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ABSTRACT:

The performance of deep learning models in semantic segmentation is dependent on the availability of a large amount of labeled
data. However, the influence of label noise, in the form of incorrect annotations, on the performance is significant and mostly
ignored. This is a big concern in remote sensing applications, wherein acquired datasets are spatially limited, labeling is done by
domain experts with possible sources of high inter-and intra-observer variability leading to erroneous predictions. In this paper, we
first simulate the label noise while conducting experiments on two different datasets with very high-resolution aerial images, height
data, and inaccurate labels, responsible for the training of deep learning models. We then focus on the effect of these noises on the
model performance. Different classes respond differently to the label noise. The typical size of an object belonging to a class is a
crucial factor regarding the class-specific performance of the model trained with erroneous labels. Errors caused by relative shifts
of labels are the most influential label errors. The model is generally more tolerant of the random label noise than other label errors.
It has been observed that the accuracy gets reduced by at least 3% while 5% of label pixels are erroneous. In this regard, our study
provides a new perspective of evaluating and quantifying the propagation of label noise in the model performance that is indeed
important for adopting reliable semantic segmentation practices.

1. INTRODUCTION

Deep learning algorithms outperform traditional algorithms in
semantic segmentation (Zhang et al., 2020a). However, they
rely on the need for good and a large amount of training data.
The quality of training labels is crucial for urban scene seg-
mentation due to the specific characteristics of the classes such
as object size, higher inter-class correlation, higher intra-class
variability, etc. Thus, label errors act as incorrect examples that
affect the model’s learning process to correctly recognize the
objects of different classes present in the scene. Despite the
significant progress in the state-of-the-art, the impact of label
noise on semantic segmentation did not get much attention. In
particular, the performance of deep learning models influenced
by the label noise during the training process has shown enorm-
ous differences compared to those without it (Jiang et al., 2020).
This is especially concerning for remote sensing applications,
wherein geo-information is limited, and labeling needs to be
done by a domain expert. The latter is potentially biased due
to high inter-/intra-observer variability and erroneous predic-
tions. In the case of unsupervised image classification, it is not
easy to obtain satisfactory results attributed to the unavailability
of prior information such as labeled data (Laban et al., 2020).
In comparison, supervised image classification approaches are
generally considered to be more reliable (Congalton, 1991).

The current research trend in semantic segmentation primar-
ily focuses on supervised deep learning-based feature learn-
ing. These approaches demonstrably work well and reliably
maintain very high accuracy (Diakogiannis et al., 2020). There
are various approaches like image augmentation to increase the
volume of data synthetically. Furthermore, most deep learning
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methods are, in general, computationally costly. For these reas-
ons, these models are typically developed in a very specific and
expensive infrastructure (Diakogiannis et al., 2020). Although
they are capable of providing very high accuracy, the extremely
high computational cost does not always justify the relatively
small improvement in the validation or test metrics (Huang et
al., 2017; Hazırbaş et al., 2015; Li et al., 2021).

In addition to this, modern supervised semantic segmentation
methods are sensitive to the accuracy of the training data. In-
accuracies in the data hamper the learning process and negat-
ively affect the convergence and performance of the model. The
availability of highly accurate controlled training data is min-
imal, limiting the applicability of these models to domains other
than research. Some progress has been made in the field of com-
puter vision to address this challenge where the self-supervised
or semi-supervised model recursively refines the coarse or in-
accurate training labels (Xu et al., 2015). These models have
the potential advantage in terms of amount of data required for
training and they are they are often designed to be more er-
ror tolerant (Hendrycks et al., 2019; Wang et al., 2021). How-
ever, standalone performances of these models are generally
inferior compared to well trained supervised models. Devis-
ing improved methods semantic segmentation robust to noisy
data is an active area of research. Although, the modern deep
learning based models are excellent at solving certain tasks like
segmentation, it is extremely hard to scientifically explain their
behaviors with respect to changes in the inputs, such as how a
semantic segmentation model behaves with changes in the qual-
ity of training labels. This kind of challenges important for XAI
and need more attention (Gohel et al., 2021).

In this regard, our prime focus is to assess the impact of various
types of labeling errors that commonly occur in geo-information
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(due to inaccurate training labels) on semantic segmentation
performance. In addition, we also analyze the extent of indi-
vidual classes affected by label noise. One of the common ap-
proaches for generating labeled data is to use existing maps.
However, maps are also prone to different kinds of errors such
as co-registration error, human error, etc. Unlike the noise in
the data, these types of label noises significantly impact the
semantic segmentation process. In this study, we simulated 3
types of significant labeling errors, segment errors, relative shift
of segment boundaries, and random labeling errors. We first
conducted experiments with very high spatial resolution aer-
ial images and height data alongside available geo-information,
containing inaccurate labels for the training of deep learning
models. We also investigated how varying amounts of these
noises influence the model performance. Furthermore, quantit-
ative and qualitative assessments have been presented, observing
the results.

2. RELATED WORKS

2.1 Semantic Segmentation

The traditional methods of image classification are considered
to be inadequate for the classification of very high-resolution
imagery as they fail to capture complex feature space, and they
generally do not consider local context very well (Richards,
2013). Furthermore, the recent emergence of deep learning in
the field of computer vision has revolutionized the task of im-
age segmentation and classification while addressing the draw-
backs of conventional approaches. However, adapting the deep
learning-based methods from the field of computer vision to
fit the requirements of earth observation is not always trivial
(Audebert et al., 2018). In the past few years, much has
been achieved regarding the adaptation of deep learning-based
methods into the field of earth observation, and those meth-
ods demonstrated to be considerably better than the traditional
methods (Ma et al., 2019).

CNN and Semantic Segmentation: CNN based architec-
tures are very efficient at capturing both the generalized context
and local context when grouping the pixels for classifications
compared to the pixel-based classification approaches. They
also provide an end-to-end solution with minimal manual fea-
ture engineering and comparatively more tolerant of the noise
present in the dataset (Girshick, 2015). The FCNs typically
have an encoder-decoder architecture popularized by UNet pro-
posed by Ronneberger et al. (2015). The encoder part of the
architecture captures higher semantic features by successive
convolution and pooling operations, whereas the decoder part
gradually transforms the semantic features learned by the en-
coder into corresponding label features and recovers spatially.
There are different CNN based approaches to further exploit
the contextual information such as multi-scale inputs (Farabet
et al., 2013), spatial pyramid pooling (Lazebnik et al., 2006) at-
rous spatial pooling (Papandreou et al., 2015) and dilated con-
volution (Yu and Koltun, 2016). While more complex networks
with increasing numbers of parameters boosted the perform-
ance, progress has been made to optimize the networks without
affecting their high accuracy using different convolution ap-
proaches such as depthwise convolution and separable convo-
lution (Bello et al., 2021).

Current State-of-the-Art: The Inception architecture de-
signed by Szegedy et al. (2015) has successfully shown that the
decoupling cross channel correlation and spatial correlation can

lead to better model performance with reduced computational
cost. The Xception architecture by Chollet (2017) demon-
strated further improvement and optimization of the Inception-
based design. Furthermore, He et al. (2015) developed ResNet
architecture and demonstrated the power of residual learning in
semantic segmentation and image classification. However, des-
pite advancements in network design, post-processing is often
necessary to further refine the results generated by the models
(Teichmann and Cipolla, 2018). Chen et al. (2017) was able to
improve the state of the art performance of semantic segment-
ation using multi-scale atrous spatial pooling and the integra-
tion of CRF into their proposed network Deeplab. This network
has been further improved into DeepLabV3+, adopting depth-
wise separable convolution, spatial pyramid pooling, and using
earlier networks such as ResNet and Xception as its backbone
(Chen et al., 2018). DeeplabV3+ achieved state-of-the-art per-
formance without heavily increasing the baseline complexity
compared to the existing state-of-the-art networks.

2.2 Model Complexity and Label Noise:

Although these models emerged from the field of computer vis-
ion and image recognition, they have been quickly adopted for
photogrammetric applications (Song and Kim, 2020; Zhang et
al., 2020b; Yuan et al., 2021). However, the complexity of
the network and the requirement of massive, accurately labeled
high-quality training data often pose challenges. While some
studies focus on mitigating the problem of noise in the data
(Klingner et al., 2020), the others are trying to reduce the impact
of label noise in semantic segmentation (Patrini et al., 2017).

Label generation process in the domain of geo-information is
prone to different types of errors affecting positional accur-
acy, attribute accuracy, consistency, and completeness (Oluseyi,
2002). Effects of these errors can be commonly observed in
many of the geo-information data, such as thematic maps in the
form of misaligned boundaries, relative shift, incorrect attrib-
ute, incorrect boundaries, etc. (Vargas-Munoz et al., 2021). In
this study, we mainly focus on three types of errors:

Segment Error: Segment corruption generally occurs if the
labels are auto-generated, typically from a thematic segmenta-
tion algorithm (Vargas-Munoz et al., 2021). An erroneous seg-
ment typically does not cover the entire underlying feature, and,
as a result, a part of such feature is mislabeled.

Relative Shift of Object Boundaries: Relative shift of
boundaries typically occurs due to co-registration error between
image and corresponding label. This anomaly is very similar to
boundary misalignment, which can also occur due to human er-
ror and bias (Vargas-Munoz et al., 2021).

Random Label Noise: Although this type of noise is re-
latively uncommon compared to other noise types, varying
amounts of it can still be observed in the labels generated from
pixel-wise classification methods (Su, 2016).

Although it is well known that any kind of noise in the data
negatively impacts the model performance, very little research
has studied the impact of label errors from a quantitative and
analytical perspective. In our study, we focus on bridging this
knowledge gap.
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3. EXPERIMENTAL SETUP

3.1 Dataset Description

In this study we have used two ISPRS datasets, Potsdam dataset
(ISPRS, 2016a) and Vaihingen dataset (ISPRS, 2016b). Both
the dataset contains very high resolution airborne multi-spectral
(RGB + NIR) images and DSM generated from LiDAR point
clouds. The images have an ortho-rectified top view, and dense
urban features typically dominate scenes. In the case of Pots-
dam, the semantic labels are available as images where each
class is represented with a unique value. There are 24 tiles of
6000× 6000 images with corresponding labels. We divided the
dataset into 2 parts, 18 tiles have been randomly selected for
training, and the rest of the 6 tiles have been selected randomly
for validation. The test dataset contains 14 tiles of similar size
for evaluating the model’s performance.

In contrast, the Vaihingen dataset contains 16 tiles of different
sizes for training and validation. Due to size variations of the
tiles, 75% of the patches generated from all the tiles has been
used for training, and the rest of the 25% patches are reserved
for validation. The test set of the Vaihingen dataset consists of
17 tiles.

3.2 Simulation of Label Errors

We simulate the type and amount of errors in the training data to
analyze the impact of specific errors. Our baseline is based on
the original training labels from the dataset, which is assumed
to be error-free. This allows us to compare our baseline to the
current state-of-the-art and further analyze the impact of sim-
ulated label errors in the model performance. The errors are
simulated as follows:

A. Random Label Noise:

1. Select random point from the label data.

2. Alter the label of that point to any of the other possible
label.

3. Repeat step 1 to step 2 until expected noise threshold has
been reached.

B. Segment Error:

1. Randomly pick a segment from the labeled data

2. Randomly pick a contiguous region inside the selected
segment with size proportional to the noise threshold

3. Assign incorrect label to the selected region of the seg-
ment

4. Repeat step 1 to step 3 until expected noise threshold has
been reached.

C. Relative Shift of Object Boundaries:

1. Spatially shift the labels in random direction with respect
to the corresponding image.

2. Crop the image and the label restricting them to the in-
tersecting area.

We set up experiments with the two noise thresholds for the
three types of errors. In case of segment error and random label
noise, we set the noise thresholds to be 5% and 10% of total
pixels in the image. The thresholds for the shifts are 5 pixels
and 10 pixels.

(a) (b)

(c) (d)

Impervious Surface
Building

Tree
Clutter

Low Vegetation
Cars

Figure 1. Labels before and after introducing different label
noise. (a) original Label, (b) Label corrupted with random label
(pixel) noise, (c) Label corrupted with segment error, (d) Label

corrupted with segment shift

3.3 Prerequisites for the Experiments

Assumptions: For our experiments, we assume that original
labels are ideal, i.e. these labels are perfectly delineated and
absolutely error free. This assumption is necessary to be able to
compare our observations with the original data. However, in
reality, factors like the bias of the label experts, discrepancies
due to data pre-processing such as ortho-rectification introduce
additional errors in data as well as in labels. This inherent error
can be crucial for the model while classifying difficult to recog-
nize classes. It should also be noted that 2D labels and data
representing a 3D scene is inherently prone to some fuzziness
at the segment boundaries due to occlusion and highly complex
true shape of the object. The tree class is particularly suscept-
ible to this problem.

Although the types of label noises chosen to be simulated in this
experiment are realistic, the simulation is performed at random,
i.e. all segments have equal probability of getting attenuated. In
reality however some classes can be relatively more susceptible
to certain types of label noises compared to other classes.

Data Preprocessing: The original Potsdam dataset contains
very high-resolution airborne imagery of 0.05m spatial resolu-
tion. In our experiments, we resampled the 6000× 6000 image
tiles to 1500 × 1500 dimension with 0.2m spatial resolution.
The resolution of the imagery from Vaihingen dataset is 0.08m.
These images also have been resampled to 0.2m resolution so
that the combined dataset have uniform spatial resolution. This
resolution is sufficient for our objects of interest, and it signi-
ficantly reduces the computational time required for training.
The images have been downscaled using nearest neighbor res-
ampling to avoid interpolation of the DN values. Similarly, all
the labels have also been downscaled using nearest neighbor
resampling to preserve the integrity of the labels.
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Semantic Segmentation Model: For this study, we have used
DeeplabV3+ (Chen et al., 2018) model to perform the experi-
ments. The DeeplabV3+ model embraces the typical encoder-
decoder structure for the network and uses depth-wise separ-
able convolution to atrous spatial pyramid pooling. This helps
the network identify the object boundaries more precisely while
boosting comparatively faster computation. As part of the per-
formance, the network demonstrates better results than the Res-
Net for semantic segmentation with relatively fewer paramet-
ers (Chen et al., 2018). The performance of DeeplabV3+ is
considerably on a higher side when synergized with the Xcep-
tion (Chollet, 2017) as its backbone (Chen et al., 2018). With a
spatial pyramid pooling module, it is possible to encode multi-
scale contextual information from input features, whereas an
encoder-decoder network helps retrieve sharper object bound-
aries with precision. Xception, in this regard, leverages the ad-
vantages of both paradigms.

It is worth noting that some of the newer models, such as HR-
Net (Wang et al., 2020) may perform better than DeeplabV3+
in some cases. However, these models consist of many para-
meters in contrast to the performance gain. Moreover, over-
parameterized complex models are susceptible to memorization
instead of learning generalization (Zhang et al., 2021). How-
ever, the systematic and analytic design of deep learning net-
works is still in its infancy (Liang et al., 2019), thus choosing
the suitable model depending upon the application still involves
a few trade-offs. Hence, we have selected the popular Dee-
plabV3+ model with Xception as the backbone for this study
which adequately fits our requirements.

Type of Error Acc. (%) F1 K
Rnd. Err. (5%) 95.00 0.8958 0.9322
Rnd. Err. (10%) 90.00 0.8178 0.8656
Seg. Err. (5%) 95.00 0.8909 0.9321
Seg. Err. (10%) 90.00 0.8251 0.8651
Rel. Shift (1m) 92.25 0.8734 0.8940
Rel. Shift (2m) 82.99 0.7403 0.7718

Table 1. Evaluation of simulated label errors in the combined
training data (training set from Potsdam dataset + training set

from Vaihingen dataset). The corresponding accuracy, Cohen’s
Kappa (K) coefficients and F1 scores are shown in the

respective columns.

Preferred Hyper-parameters: Apart from the network ar-
chitecture, model performance is also sensitive to the chosen
hyperparameters (van Rijn and Hutter, 2018). The state-of-the-
art machine learning algorithms require the manual selection of
hyperparameters prior to the learning process. However, such
an evaluation approach is time taking and leads to more com-
plexity in terms of the dimensionality of the search space (Hinz
et al., 2018). Sharma et al. (2019) identified some of the key hy-
perparameters for effective image segmentation. Some of these
notable hyperparameters are learning rate, batch size, weight
decay rate, number of epochs, momentum, etc. For achieving a
reliable performance, it should be noted that even the least sens-
itive hyperparameters should be associated with an adequate
value, as compared to the traditional frameworks (Sharma et
al., 2019). We pre-select a few hyperparameters for our experi-
ments based on initial experiments and recommendations from
previous studies.

Training Strategy: We use 256×256 patch size for the exper-
iments, which fits into our memory budget. Since CNN based
semantic segmentation models are prone to boundary effect (Is-
lam et al., 2021), we have used patches with approximately 32

pixels overlap to reduce that effect. In addition to this, we have
used basic image augmentations techniques flip, reflection, and
rotation to synthetically increase the size of the dataset. We
also use gradient accumulation with a mini-batch size of 3 and
a global batch size of 16 to mitigate the memory limitations.
Finally, we have utilized an early stopping mechanism with the
patience of 10 epoch to prevent overfitting. It is worth noting
that the model in each experiment has been trained from scratch
on their respective datasets.

4. RESULTS AND DISCUSSION

In this section, we present the results of our experiments with
suitable metrics and respective analyses followed by qualitative
assessment and interpretation.

(a) (b)

(c) (d)

Impervious Surface
Building

Tree
Clutter

Low Vegetation
Cars

Figure 2. Label inference on the objects of the unseen test tile
6 10. (a) Ground truth, (b) Inference by the base line model, (c)

Inference by the model trained on 5% segment errors, (d)
Inference by the model trained on 1m relative shift.

4.1 Simulated Label Errors

Evaluation of each type of simulated label errors on Potsdam
dataset are shown in Table 1. The accuracy of corresponding
label error simulation in Table 1 shows that simulation of er-
rors strictly followed the pixel-based error threshold in case of
segment corruption and random label noise. The relative shift
introduced relatively higher label errors compared to the others.
Similar trends can be observed for both F1 and K scores and in
the label errors simulated on the Vaihingen dataset.

4.2 Quantitative Analysis

First, we evaluate the performance of the baseline model trained
on the training label without any simulated noise. We also com-
pared our baseline performances in Table 3 and Table 4 with
their expected performance on the corresponding dataset from
the previous studies. Although our models are trained with
down-sampled images, it performs comparably to the previous
benchmarks of Deeplabv3+ on the ISPRS and Vaihingen data-
set, presented in (Song and Kim, 2020, Table 3) and (Wang et
al., 2018, Table 5) respectively.

We set the performance of the model trained on error-free la-
bels as our baseline and compare the performance of the mod-
els trained on erroneous labels. In Table 3 and Table 4 it can be
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Type of Error Im. Surface Building Low Veg. Tree Car
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Rnd. Err. (5%) 84.97 0.8555 91.94 0.8965 75.71 0.7548 67.08 0.6658 59.84 0.6503
Rnd. Err. (10%) 82.80 0.8096 88.08 0.8666 74.54 0.7127 60.32 0.6395 37.96 0.4863
Seg. Err. (5%) 85.49 0.8491 91.17 0.8847 74.42 0.7372 68.61 0.6500 58.65 0.6465
Seg. Err. (10%) 81.65 0.8079 90.44 0.8619 68.33 0.6974 62.68 0.6315 40.69 0.4737
Rel. Shift (1m) 83.92 0.8364 94.52 0.9372 74.45 0.7462 70.45 0.7093 68.51 0.6797
Rel. Shift (2m) 79.76 0.7994 92.44 0.9163 71.95 0.7129 68.36 0.6849 54.33 0.5178
Baseline 89.50 0.8966 96.72 0.9678 85.51 0.8261 77.10 0.7824 89.69 0.8640

Table 2. Comparison of evaluation metrics (accuracy and F1 score for the test dataset) for the models trained with different type and
amount of label errors introduced to Potsdam dataset. The last row of the table highlights the metrics for baseline model.

observed that the impact of relative shift is the highest among
all 3 different label errors. The variation in error threshold also
influences the performance. In all of the experiments, a higher
label error resulted in lower accuracy. However, accuracy is
most sensitive to variation relative shift and least sensitive to
variation of random label noise. The F1 score shows a similar
trend as the accuracy.

In the Table 2 the class-specific results have been shown for the
Potsdam dataset. Overall, the models perform reasonably well
for the building class among all the noises. However, among
all the models, the model trained on labels having 10% ran-
dom pixel noise performs the poorest in terms of accuracy of
the building detection. The accuracy for this class is reduced in
the range of approximately 2% to 8%. In the case of impervi-
ous surface, label error induced by 2m relative shift causes the
poorest accuracy of that class. The accuracy hit for this class
is in the range of approximately 4% to 10% for different label
errors. The models appear to be very stable for identifying low
vegetation class except for higher segment error or higher re-
lative shift of the training labels. The performance hit for the
low vegetation class is in the range of 10% to 17% in terms
of accuracy. Regarding tree class, the models are fairly stable
against label errors induced by relative shift; however, they per-
form comparatively poorly against segment errors and random
label noise. The performance hit for this class is approximately
in the range of 9% to 17% in terms of accuracy.

Type of Error Acc. (%) F1 K MCC
Rnd. Err. (5%) 85.08 0.7462 0.7874 0.7881
Rnd. Err. (10%) 85.03 0.7406 0.7864 0.7874
Seg. Err. (5%) 84.54 0.7372 0.7801 0.7808
Seg. Err. (10%) 84.01 0.7268 0.7713 0.7728
Rel. Shift (1m) 83.05 0.7006 0.7590 0.7594
Rel. Shift (2m) 82.29 0.6982 0.7490 0.7492
Baseline 87.97 0.7968 0.8287 0.8291

Table 3. Evaluation metrics for Potsdam test set.

The models’ performances concerning car class are most
severely affected by the higher random label noises and higher
segment corruption. Although the models comparatively per-
form better to identify the cars while training labels are corrup-
ted with low label errors of any type, the overall performance
penalty for this class is as high as approximately 21% to 52%.
The clutter class appears to be the most challenging class to
identify by the models, irrespective of the amount or type of
noise. The performance penalty for this class is moderate at 8%
to 24%. Variation of model performances in terms of F1 score
with respect to variations in the error threshold in the labels are
primarily consistent among all three error types. In general, la-
bel errors with lower thresholds caused a less detrimental effect
on the F1 score. Overall, segment errors are most damaging,
and random label errors are least damaging for the F1 score of

the corresponding models.

The evaluation of overall performance on the test dataset is
shown in Table 3 and Table 4 for Potsdam and Vaihingen data-
set respectively. The accuracies and F1 scores reveal that the
label errors caused by relative shift are the worst type of error
among all the error types. The model appears to be more tol-
erant of the random label noise than the segment errors. We
further verify this using K score and MCC. We observe that
for 5% erroneous pixels in the training labels roughly decreases
the test accuracy of the model by at least 3%.

4.3 Qualitative Assessment

The class-specific metrics in Table 2 show that, the baseline
performance is competitive relative to the sate-of-the-art. The
model performs best for the building class. A potential explan-
ation for this is the availability of the height information in the
input dataset set. The model also performs really well for the
impervious surface class. Although height information does not
have much influence, in this case, the model appears to be able
to distinguish the mostly linearly shaped geometry and the tex-
ture associated with this class. In the case of car class, shape,
size, and contextual association with roads (impervious surface)
are the potential distinguishable features for the model. Thus
the model performs well to identify the cars correctly. The NIR
band helps the model to distinguish both tree and low vegeta-
tion classes. However, the model performs relatively poorly for
the tree class compared to the low vegetation class, likely due
to their irregularly shaped boundaries which is difficult for the
model to delineate precisely. Evidently, the model performance
is poorest for the clutter/background class, which matches the
previous studies. This can be attributed to the vast intra-class
variability of the clutter class in terms of shape, size, texture,
and spatial context. Similar patterns have been observed for the
Vaihingen dataset, strengthening the hypotheses stated above.

It has been observed that the tree class and car class are most af-
fected by the label errors, irrespective of their types and amount.
The footprints of the individual objects from both of these
classes are relatively small compared to the objects of other
classes, and this makes it difficult for the models to identify
the individual objects from even smaller spatial contexts when
additional label errors are introduced. The model is somewhat
moderately tolerant to the lower amount of random label noise
compared to other types of labeling errors. However, in a higher
amount, it can be more damaging than others. A similar trend
can be observed for the segment corruption. This can be attrib-
uted to the fact that in both the cases, models are exposed to a
statistically similar amount of bad training examples in terms of
erroneous pixels (see Table 1). The impact label errors caused
by relative shift are mostly low compared to others, which com-
plies with the translation equivariance property of the CNNs.
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(a) FCC (NIR-R-G)

(b) nDSM

(c) Ground Truth

(d) Baseline

(e) Rnd. Err. (5%)

(f) Rnd. Err.(10%)

(g) Seg. Err. (5%)

(h) Seg. Err. (10%)

(i) Shift Err. (5 px)

(j) Shift Err. (10 px)

0.0 0.5 1.0 Impervious Surface Building Tree Clutter Low Vegetation Cars

Figure 3. Illustration of predicted labels along with the overview of the scene. (a) False color composite of the scene, (b) Normalized
DSM, (c) Ground Trth Label, (d) Baseline prediction, (e) - (j) predicted labels attributed to different noise type and threshold

Furthermore, visual analysis reveals that segment errors and re-
lative shift cause dissolving edges among separate objects or
result in less precise object boundaries. One example from the
Potsdam dataset is shown in Figure 3. The baseline in Fig-
ure 3(b) closely resembles the ground truth in Figure 3(a). Most
of the object edges are separate, and they are visually distin-
guishable. In both Figure 3(c) and Figure 3(d) the quality of ob-
ject boundaries have been degraded, many objects of car class
with distinct boundaries are no longer identifiable separately.
However, these anomalies are more prevalent in Figure 3(d).

Type of Error Acc. (%) F1 K MCC
Rnd. Err. (5%) 81.33 0.7377 0.7222 0.7643
Rnd. Err. (10%) 80.57 0.7113 0.7195 0.7591
Seg. Err. (5%) 79.24 0.6804 0.7084 0.7433
Seg. Err. (10%) 77.92 0.6735 7050 0.7410
Rel. Shift (1m) 77.41 0.6632 0.6921 0.7089
Rel. Shift (2m) 77.06 0.6395 0.6914 0.6937
Baseline 83.32 0.7730 0.7736 0.7883

Table 4. Evaluation metrics for Vaihingen test set.

Overall, the label errors affect the model’s ability to general-
ize and make it harder to infer the contextual patterns correctly.
An example of this can be seen in Figure 4. In Figure 4(c),
the small walkways are not delineated separately, although they
are visually more similar to impervious surfaces. Ideally, the
model should learn this from the contextual association. In the
case of baseline inference in Figure 4(d), the model depicts this
behavior quite well except for a few occurrences. However, as
the generalization abilities of the models are affected by the la-
bel noise, the apparent misclassification of these walkways be-
comes more prevalent in Figure 4(e-g, i). This impact is hardly
observable in Figure 4(j). This can be attributed to the inability
to precisely detect narrow shapes and boundaries caused by the
higher label of relative shift or segment errors.

5. CONCLUSION

In this work, we present a quantitative and qualitative analysis
of the impact of various label errors in varying amounts on deep
learning-based semantic segmentation using two well-known
datasets. The errors we investigated commonly occur in the
label preparation in the geo-information domain.

We used DeeplabV3+ as our chosen model for semantic seg-
mentation. The baseline performance of this model is com-
parable to the state-of-the-art. Additional data such as DSM
and NIR bands certainly helps the model to perform better than
previous benchmarks such as (Song and Kim, 2020, Table 3).
Among all three types of label errors, the errors caused by rel-
ative shift affect the model performance the most, followed by
segment errors and random label noise. Relative shift and seg-
ment error prevent the model from learning the features of pre-
cise object boundaries and, to some extent, narrowly shaped
small objects such as cars. Each class responds differently for
each type and amount of label noise. However, in general,
higher label errors in training labels result in lower model per-
formance. The classes like clutter are inherently difficult to
recognize for the model; additional label noise makes it even
harder.

It is worth noting that, although the outcome of this experiment
provides valuable insights into the impact of label noises on the
model performance, these observations should be further valid-
ated on more datasets. In this experiment, the amount of label
noise introduced to the data is relatively low. Thus, the model’s
behavior in case of severe label noise is yet to be observed.
In the future, this experiment can be extended to include more
models, more data, and more variations in the type and amount
of noise. Furthermore, the changes in the model behaviors can
be deeply investigated using saliency maps and gradient integ-
ration, aiming for the goals of XAI.
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ACRONYMS

CNN Convolutional Neural Network.

CRF Conditional Random Field.

DN Digital Number.

DSM Digital Surface Model.

FCN Fully Convolutional Network.

LiDAR Light Detection and Ranging.

MCC Matthews Correlation Coefficient.

NIR Near Infrared.

RGB Red - Green - Blue.

XAI Explainable Artificial Intelligence.
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