually labeled and therefore added to the pool
of training images. Afterwards, the model was trained again,
using the enlarged pool of training/validation images. This ap-
proach allowed to start with a lower number of training images,
train with more challenging images and quickly increase the
overall quality of the models. For the first iteration, the data set
started with 14 segmented images and grew to a final size of 67
images after seven iterations.

4 Note that the weight for the class unknown is always zero, as learning
this class should be prevented
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Figure 4. Structure of the U-Net

4.4 Post-Processing

With post-processing the quality of the image segmentation can
be further improved.

• Some images are made with cameras facing down vertic-
ally and are just depicting the ground. For these images it
is impossible to have the class sky. If this class is appear-
ing in these images, it will be replaced with the class with
the second-highest probability.

• Some combinations of classes are physically not possible
and can therefore easily be recognized and removed. Ex-
amples would be small patches of the class sky that are
located far away from the real sky or small patches of the
class snow inside the sky. These patches will be removed
and filled with the value of the surrounding pixels via a
watershed-algorithm.

• The probability scores for the different classes are very
close together, often in the range of 0.001% and both
classes are therefore very likely. For these patches it was
checked if this patch is under a certain size-limit and if
there were neighbouring patches prevalent that contain the
same class. If this was not the case, this patch was con-
sidered as an outlier and the class was changed to the most
prevalent surrounding class. This was often the case for
small patches of the classes clouds and water that were
converted to the class snow.

Figure 5. Example for post-processing with raw image (left) and
prediction before (center) and after (right) post-processing

4.5 Evaluation

The evaluation of this model poses some challenges:

• As the labelling of the images is very time-consuming,
only a limited number of labelled images are available,
from which most are required for training and validation
of the model.

• The results of the model are very dependent on the im-
ages themselves, as the images are not equally easy to seg-
ment. Some images have easy recognizable segments and
are classified with almost no error, whereas other images
(especially the underexposed) are more challenging

• The ground truth data was also created manually and the
quality of this data is therefore dependent on the person
creating it. Especially small structures are often not classi-
fied in the ground truth data, but recognized by the model.
Even though the model is in this case correct, it will be
classified as a bad result.

The evaluation of this model is therefore applied with a small
selection of imagery from the same TMA archive but far away
from the locations of the training/validation images. The im-
ages were selected randomly with two constraints: (1) All
classes should be available in order to check the performance
of the model in a complete manner; (2) the images should be
difficult to segment in order to challenge the model (a picture of
good image quality just containing the class snow for example
is not a challenge).

The evaluation metrics for this model are based on the standard
evaluation parameters for classification: accuracy, precision,
recall and f1-score as for example described in (Diego Oliva,
2021, p. 450).

5. RESULTS

Figure 6 shows the segmentation of the model for these differ-
ent images. It can be seen that for every picture the general
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semantic meaning is captured; it is therefore clear if the pic-
ture is shot perpendicular / oblique or if it contains parts of the
ocean. Even for difficult parts the segmentation is working: The
shadowy part (second column) is correctly identified as snow
and the newton’s rings (third column) have no influence either.
The biggest difference between ground truth and result can be
seen in the first and the fifth column: Ice is almost exclusively
switched for snow, only in the first image some parts of the ice
are classified correctly.

Table 2 gives the performance of the model on selected test im-
ages. None of these images was used either for training or val-
idation. Precision and recall are averaged over all the classes.

Image Accuracy Recall Precision F1-Score
CA035131L0077 0.55 0.92 0.55 0.55
CA139132V0154 0.96 0.96 0.96 0.96
CA172032V0190 0.99 0.98 0.99 0.98
CA172733R0183 0.93 0.95 0.93 0.94
CA179231L0038 0.25 0.25 0.62 0.16
CA180031L0060 0.96 0.95 0.96 0.96
CA135432V0377 0.56 0.87 0.56 0.68

average 0.74 0.84 0.80 0.75

Table 2. Results of model per image

Table 3 shows the performance of the model per class.

Class Precision Recall F1-Score
Ice 0.02 0.74 0.04

Snow 0.98 0.71 0.82
Rocks 0.43 0.65 0.52
Water 0.80 0.94 0.86
Clouds 0.45 0.80 0.58

Sky 0.92 0.81 0.86

Table 3. Results for model per class

Table 4 shows a confusion matrix for the selected test-images.
Note that the class unknown is not a valid class for output, so
that there is no column for this class.

Ice Snow Rocks Water Clouds Sky Total
Ice 35919 1560885 3669 19565 273 23277 1643588

Snow 9354 5482627 15205 10344 7537 80337 5605404
Rocks 895 62440 51683 4123 0 0 119141
Water 2067 179428 7757 1027328 69619 0 1286199
Clouds 0 364437 136 31470 325789 0 721832

Sky 0 42314 0 370 0 553655 596339
Unknown 521 68660 1475 5254 2579 29008 107497

Total 48756 7760791 79925 1098454 405797 686277 10080000

Table 4. Confusion matrix for the test-images with real classes
on the left and predicted classes on the top

6. DISCUSSION

The average accuracy of this model on the test set is 74% over 6
classes. Most errors can be attributed to the model misclassified
ice as snow, as can be seen in table 4. However, when looking
at the matrix for the other classes, the majority of classifications
is correct.

The model is able to distinguish between different classes and
catches the general semantic meaning of a scene. Following
annotations can be noted:

1. High percentage of snow for the pixels
For almost any pixels of the images, regardless of the
ground truth, there is a high probability for the snow-class.
This is caused by the labelling of the data, as the labels can
only be created with confidence for the bigger structures.
Labelling correctly every pixel would take an unjustified

amount of time, therefore small structures will rise up in
the bigger segments, which is usually the class snow.

2. Ice gets confused with snow
It is difficult for the model to distinguish the class ice from
the class snow. Often these classes are close together and
have a very similar semantic structure. This effect is re-
inforced by snow often covering the ice fields. For these
images, only visual information is not enough for a correct
segmentation and additional information must be included
for a successful segmentation. However, for most applica-
tions this is not a major issue.

3. Segmentation of clouds failing for some cases
As can be seen in the training results, a complete seg-
mentation of the class clouds is difficult. Dependent on
the thickness of the clouds, the land beneath the cloud can
be completely obscured or only partly covered, which can
lead the model to wrong assumptions. Furthermore, due
to its similarity in the gray colour space (both are white),
clouds often get confused with snow (the training data for
snow is substantially larger, which makes for the model
generally snow more likely than clouds).

7. CONCLUSION

In this paper we successfully created an initial workflow for
semantic segmentation of historical cryospheric images with a
U-net based model that could extract semantic information for
the images of the TMA-archive. The created model learns to
distinguish between most of the different classes with a certain
confidence and does not get disturbed by flaws in the quality
of the images. As can be seen for example in figure 7 (the
example images from figure 1), it is able to catch the gen-
eral semantic meaning of an image, especially after the post-
processing. However, for some class combinations and some
finer details (for example small rock structures) the model must
yet be improved.

As a next step, more training data will be created and added
to the model, which is expected to give the biggest improve-
ment. Having more training data - especially from classes be-
side snow - will increase the variability of each class and pre-
pare the model for more challenging scenes. This new training
data will include both labelled images from the TMA archive
and from other historical archives in order to increase the vari-
ability of classes even more. It could furthermore be useful to
refine the currently very generic classes, for example to dis-
tinguish between sea-ice and land-ice from glaciers. As the
amount of GPU-memory is limited, a resizing of the images
is currently necessary. However, this reduces the amount of in-
formation in the images and removes finer texture details from
the images. It will be checked if other methods (like training
for example with crops) can be used instead and improve the
differentiation between snow and ice.

In its current state, this model works with the grayscale im-
ages as the only source of information. It should be checked if
the quality of the model can be further improved by including
metadata of the images as additional data sources. This could
be either the information if an image is taken with a oblique or
nadir camera, the flight height or even the date when the pic-
ture was taken (to account for seasonal effects). However, these
additional sources should be selected carefully, as this would
limit to use this model for other images where this additional
metadata is not available.
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Figure 6. Result with input image (top), ground truth (middle) and prediction after post-processing (bottom)

Figure 7. Semantic segmentation of the triplet from figure 1
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