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ABSTRACT:

While numerous studies are being conducted to improve neural network performance for image segmentation, studies on the impact
of training data in terms of data quality, bias and labeling noise are comparatively scarce. When opening state of the art algorithms to
a large and varying dataset, they do not achieve the same results as under optimal and controlled conditions due to a mismatch of the
data used for training and the data that is to be predicted. This paper presents an approach to show the influences of diverging image
properties such as scale, contrast, brightness and saturation between the training data of a model and data that is to be predicted. For
this purpose, a U-Net is trained to segment buildings in aerial images. It was found that while changes in brightness have a strong
effect on precision, recall and F-score, a change in saturation does not have too much or even positive effect on segmentation. In
general, however, it can be said that any differences between training and prediction data have a negative effect on segmentation
results.

1. INTRODUCTION

The increasing overlap between remote sensing, computer vis-
ion and computer science led to rapid advancements regarding
the analysis of geodetic data. The new possibilities, also due to
increasing computer performance, opened up new approaches
to geodetic data processing (Maxwell et al., 2018). At the same
time, breakthroughs in machine learning led to rapid progress
and new developments for remote sensing applications (Sagan
et al., 2020). While the initial focus of industry and academia
was on object detection using bounding boxes (e.g. with YOLO
(Redmon et al., 2016)), further developments in the field of
neural networks enabled the segmentation of raster data using
Deep Learning (e.g. with U-Net (Ronneberger et al., 2015)).
This in turn resulted in different approaches for the segment-
ation of satellite and aerial imagery (Kim et al., 2019), which
made it possible to detect objects instead of bounding boxes.

Many of the aerial segmentation studies conducted since then
have been concerned with the neural networks themselves, show-
ing advances in the design of architectures that ultimately lead
to better detection and segmentation results on benchmark data-
sets (Rahman M.A., 2016). Compared to the volume of re-
search on neural networks and (fine tuning) their architectures,
relatively little research is being done on the used data. Mostly,
research is done in the context of data on topics such as class
imbalance (Japkowicz and Stephen, 2002) or dataset size (Soek-
hoe et al., 2016), but rarely on the actual properties of the data
such as exposure, color shift, or contrast values as they occur in
the real world and in real-world applications during prediction.
Especially in the field of aerial image segmentation, studies on
image properties are pending.

This paper presents an approach to show the influences of scale,
brightness, contrast and saturation as well as the combination of
these factors on the segmentation results when predicting build-
ings from aerial imagery unknown to the neural network. The
goal is to investigate whether these properties affect the seg-
mentation results and if so, to what extent. For this purpose,

said combinations are contrasted and compared with the seg-
mentation results of data that has not been altered.

2. RELATED WORK

2.1 Direct dataset evaluation

As mentioned, much research in the field of aerial image seg-
mentation regarding datasets amounts to a) the size of datasets
(Sun et al., 2017) and b) the class imbalance of the training
data (Li et al., 2021). While, to our knowledge, no publica-
tions deal with the direct impact of image properties mentioned
in the introduction, in adjacent areas where training sets are as
important as in image segmentation such as audio and signal
processing, the impact of data quality and quantity is discussed
when introducing new datasets (Manilow et al., 2019).

2.2 Data augmentation

Data augmentation, in this case image augmentation, is the pro-
cess of automatically creating additional training data by mak-
ing minor (or depending on the use case moderate) changes
to it. Image augmentation algorithms can include flips, ro-
tations, color space augmentations, geometric transformations
and many more (Shorten and Khoshgoftaar, 2019). Some pub-
lications in the field of satellite and aerial segmentation use aug-
mentations and describe those that haven been used like rota-
tions and chromatic distortions (Li et al., 2018, Khryashchev et
al., 2019). At the same time, information about how classifica-
tion or segmentation results would look like without augment-
ations is often missing since it is not the main focus of given
publications. When augmented and non-augmented segmenta-
tion and classification results are compared, they usually aren’t
compared granularly so the effect of each augmentation method
is not always clear (Wu et al., 2019). It must also be men-
tioned that augmentations sometimes are only introduced into
the training data to prevent the neural network from overfitting
which means that in that case the network learns to perfectly
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model the training data which would lead to bad performance
when introducing new data.

3. METHODOLOGY

3.1 Segmentation approach and data

In order to perform a study regarding the effects of different
image properties for segmentation, images must first be seg-
mented. After successes in the field of biomedical image pro-
cessing, the U-Net found great appeal in the field of image seg-
mentation and became a popular choice for segmentation tasks
in various fields, including aerial and satellite image segment-
ation (Zeng et al., 2019, Tang et al., 2019, Darapaneni et al.,
2020). Accordingly, for this experiment, a U-Net was used to
segment aerial images. The training data1 has three channels
(RGB), a resolution of 10000 x 10000 pixels with a ground
sampling distance of 10 cm. The data was chosen to include
both developed urban areas as well as rural areas. So that the
images do not have to be reduced in resolution for training, they
are divided into smaller tiles of 512 x 512 pixels. The same ap-
plies to the validation and test data. The training labels were
automatically generated from outline polygons of buildings of
the corresponding areas so labeling noise can not be ruled out
entirely. However, the labels were examined for the proportion
of building pixels with respect to background pixels, so the ef-
fects of class imbalance can be mitigated to some degree.

The training was carried out with around 20.000 image tiles.
The best resulting model was used to predict the segmentation
maps of unprocessed images. The segmentation maps of the
unaltered images are later used as reference for examining the
influences of the alteration of image properties on segmentation
results. Figure 1 shows an overview of the training and predic-
tion process.

Figure 1. After splitting up the initial true-orthophoto into tiles,
the training images and labels (black and white binary images)
are being used to train the U-Net. While red arrows show the

path to train the U-Net, the green arrows show the path to predict
(to the network) unknown images. The gray arrow (back

propagation) is supposed to depict that there is a training process
included.

3.2 Image Alteration

While designing the concept, a decision had to be made about
which changes in image properties to consider. To look for
clues about discrepancies in datasets, publicly available data

1 https://www.opengeodata.nrw.de/produkte/geobasis/lusat/dop/

were examined. A look at the aerial image data publicly avail-
able in Germany2 revealed that taking into account variations in
contrast, saturation and exposure/brightness would prove use-
ful. A shift in color could not be observed. Accordingly, the
decision was made in favor of the former properties. It should
be mentioned that these properties are not specific to Germany
as a brief research has shown similar occurrences in other data-
sets (e.g. (Mnih, 2013)3, USGS4). The image data were modi-
fied in both directions: this means that for contrast, images with
raised contrast and lowered contrast were used. The same ap-
plies to saturation and exposure. Furthermore, as a first attempt
to investigate the effect of scale changes, data enlarged by 10 %
and by 50 % were used. Figure 2 shows an exemplary section
of the alterations.

(a) Original Image (b) 50 % Crop

(c) Low Saturation (d) High Saturation

(e) Low Contrast (f) High contrast

(g) Low Brightness (h) High Brightness

2 https://www.govdata.de/
3 https://www.cs.toronto.edu/ vmnih/data/
4 https://earthexplorer.usgs.gov/
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(i) High Contrast, Low
Saturation

(j) High Brightness, Low
Saturation

Figure 2. The images are altered to compare the segmentation
results in the next step. Due to space limitations, not all possbile

combinations are shown.

3.3 Evaluation

To ensure comparability between the predicted images, the
same metrics were chosen for all datasets where image alter-
ations have been made. The fact that absolute values are ul-
timately important for segmentation results cannot be denied.
For this experiment, however, the comparison of different vari-
ations is important. Accordingly, the results are additionally
presented as percentages compared to the segmentation results
of the original data. Furthermore, precision (equation 1), re-
call (equation 2) and the F-score (equation 3) are highlighted
(Powers, 2007).

Precision =
TruePositive

TruePositive+ FalsePositive
(1)

Recall =
TruePositive

TruePositive+ FalseNegative
(2)

F − score = 2 ∗ Precision ∗Recall

Precision+Recall
(3)

With True Positive being an outcome where the model correctly
predicts the positive class (model predicts a building pixel as
building) and True Negative correctly predicts the negative class
(model predicts a background pixel as background). A False
Positive being an outcome where the model predicts the pos-
itive class incorrectly (model predicts a background pixel as
building) and a False Negative being an outcome, where the
model incorrectly predicts the negative class (model predicts a
building pixel as background).

4. RESULTS AND DISCUSSION

The segmentation maps and results generated with the original
and unaltered data serve as a reference for the segmentation
maps and results generated with the altered data. Table 1 shows
the results of the evaluation of the unaltered image data whereas
tables 2, 3 and 4 show the recall, precision and F-score of the
evaluation of the of the altered data respectively.

Unaltered Data
Precision 0.716
Recall 0.630
F-score 0.656

Table 1. Recall, Precision and F-score of the segmentation
results when using unaltered data for the predictions

Table 2 shows the percentage difference of the recall values in
comparison to the recall values of the original data. By ob-
serving the recall we can look at the proportion of actual pos-
itives that have been identified correctly. According to our res-
ults, predicting imagery with lower brightness than our training
data, especially in combination with lowering the contrast or
saturation, will statistically lead to much worse segmentation
results (-30 %). The numbers show that the recall suffers in
particular from the fact that brightness is reduced. With an in-
creased brightness, recall values are up to 11 % better than the
recall values of the unaltered image data. We assume that espe-
cially when brightness and contrast are reduced, no sufficiently
distinctive features remain that can be picked up during training
for better segmentation results.

RECALL
lb hb lc hc ls hs

lb -16 % - - - - -
hb - +10 % - - - -
lc -30 % +5 % +6 % - - -
hc -10 % +1 % - +8 % - -
ls -26 % +11 % -2 % +3 % +8 % -
hs -6 % -1 % 0 % -1 % - +4 %

Table 2. Recall percentage values when using altered images in
comparison to the recall values when using original, unaltered

images

where lb, hb = low & high brightness
lc, hc = low & high contrast
ls, hs = low & high saturation

Figure 3 shows an exemplary segmentation map of the image
data of unaltered images alongside the segmentation map of
the images with low brightness and low contrast as well as the
ground truth. Looking at the prediction maps, the values look
plausible.

In table 3 we can see the percentage difference of the preci-
sion values in comparison to the original data. The precision
shows the proportion of actual positives that have been identi-
fied correctly. The numbers show that increasing the brightness
in any case leads to massive drops in precision. Increasing the
brightness and simultaneously lowering the contrast leads to a
percentage change in precision of almost -80 % which leads to
the assumption that these alterations represent an unfavorable
combination for recognizing strong and distinctive features for
segmentation purposes. Solely images with lower contrast or
lower saturation in comparison to the unaltered image data prior
to the prediction have shown variations under 10 % compared
to the predictions generated with unaltered images.

Table 4 shows the percentage difference of the F-score of the
segmentations of the altered images in comparison to the F-
score of the segmentation of the unaltered images. The F-
score lets us combine the precision and recall of our model
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(a) Orthophoto Tile (red
outline as label)

(b) Ground Truth

(c) Prediction (unaltered
images)

(d) Prediction (lb, ls)

Figure 3. Comparison of the ground truth and segmentation
results when predicting the segmentation maps of unaltered

images (b) and pictures with lower contrast and lower saturation
(c)

PRECISION
lb hb lc hc ls hs

lb -19 % - - - - -
hb - -72 % - - - -
lc -21 % -77 % -9 % - - -
hc -27 % -65 % - -30 % - -
ls -33 % -70 % -12 % -31 % -2 % -
hs -12 % -60 % -21 % -39 % - -15 %

Table 3. Precision precentage values when using altered images
in comparison to precision values when using original, unaltered

images

and is defined as the harmonic mean of precision and recall.
As already seen with precision, the F-score for segmenting the
altered image data is lower overall. Especially the images with
an increased brightness show F-score deviations of consistently
more than 50 %. As with precision, a combination of increased
brightness and decreased contrast strongly influences the F-
score. At the same time, it can be seen that a reduction in
saturation and contrast only leads to a decrease of 3 % and 9
%, respectively.

F-SCORE
lb hb lc hc ls hs

lb -23 % - - - - -
hb - -61 % - - - -
lc -28 % -68 % -9 % - - -
hc -26 % -55 % - -23 % - -
ls -35 % -58 % -13 % -25 % -3 % -
hs -16 % -51 % -19 % -32 % - -13 %

Table 4. F-score percentage values when using altered images in
comparison to F-score values when using original, unaltered

images

In addition to contrast, brightness and saturation, two crop
factors were examined: Images cropped by 50 % and 90 %,
respectively, and resized to the original size were predicted us-

ing the model trained on the unaltered data. Table 5 shows the
results, i.e. the deviations between the recall, precision, and F-
score, compared to the results of the unaltered data. The num-
bers show that due to the changing ratio between foreground
and background pixels, strong losses in precision, recall and
F-score occur when the image data is enlarged by 50 %. We as-
sume that the shifted ratio between foreground and background
pixels lead to this drop. At the same time, we can see that a
magnification of 10 % (90 % crop) leads to better results com-
pared to the 50 % crop. The reason for this is the same, since in
this case the ratio between background and foreground pixels is
not changed dramatically.

50 % CROP 90 % CROP
Precision -74 % -29 %
Recall - 46 % +4 %
F-score -65 % -16 %

Table 5. Precision, recall and F-score for the predictions
conducted on images 50 % and 90 % of their initial resolution

The entire experiment, beginning with the training process, was
conducted five times to check for reproducibility. The devi-
ations between the values for Accuracy, Precision, Recall and
F-score were less than 11 % on average in between experiments.

5. CONCLUSION

This paper showed an approach to determine the influence of
image properties on segmentation results. For this purpose, a U-
Net was trained with image data that has not been altered and
predictions were made on unknown images with and without
altered image properties such as contrast, saturation and bright-
ness. The quality parameters generated from the predictions
of unaltered images, namely recall, precision and the F-score,
were used to compare these parameters with segmentations of
images with altered properties. It was found that increased
brightness in particular had a strong negative effect on preci-
sion and F-score. At the same time it could be observed that for
this specific approach desaturated images either do not show a
large effect or, in the case of the recall, show a beneficial ef-
fect. In general, however, it could be observed that a discrep-
ancy between the training data and the data to be predicted has
a negative effect on the quality of the segmentation.

6. FUTURE WORK

The results shown in this paper are the results of testing a single
dataset with a single U-Net implementation. In order to make
more sustainable statements about the effects of changes in the
image properties of training data or the divergence of train-
ing and prediction data, further investigations have to be per-
formed on different implementations and datasets. In our opin-
ion, TernausNetV2 (Iglovikov et al., 2018) and other imple-
mentations for segmentation of aerial image data like SegNet
(Badrinarayanan et al., 2017) represent further interesting net-
works for similar tests. Another approach would be to derive
properties from the difference of the training data and data to be
predicted so changes can be applied to the latter. Overall, the
question of the possibilities to use models trained on data with
slight variations to the prediction data remains unanswered.
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APPENDIX

50 % CROP 90 % CROP
Precision 0.189 0.511
Recall 0.340 0.656
F-score 0.233 5.554

Table 6. Precision, recall and F-score values when using images
cropped by 50 % and 90 %

RECALL
lb hb lc hc ls hs

lb 0.528 - - - - -
hb - 0.693 - - - -
lc 0.442 0.662 0.666 - - -
hc 0.567 0.635 - 0.678 - -
ls 0.466 0.696 0.6193 0.646 0.682 -
hs 0.589 0.626 0.630 0.622 - 0.652

Table 7. Recall values in when using altered images
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PRECISION
lb hb lc hc ls hs

lb 0.512 - - - - -
hb - 0.176 - - - -
lc 0.500 0.145 0.572 - - -
hc 0.460 0.219 - 0.442 - -
ls 0.422 0.190 0.556 0.435 0.619 -
hs 0.553 0.254 0.496 0.385 - 0.534

Table 8. Precision values in when using altered images

F-SCORE
lb hb lc hc ls hs

lb 0.508 - - - - -
hb - 0.254 - - - -
lc 0.469 0.211 0.594 - - -
hc 0.483 0.298 - 0.507 - -
ls 0.425 0.272 0.569 0.494 0.571 -
hs 0.553 0.324 0.534 0.449 - 0.636

Table 9. F-score values in when using altered images

(a) Orthophoto Tile with
label as red outline

(b) Ground Truth

(c) Unaltered (Original) (d) High Contrast, High
Brightness

(e) 90 % crop (f) Low Brightness

(g) Low Contrast (h) Low Saturation

(i) Low Contrast, Low
Saturation

(j) Low Contrast, Low
Brightness

Figure 4. Exemplary depiction of segmentation maps when
using altered images alongside ground truth and orthophoto
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