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ABSTRACT:

The main bottleneck of machine learning systems, such as convolutional neural networks, is the availability of labeled training data.
Hence, much effort (and thus cost) is caused by setting up proper training data sets. However, models trained on specific data sets
often perform unsatisfactorily when used to derive predictions for another (yet related) data set. We aim to overcome this problem
by employing active learning to iteratively adapt an existing classifier to another domain. Precisely, we are concerned with semantic
segmentation of 3D point clouds of multiple epochs. We first establish a Random Forest classifier for the first epoch of our data
set and adapt it for successful prediction to two more temporally disjoint point clouds of the same but extended area. The point
clouds, which are part of the newly introduced Hessigheim 3D benchmark data set, incorporate different characteristics with respect
to the acquisition date and sensor configuration. We demonstrate that our workflow for domain adaptation is designed in such a
way that it i) offers the possibility to greatly reduce labeling effort compared to a passive learning baseline or to an active learning
baseline trained from scratch, if the domain gap is small enough and ii) at least does not cause more expenses (compared to a newly
initialized active learning loop), if the domain gap is severe. The latter is especially beneficial in scenarios where the similarity of
two different domains is hard to assess.

1. INTRODUCTION

Although machine learning systems, such as convolutional
neural networks, have seen significant improvement in past
years and reach top results for various benchmark challenges
(Niemeyer et al., 2014; Kölle et al., 2021a), two main issues
remain: i) the availability of suitable training sets and ii) the
transfer of models learned on a specific data set to another sim-
ilar data set (transfer learning). To efficiently overcome the
lack of appropriate training sets, active learning (AL) can be
used, which focuses labeling effort on most informative sam-
ples only (Settles, 2009). This technique was recently suc-
cessfully applied in context of the semantic segmentation of
3D point clouds (Luo et al., 2018; Li and Pfeifer, 2019; Lin
et al., 2020; Kölle et al., 2021b). When AL is employed along-
side with crowdsourcing, where crowdworkers are asked to la-
bel queried instances, an automated hybrid intelligence system
(Vaughan, 2018) can be formed where no expert is required for
labeling (Vijayanarasimhan and Grauman, 2011; Kölle et al.,
2021c). This is especially appealing when not only the labeling
procedure is outsourced, but if all crowd management (e.g., hir-
ing & paying crowdworkers, posting campaigns) is automatized
by leveraging respective platforms such as Amazon Mechanical
Turk (Buhrmester et al., 2011) or microWorkers (Hirth et al.,
2011) as described by Kölle et al. (2021c).

But no matter if a model is learned through AL or passively
by a pre-defined training set (i.e., passive learning, PL) on a
given source domain DS , learned models often fail to derive a
satisfactory predictional quality for a target domain DT of dif-
ferent characteristics (Penatti et al., 2015). This is caused by a
so-called domain gap, which can have various reasons. Either
DS was inadequately sampled (due to insufficient feature space
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exploration by the machine in AL or a biased selection of sam-
ples by a human operator in PL), so that it is not representative
for DT . This problem is referred to as covariate shift prob-
lem (Shimodaira, 2000). More precisely, when considering that
both DS and DT can be described by respective distributions
p(x, y) = p(x)p(y|x) (where x corresponds to the feature vec-
tor and y to the respective true class), the covariate shift can be
translated to pS(x) ̸= pT (x) while pS(y|x) ≈ pT (y|x). A
more severe kind of domain gap is related to the more general
sample selection bias (Heckman, 1979). In this case, not only
the marginal distributions but also the conditional probabilities
are different, i.e., pS(x) ̸= pT (x) and pS(y|x) ̸= pT (y|x).
This can be interpreted in such a way that the representation of
the same classes in feature space is different in the two domains.

In case of remote sensing data, we expect to deal with sample
selection bias, where the domain gap can be caused by differ-
ent sensor configurations (sensor and/or flight planning), dif-
ferent atmospheric conditions (illumination and humidity) and
changes of the scene itself due to phenological phenomena (i.e.,
seasonal effects). For bridging this gap, various approaches for
domain adaptation (DA) were discussed by Tuia et al. (2016),
which focus on generating invariant or joint features or aim
to adapt the classifier itself. If a (limited) budget is available
for retrieving true labels of DT , DA of the classifier can be
accomplished by including this additional training data. For
this, the PL approach TrAdaBoost is presented by Dai et al.
(2007), where the classifier is iteratively adapted through boost-
ing and whereby samples of DS and DT are treated differently
in weighting. Rajan et al. (2008) proposed a first framework
to actively sample points in DT based on expectation maxi-
mization. Following the same idea of only labeling most in-
formative samples of DT , Matasci et al. (2012) embedded the
TrAdaBoost framework into a classic AL loop and, in contrast
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to the work of Rajan et al. (2008), adaptively weight samples of
DS and DT . Jun and Ghosh (2008) also demonstrated that re-
weighting samples is capable to outperform AL loops for DA
where no individual weights are applied.

Tuia et al. (2011) explored the capabilities of AL in DA to in-
clude new classes by first deriving a clustering of feature space
of DT to sample from those clusters formed instead of relying
on conventional sampling strategies such as described by Set-
tles (2009). This strategy is related to guaranteeing diversity in
batches in batch mode AL and aims to boost the convergence
of the classifier (Zhdanov, 2019). The same goal is also pur-
sued by Persello and Bruzzone (2012), but transferred to DA
AL loops where samples are drawn from DT based on both un-
certainty and diversity. At the same time, conflicting samples
of DS , which are not longer representative for DT and would
thus harm the classification performance, are discarded. A sim-
ilar formulation of this strategy is discussed by Persello (2013).
In order not to fully discard the information such samples might
carry, the authors do not only remove inconsistent samples, but
also apply different weights for the remaining samples of DS in
accordance to their agreement with DT . As an additional mea-
sure to minimize labeling cost, Rai et al. (2010) argue to avoid
samples of DT which are situated close to the decision borders
but similar to samples of DS (i.e., avoiding quasi-duplicates
from different domains).

Our contributions within this work can be summarized as fol-
lows: i) we present a comprehensive framework which allows
to cost-efficiently build models for the semantic segmentation
of 3D point clouds by making use of both AL and DA tech-
niques, ii) we explore whether this approach is suitable to run in
a truly automatized manner, where an expert oracle is replaced
by a crowd oracle and iii) this work is the first one to perform
inter-domain semantic segmentation on the newly introduced
H3D benchmark data set (Kölle et al., 2021a).

2. METHODOLOGY

The main purpose of our approach is to cost-efficiently train
models for semantic segmentation by minimizing required la-
beling effort. This incorporates a conventional AL loop, which
defines the basic structure of our pipeline (section 2.1). The
loop is enhanced to be suitable for DA by exploiting previously
generated labels (section 2.2). The automation of this workflow
by means of paid crowdsourcing is discussed in section 2.3.

2.1 AL Loop for Semantic Segmentation of Point Clouds

Our means to minimize labeling costs is in the first place AL
to actively sample only the subset of points worth labeling by
human operators. To initialize our pipeline visualized in Fig-
ure 1, we first present a completely unlabeled point cloud to the
crowd and ask crowdworkers to indicate one point for each of
our desired classes. Received points are then checked by a sec-
ond group of crowdworkers to form the initialization training
set. This can then be used for training a first machine learning
model, which is a Random Forest (RF) (Breiman et al., 1984) in
our case (cf. Kölle et al. (2021b) for discussion of alternatively
employing a CNN classifier). This initial model is then utilized
for inference on the remaining unlabeled data points to deter-
mine most informative samples, which can then be presented to
the crowd oracle OC for labeling. Based on the enhanced train-
ing pool, a new RF model is trained and the loop is repeated
for ni iteration steps. Identification of most informative points

is achieved by entropy of a posteriori probabilities that point x
belongs to class c:

x+ = argmax
x

(
−
∑
c

p(c|x) · log p(c|x)

)
(1)

To account for class imbalanced data sets, we enrich the entropy
definition by adding a weighting function, which is computed
based on the total number of points nT currently present in the
training data set and the number of instances of each class nc

at iteration step i: wc(i) = nT (i)/nc(i). In order to boost
the convergence of the iteration (in batch-mode AL), we aim
to avoid sampling of points which are similar in terms of their
representation in feature space. To derive a diverse training set,
we apply a k-means clustering of feature space and sample one
point per cluster formed (Zhdanov, 2019). Consequently, the
number of clusters k equals the number of points n+ to be sam-
pled in each iteration step.

Since we aim to outsource labeling to real crowdworkers, we
apply the Reducing Interpretation Uncertainty (RIU) strategy
proposed by Kölle et al. (2021b) to ease labeling. Instead of
presenting the point with highest sampling score to the crowd,
this point is only considered as seed point. An alternative point
within a distance of dRIU (in object space) having the lowest
sampling score but still being informative due to its adjacency
to the seed point is used. The rationale of this approach is to in-
crease interpretability of points by avoidance of point sampling
directly on class borders, where even experts might struggle to
determine the correct class.

2.2 Enhancement of the AL loop for DA

The previous section implied that no samples from a source do-
main are available, so that the iteration needs to be performed
from scratch. Since we expect that in many applications such
a data set exists, we would like it to contribute for learning our
model. AL is well suitable for such DA tasks by design (if la-
bels can be obtained in DT ) by simply changing the pool of
instances where the query function operates from DS to DT

as suggested by Matasci et al. (2012) and Persello (2013), for
example (please note that merging DS and DT into a common
pool is theoretically also possible, which would likely result
in a more general classifier, but at least convergence might be
delayed and/or performance on DT might suffer). The compre-
hensive training pool is then obtained by merging the training
set sampled in DS with the newly sampled and labeled points
of DT . We will refer to this procedure as active transfer learn-
ing (ATL). This DA technique will work well when DS and
DT are sufficiently similar, but might also result in even more
labeling effort when the domain gap is considerable.

If source domain samples used for training the RF model are not
representative for DT , the selection of points in DT is subop-
timal since the assumed class borders (in the vicinity of which
samples are drawn) differ from the ones truly inherent in DT .
Consequently, more iteration steps might be necessary to adapt
the initial model to the new distribution and starting the iteration
from scratch would be more cost-efficient. However, it is often
difficult to decide whether two domains are similar enough for
adaptation, i.e., whether re-using samples of DS is beneficial
or harmful. Hence, an additional procedure is required where
samples of DS can be included to optimally boost convergence
or at least ensuring that the effect of conflicting samples is neu-
tralized in case of a too large domain gap.
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Figure 1. Crowd-powered pipeline for DA to adapt a classifier learned on a source domain to a related target domain. The A(T)L
loop is indicated by red arrows.

For this to achieve, we follow the suggestion of Persello and
Bruzzone (2012) and remove n− samples of DS which are
most inconsistent with DT by measuring the disagreement be-
tween a model trained by samples of DS only and another
model trained by the combined training set from DS and DT at
iteration step i. Precisely, the a posteriori probabilities of each
sample x of DS are compared according to:

x− = argmax
x

(∣∣∣pS(c|x)− pS∪T (c|x)
∣∣∣) (2)

Recalling our workflow (cf. Figure 1), this means that we check
which samples of DS disagree most with samples of DT (im-
plicitly compared through learned decision rules of respective
RF models) and remove those before re-training our current
classifier on samples from both DS and DT . We refer to this
procedure as ATLFSD . Controlling the impact of DS is there-
fore accomplished through n− or rather the ratio q = n−/n+.

2.3 Employing the Crowd Oracle and Automation

To shift labeling effort from an expert to the crowd, we rely
on the microWorkers crowdsourcing marketplace. In order to
avoid any overhead due to the management of the crowd, we
integrate ATL into a tool similar to the recently introduced CAT-
EGORISE framework (Kölle et al., 2021c). Actual labeling is
carried out by the crowdworkers using webtools as described
by Kölle et al. (2021c).

A prerequisite of automated A(T)L runs (and a measure to min-
imize labeling effort) is the definition of an effective stopping
criterion without the need to compare predictions to ground
truth labels (which are not available in real-world applications).
We apply an approach similar to the one presented by Blood-
good and Vijay-Shanker (2009), where the congruence of pre-

dictions in successive iteration steps is evaluated. For each
point we check whether it carries the same label as in the iter-
ation step dstop steps before to get an overall congruence mea-
sure Co. To account for smaller classes, for each class we filter
points predicted as this specific class and check again whether
the same label was predicted in the iteration step dstop steps be-
fore. These classwise congruence measures are then averaged
to receive a class-sensitive overall measure Cac in company of
Co. Afterwards we can evaluate the standard deviation of con-
gruence values and stop the iteration if a certain threshold is
reached.

3. DATA SETS AND EXPERIMENTAL SETUP

The DA problem we aim to study concerns temporally dis-
joint data sets. This means that the same area was captured
at multiple epochs under different atmospheric conditions and
sensor configurations. We apply our approach to the multi-
temporal H3D data set. As visualized in Figure 2, we focus on
three different epochs. Two of them (epochs March & Novem-
ber 2018) are high-resolution UAV LiDAR point clouds having
mean point densities of about 800 pts/m2. They were acquired
by a Riegl VUX-1LR scanner at a height above ground of 50m
and a field of view of the scanner of ±70 ◦. Thus, vertical sur-
faces such as façades are well depicted (cf. Figure 2 a & b).
These data sets differ in terms of i) the spatial extent (epoch
November 2018 depicts an area more than two times larger than
epoch March 2018), ii) phenological changes and iii) the at-
mospheric conditions what mainly affects radiometric proper-
ties. Apart from different illumination, thick fog was present in
November 2018 severely affecting RGB colorization from con-
currently captured images of Sony Alpha 6000 cameras. This
can be clearly seen in Figure 1, where source domain is a sub-
set of epoch March 2018 and target domain of epoch November
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(a) H3D - Epoch March 2018

(b) H3D - Epoch November 2018

(c) H3D - Epoch March 2016

Figure 2. Compilation of our data sets/epochs used for testing our approach. Each visualization depicts an overview of the complete
data set, where the training set is colored according to available RGB data while the test set is presented as shading (left). Respective
close-ups are colorized according to the number of returns of an emitted laser pulse (right).

2018. Presence of fog also resulted in recording multiple echos
for streets, façades and roofs due to additional returns caused
by aerosols (compare right side of Figure 2 a & b). The third
data set, epoch March 2016, incorporates features of a typical
airborne laser scanning point cloud of national mapping agen-
cies. The data set was captured by a Riegl LMS-Q780 scan-
ner at a height above ground of 600m and a field of view of
±20 ◦. The mean point density is about 20 pts/m2. This con-
figuration leads to scarce depiction of vertical surfaces due to
the nadir-like measuring perspective (see few façades in Fig-
ure 2 c, right). Since no concurrently captured imagery is avail-
able for this epoch, we both i) interpolated colors from epoch
November 2018 via nearest neighbor transfer and ii) used the
point cloud colorization obtained by orthogonal projection of
an orthophoto as available in the H3D benchmark (visualized
in Figure 2 c left). The orthophoto was acquired by a DMC II
140 camera configured to achieve a ground sampling distance
of 20 cm and was taken on June 11, 2017.

Using these data sets, we formulate the scenarios for applying
our workflow:

• Scenario I: DA of epoch March 2018 to epoch Novem-
ber 2018, i.e., DA between two data sets having similar
geometric but deviating radiometric properties due to phe-
nological and atmospheric changes.

• Scenario II: DA of epoch March 2018 to epoch March
2016 colored by RGB values from epoch November 2018
(epoch March 2018 could be used as well but would ease
the DA problem), i.e., DA between two data sets having
deviating geometric and deviating radiometric properties.

• Scenario III: Same as scenario II but colorization of
epoch March 2016 by using the orthophoto. Scenario III
is designed to assess the impact of different colorization
methods on DA.

To ease the complexity of point labeling for crowdworkers, we
merge some classes to form our class catalog comprising Urban
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Furniture, Low Vegetation (including Soil/Gravel), Impervious
Surface, Vehicle, Roof, Façade (including Vertical Surface) and
Vegetation (Shrub & Tree). Please note that all epochs incorpo-
rate this same set of classes.

Feature computation for all epochs is conducted as proposed by
Kölle et al. (2021a). Both geometric and radiometric features
were derived for each point using spherical neighborhoods of
0.125, 0.25, 0.5, 075, 1, 2, 3 and 5m for scenario I and 1, 2, 3
and 5m in scenarios II and III due to the point sparsity in epoch
March 2016. Please note that we do not explicitly choose our
features to be domain-invariant. However, geometric features
such as the ones based on the structural tensor or roughness
are well generalizable. Radiometric features (especially re-
flectance/intensity of laser returns and color features), on the
other hand, are expected to be prone to domain changes.

4. RESULTS

To prove the effectiveness of our methodology, we first analyze
its performance on all three scenarios presented in section 3 by
conducting AL runs with simulated oracles (section 4.1) and af-
terwards by exemplarily running an ATL loop with a real crowd
oracle (section 4.2).

4.1 Performance of ATL with Simulated Oracles

For each scenario presented in section 3, we derive both a set of
baseline solutions and actual ATL runs:

• PL is a passive learning approach on DT relying on the
completely labeled training set of DT .

• Passive transfer learning, PTL, is the most naive transfer
learning setting where the classifier is trained in a passive
manner on the completely labeled training set of DS .

• A classic AL run is conducted from scratch on DT . The
initialization data set is received by asking a total of
100 crowdworkers to present one point for each class. In
a second step, every point is checked by three different
crowdworkers (following the recommendation of Kölle et
al. (2021c)). If the majority of the crowdworkers of the
second group disagree that the label is correct, the point is
discarded. Payment for crowdworkers is $0.10 for the first
job and $0.10 for the second job with an option for a bonus
of $0.05 if crowdworkers perform well (evaluated on four
check points in each task, cf. Kölle et al. (2021c)). We set
n+ = k = 300.

• ATL is an AL run where we use the acquired training
set from DS after 10 iteration steps (assumed to be suffi-
ciently representative for DS , since also obtained through
AL) as initialization data set (both with and without label
noise, cf. Figure 3) and continue this iteration already be-
gun on DT (i.e., n− = 0).

• Finally, ATLFSD is the same as ATL, but with deletion of
samples of DS as discussed in section 2.2.

In each case, we form the RF ensemble to be composed of
100 binary decision trees with a maximum depth of 18. All
AL-based runs are derived both for an omniscient oracle OO

always returning ground truth labels and a simulated crowd or-
acle OCS . Following the results of Kölle et al. (2021b), we can
assume that relying on RIU leads to random label noise only
(no systematic errors). Similarly, we select dRIU = 0.75m
and add 10% of random label noise to received ground truth
labels. We will analyze whether this assumption holds true for

a real crowd oracle OC in section 4.2. The performance of
all these methods with respect to semantic segmentation is re-
ported in Figure 3 both in terms of the overall accuracy (OA)
and the mean F1-score (mF1).

The need for adapting an already available model to a new do-
main becomes evident when comparing the results of PL and
PTL for all scenarios. Blindly (and passively) transferring a
classifier from one domain to another leads to a loss in mF1/OA
of 6.41/4.46 and 12.30/5.17 percentage points for scenario I
and II respectively and even 26.59/20.13 percentage points for
scenario III. These results already give an impression of the in-
herent domain gaps in the different scenarios and are according
to expectation recalling their design. PTL and PL can be con-
sidered as lower and upper accuracy bound respectively. We
expect that our methods for DA (i.e., ATL) surpass a solution
where no DA at all was performed (i.e., PTL). However, it is
challenging to surpass one with a completely labeled training
set of DT (i.e., PL) when using a sparse training set (3000 la-
beled samples of DT after 10 iteration steps in our case). Yet,
the main advantage of ATL is the significant reduction of la-
beling effort (only 0.02/0.02/1.07h points of DT have to be
labeled for each scenario respectively).

Regarding scenario I, we can observe that the performance of
the AL loops running from scratch is characterized by a steep
increase in accuracy converging from about iteration step 6 (cf.
Figure 3). Here the loop using a simulated crowd oracle (i.e.,
AL(OCS)) performs worse in terms of mF1, which is mainly
due to a higher level of confusion between classes Vehicle and
Urban Furniture. For these classes, noisy labels are especially
harmful due to typically similar features (e.g., consider trash
bins or containers vs. cars). Compared to AL, our ATL runs ini-
tialize on a much higher level of accuracy for respective oracle
types (about 10 percentage points better both in terms of mF1
and OA). To be able to account for inconsistent samples of DS ,
we set q = 1.1 for ATLFSD (i.e., we remove 330 samples of
DS in every iteration step). In case of omniscient oracles, this
removal seems unnecessary and even marginally harms the ac-
curacy in DT , since the domain gap is small. However, in case
of a simulated noisy crowd oracle (OCS), removing samples
greatly helps improve accuracy of ATLFSD(OCS) compared
to ATL(OCS), which performs even worse than the conven-
tional AL(OCS) run. Again, this is mainly due to confusion of
classes Urban Furniture and Vehicle, where the inherent over-
lap in feature space is even further amplified by mixing samples
from two domains.

As previously stated, our main motivation is reducing manual
labeling effort and thus costs. Our pure AL runs cause costs for
initialization of 100 jobs·$0.10+100·3·$0.15 = $55, which can
be avoided relying on ATL. Additional expenses can be saved
depending on the required quality of semantic segmentation.
The more limited the labeling budget, the more beneficial ATL
becomes. In terms of OA, ATLFSD(OCS) is about three itera-
tion steps ahead of AL(OCS) (e.g., AL(OCS) in iteration step
4 vs. ATLFSD(OCS) in iteration step 1). With greater number
of iteration steps, accuracies of AL and ATL runs converge to
an OA of about 86%.

In case of the second scenario, where geometries are rather dif-
ferent between the domains (cf. section 3), the general trend
of all runs is similar. Due to an increased domain gap, the dif-
ference between AL runs and ATL approaches is consequently
smaller. But still, ATL runs are beneficial in case of limited
labeling budget scenarios. In terms of mF1, ATLFSD(OCS)
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Figure 3. Results of our simulated runs for scenario I-III (top to bottom) evaluated in terms of mF1 and OA (number of initialization
points is not included in the relative proportion of labeled points in case of pure AL runs).

reaches a close to final accuracy level already in the fourth it-
eration step, while AL(OCS) runs for nine iteration steps to
achieve the same level of accuracy. It is noteworthy that de-
spite different geometries of the two domains, source domain
samples positively contribute to the training of the model. This
means that geometric features generalize well.

For scenario III, we can observe that conventional AL runs per-
form best and that ATL is not appropriate due to a too large
domain gap. Please note that this gap was solely introduced
by the altered colorization (2D colorization) compared to sce-
nario II (3D colorization, just like for DS). In contrast to sce-
narios I and II, where removing source samples could rather be
neglected, ATLFSD runs perform significantly better compared
to their ATL counterparts. They almost reach the accuracy lev-
els of pure AL runs in the tenth iteration step, but without the
requirement of an initial training set from DT . Hence, costs can
still be saved. This means that the operator can include samples
of a source domain if available without leading to loops that
cause more costs than pure AL runs. We would like to stress
that for the deletion/sampling factor q, we used 1.1 for all sce-

narios underlining the robustness of this parameter.

Also noteworthy is the much more desirable behavior of
ATLFSD(OO) compared to ATLFSD(OCS), which is due to
the frequently occurring misprediction of class Low Vegetation
as Impervious Surface for the latter (e.g., 40 % of Low Vegeta-
tion in iteration step 5). This can be explained by Figure 4. In
case of ATLFSD(OO) 20 % of deleted points belong to class
Impervious Surface in iteration steps 2 to 4, meaning this class
is impacted by a domain shift. Actually, one would assume
that the representation of samples of this class is not subject of
domain changes. However, this is due to the scarce depiction
of façades in DT (cf. Figure 2 c vs. 2 a). Since challenging
points for the classifier lie among others on the class borders
between Façade and Impervious Surface, such points are sam-
pled by AL on DS (March 2018). But the lack of façades in
DT (March 2016) means an altered representation of points sit-
uated in such spots, so that the description of DS does not hold
true anymore. Thus, such points of DS are to be discarded.
For ATLFSD(OCS), on the other hand, Urban Furniture is the
main subject of deletion in early iteration steps. In presence of
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Figure 5. Results obtained for scenario I when relying on a real
crowd oracle. We report the overall labeling accuracy of the
crowd (top) and evaluate the progress of respective AL loops
in terms of the mean F1-score (middle) and the congruence of
predictions (bottom).

label noise this quasi-class Other becomes even more confus-
ing for a classifier. Hence, it kind of distracts the classifier. For
OO , it is worth highlighting that in the fifth iteration step a high
number of Car samples from DS are removed and replaced by
respective samples of DT .

Generally, when comparing the class distributions of sampling
and deletion, we can observe that for sampling the classifier of-
ten focuses on specific classes in each iteration step (especially
in case of ATLFSD(OO), which also explains its faster conver-
gence compared to ATLFSD(OCS); cf. Figure 3). Histograms
for deletion, on the other hand, resemble equal distributions,
which means that there are no specific classes which have com-

pletely changed, but rather there are inconsistent points spread
over all classes. This is a result of the discrepancies between
the high-resolution data set (March 2018) and the much more
scarcely sampled cloud (March 2016).

From computed RF feature relevance, there is also a trend of
more universal geometric features gradually loosing in impor-
tance while more case specific color features gain in importance
meaning that they can be more efficiently used

4.2 Performance of ATL with a Real Crowd Oracle

Since we aim to not only minimize labeling effort but to out-
source it to the crowd, we actually replace the simulated crowd
oracle OCS by a real one OC for scenario I (precisely, we re-
peat ATLFSD under real world conditions). From Figure 5 top,
we can observe that the performance of the crowd decreases
with the number of iteration steps. This can be explained by
sampling of points which become more and more demanding
for the classifier, but also for crowdworkers to interpret them.
This behavior is in accordance with the findings of Kölle et al.
(2021c). Mean OA for crowd labels over all iteration steps is
86.23%. Hence, the assumption of a noisy crowd oracle with
10% of random noise is justified. This is also reflected in the
accuracy of ATLFSD , powered by OC instead of OCS , since
mF1 only differs marginally (cf. Figure 5 middle).

To monitor training progress, we rely on our intrinsic measure
(cf. section 2.3). We set dstop = 2 to emphasize differences in
course of the loops (hence, we cannot derive congruence values
for iteration steps 1 and 2). Generally, we would like our con-
gruence curves to behave the same way as the accuracy curves
with respect to convergence. In case of the overall measure
Co, this does not seem to hold true with regard to mF1, but
is reasonable when compared to the OA (i.e., ATLFSD(OCS)
in Figure 3). This demonstrates that an overall measure is not
sufficient if high classification accuracies for all classes are de-
sired. Please note that for congruence curves mainly changes
rather than absolute values are decisive. If the same congruence
level is obtained in multiple successive iteration steps, the iter-
ation can be aborted since predictions do not change anymore.
If we consider the standard deviations of the last three values
respectively, the iteration can probably be aborted (depending
on a user-defined threshold) after iteration step 7 for both cases
(OCS & OC ). Please note that most of our congruence curves
have a negative trend towards the end of the iteration. This
might be an effect of removing too many samples of DS so that
the decision borders start to alter again. However, we argue that
this behavior would only come into effect when the iteration
was already aborted.

5. CONCLUSION AND OUTLOOK

Within this paper, we have demonstrated that AL can be ef-
ficiently employed for DA purposes for the semantic segmen-
tation of 3D point clouds. This is especially advantageous in
limited budget scenarios where only few iteration steps can be
conducted. If domains are sufficiently similar, ATL accuracies
are at least three iteration steps ahead of AL runs starting from
scratch. We have observed that our classifiers perform rather
robustly when facing atmospheric and phenological changes or
even a different geometric depiction (i.e., point density). But
they are prone to significant changes in colorization (see sce-
nario III). Even in presence of a severe domain gap, ATL can at
least avoid the necessity of an initial training set, which can be
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costly to collect. The approach discussed can be used for up-
dating the LiDAR map archive of national mapping agencies,
where identical areas are periodically surveyed by the same (or
at least a similar) sensor configuration. It is also applicable for
multi-temporal deformation analyses, where it is desirable to
filter dynamic objects in a first step (Haala et al., 2020).
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