
ARM-NMS: SHAPE BASED NON-MAXIMUM SUPPRESSION FOR INSTANCE
SEGMENTATION IN LARGE SCALE IMAGERY

Andreas Michel1,2∗, Wolfgang Gross1, Stefan Hinz2, Wolfgang Middelmann1

1 Fraunhofer IOSB – (andreas.michel, wolfgang.gross, wolfgang.middelmann)@iosb.fraunhofer.de
2 Karlsruhe Institute of Technology – stefan.hinz@kit.edu

Commission II, WG II/6

KEY WORDS: Non-Maximum Suppression, shape-based NMS, Instance Segmentation, Object Detection, Deep Learning.

ABSTRACT:

Detecting objects in aerial scenes is a fundamental and critical task in remote sensing. However, state-of-the-art object detectors
are susceptible to producing correlated scores in neighboring detections resulting in increased false positives. In addition, detection
on large-scale images requires a tiling scheme with usually overlapping windows, consequently creating more double detections.
Therefore, a non-maximum suppression (NMS) approach can be exploited as integral to the detection pipeline. NMS suppresses
overlapping detections in regards to their scores. Current NMS algorithms filter detections by utilizing their corresponding bound-
ing boxes. However, one can assume that comparing bounding boxes to determine the overlap of non-rectangular objects involves a
certain degree of inaccuracy. Therefore, we propose Area Rescoring Mask-NMS (ARM-NMS), which uses object shapes for filter-
ing. ARM-NMS exploits instance masks instead of the conventional boxes to eliminate detections and does not require retraining
for instance segmentation pipelines. To exhibit the effectiveness of our approach, we evaluate our method on the large-scale aerial
instance segmentation dataset iSaid. Our approach leads to considerable improvements for the COCO-style mAP metric of 3.3
points for segmentations and 3.5 points for boxes.

1. INTRODUCTION

Continuous advancements in camera, aircraft, and satellite tech-
nologies enable the collection of large amounts of electro-optical
data of vast areas on the earth’s surface. Nevertheless, the im-
mense data quantity prevents a comprehensive manual analysis.
However, computer vision methods provide a reasonable solu-
tion to approach this task. Object detection methods, for in-
stance, are an efficient way to extract valuable position and clas-
sification details of visual data. State-of-the-art object detection
methods are deep learning-based and can be grouped into one-
and two-stage detectors. The main difference between one- and
two-stage detectors is that two-stage detectors localize and clas-
sify objects in separate steps, while one-stage detectors perform
both tasks simultaneously. One-stage detectors (Redmon et al.,
2016) operate more time-efficient than their counterpart by ex-
ploiting only a dense prediction head. In contrast, the two-stage
detector from (Ren et al., 2015) utilizes the dense prediction
head only to predict proposals. These proposals serve as a basis
for the following sparse prediction head. Overall, two-stage de-
tectors are more accurate, but the extensive number of propos-
als usually require a filter strategy to reduce the computational
complexity to an acceptable level. In addition, further filter-
ing is integrated into the postprocessing in both object detector
variants. This process is handled by non-maximum suppression
(NMS), which is a crucial part of the object detection pipeline.
It is an efficient method to eliminate overlapping detections.
It usually utilizes the detected bounding boxes to determine
overlapping detections and eliminates unnecessary ones. The
elimination process is based on the confidence scores of the de-
tections and the degree of overlap between two detections.In
this work, we propose an improved approach to using bound-
ing boxes by utilizing object shapes. Furthermore, the expected
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Figure 1. Challenges for non-maximum suppression
(1) Ideal case for box-based NMS. (2) Double detections. (3)

Partial detections. (4) Cluster of objects. (5) Overlapping
concave objects. (6) Diagonally-aligned objects.

input of object detectors is usually limited by resolution. Input
images with a higher resolution than the maximum resolution
defined by detector architectures are usually resized. Resizing
can lead to a loss of information or result in scaling issues. Ob-
ject detectors based on convolutional neural networks are not
scale-aware. Therefore, huge divergences in the size of objects
between training and interference samples lead to a decrease in
the detection performance. Techniques like the feature pyramid
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network (Lin et al., 2017) can be used to mitigate the scaling is-
sue but cannot completely resolve it. Even transformer-based
backbonesinstead of convolutional-based ones like the swin-
transformer (Liu et al., 2021) are not able to completely over-
come the scaling issues.

An alternative to resizing is to partition large-scale images into
patches on which the detectors operate separately. Fusing the
discrete detections into the original scenes leads to additional
challenges. Utilizing non-overlapping patches lead to missing
detections on the border. In contrast, overlapping patches result
in duplicate detections, which the NMS can address. However,
filtering overlapping detections comes with many difficulties.
Figure 1 illustrates some of the main challenges for NMS:

• The ideal case for box-based NMS would be rectangular
non-overlapping objects parallel aligned to the border of
the image. The proposed bounding boxes can precisely
cover the present objects.

• Overlapping detections are the default-case addressed by
NMS. Ideally, the better-aligned detection exhibits a higher
confidence score and suppresses neighboring scores with
lower confidence. However, if both detections have a sim-
ilar score or the worse-aligned detection scores higher, the
elimination process can lead to errors in the final detec-
tions. Also, most applied NMS algorithms filter each class
separately, which leads to double detections with different
labels being ignored by NMS.

• Partial detections are particularly hard for NMS. NMS
utilizes intersection over union (IoU) as an overlap metric.
IoU is size-independent, which is generally considered a
positive characteristic. However, in the case of detections
that differ strongly in size, the IoU between both is low,
and thus partial detections are often overlooked by NMS.

• Cluster of objects are another issue for NMS algorithms.
Many overlapping objects can lead to false detections due
to inaccuracies in the alignment of the detection boxes.

• Overlapping concave objects are a significant issue of
box-based NMS. The detection boxes are usually not well-
aligned to the underlying objects, and the detection of neigh-
boring objects can be suppressed.

• Diagonally-aligned objects in high object densities ex-
hibit a substantial overlap of detected bounding boxes
without actual overlapping objects. This can easily lead to
wrongfully eliminated detections.

In order to address these cases and inspired by Mask-NMS
(Wang et al., 2020a), we propose the shape-based non-maximum
suppression algorithm, Area Rescoring Mask-NMS (ARM-NMS).
ARM-NMS cannot be directly used in object detection algorithms,
but object detection can be easily expanded to instance seg-
mentation by predicting the shapes of the detected objects. Typ-
ical representatives of instance segmentation are Mask R-CNN
(He et al., 2017) and DetectorRS (Qiao et al., 2021). Our pro-
posed method does not require any retraining and can thus eas-
ily be implemented into existing instance segmentation pipelines.
We provide a solution to keep the computational complexity at
an acceptable level, even with the more elaborate task of com-
paring shapes instead of boxes. Furthermore, we examine an
additional overlap metric and further modifications to NMS.
Contributions. (1) We propose an improved shaped based NMS
approach for instance segmentation, ARM-NMS. Our approach
does not require any retraining and can be easily integrated
into instance segmentation pipelines. (2) We propose an area-
rescoring strategy to consider the size of an object in order to

reduce partial detections. Area-rescoring can be easily integ-
rated into ARM-NMS. (3) In order to display the effective-
ness of ARM-NMS, we compare our method with box-based
greedy-NMS and soft-NMS on the instance segmentation data-
set iSaid.

2. RELATED WORK

In this section, we survey the most relevant works for NMS.
NMS is an integral part of many detection computer vision al-
gorithms. It is rooted in edge detection techniques (Rosenfeld
and Thurston, 1971), and further developments lead to the fol-
lowing algorithms.

2.1 Greedy-NMS

Greedy-NMS (Dalal and Triggs, 2005) is still to this day a
widely used approach in state-of-the-art object detectors to filter
unnecessary objects proposals. The basic idea behind greedy-
NMS is that bounding boxes with a high detection score sup-
press their overlapping neighbors with lower scores. The al-
gorithm starts with sorting the bounding box detections b ∈ B
regarding their corresponding scores s ∈ S in descending order.
In an iterative procedure, the bounding box hb with the highest
score smax is transferred to the list of the final detections F . To
determine whether a box is eligible for the elimination process,
the intersection over union (IoU) between the detected bound-
ing box hb with the maximum score and the remaining boxes
are calculated. The new score si ∈ S of the i-th remaining
detection bi ∈ B can be described as follows

si ←

{
si, iou(hb,bi) < nt

0, iou(hb,bi) ≥ nt

, (1)

where nt ∈ [0, 1] is the desired threshold value. This proced-
ure is repeated until the list of initial detections B is empty.
Although that greedy-NMS is an efficient and popular method,
the characteristics of the hard threshold nt can lead to errors.
Applying a high nt may lead to keeping many false-positive
bounding boxes. In contrast, a low nt can prevent false-positives
from being deleted.

2.2 Soft-NMS

Soft-NMS was developed to address the difficulties of greedy-
NMS. Instead of eliminating overlapping bounding boxes, the
scores of the lower-scored bounding boxes overlapping the max-
imum score box hb are reduced. This leads to a more continu-
ous penalty function and increases the average precision of the
detection.

On the downside, due to not removing the overlapping box from
B, the computational complexity of soft-NMS is slightly higher
than greedy-NMS. The Gaussian soft-NMS penalty function
can be written as follows

si ← sie
− iou(hb,bi)

2

σ , ∀bi /∈ F , (2)

where σ is a less sensitive threshold parameter than nt. Similar
to greedy-NMS this update rule is applied until all detections
from B fall below a certain threshold or are transferred to F .
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2.3 Further Developments

Recent approaches like softer-NMS (He et al., 2018), adaptive-
NMS (Liu et al., 2019), or IoU-Net (Jiang et al., 2018) modify
the object-detection model but need intensive retraining for minor
performance increases. Methods like cluster-NMS (Zheng et
al., 2021) try to accelerate NMS but perform similar to greedy-
NMS. Another method worth mentioning is weighted boxes fu-
sion (WBF) (Solovyev et al., 2021). Instead of eliminating or
rescoring neighboring boxes, WBF merges overlapping boxes
into new boxes. WBF excels in test-time-augmentation settings,
but it is slightly worse than soft-NMS under conventional con-
ditions. In consequence, greedy-NMS and soft-NMS are still
among the most applied methods in object detection. Neverthe-
less, all mentioned methods utilize boxes instead of shapes. Re-
cently, a few approaches utilize shape-based NMS, for instance,
mask-based NMS (Wang et al., 2020a), (Tian et al., 2020), or
Matrix-NMS (Wang et al., 2020b). The goal of this work is to
improve shape-based NMS methods.

3. METHOD

The basic idea behind ARM-NMS is quite intuitive: Use shapes
instead of boxes to filter unnecessary detections. Shapes can
align better with the underlying objects than just bounding boxes
and lead to a more precise filtering process. However, compar-
ing masks is a more computationally complex task than match-
ing boxes. Hence, adjustments to the traditional NMS methods
for an efficient workflow are required. Furthermore, we apply
additional improvements to increase the filter performance. The
pseudocode of our proposed algorithm can be seen in Figure 2.

3.1 ARM-NMS

ARM-NMS is computed on a list of detected instance masks
M = {m1, ...,mN}with corresponding scores S = {s1, ..., sN}
for a given scene. The first step is to adjust the scores after their
relative size A = {a1, ..., aN}. We hypothesize the follow-
ing: larger detections are probably more accurate than smaller
ones with the same confidence score. One of the reasons for
this could be that larger detections are based on more pixels
and consequently on more information. Ideally, area-rescoring
should lead to the suppression of partial detections and preserve
complete detections. In the beginning, the areas of the instance
masks are calculated separately. Then, we compute the mean
area A of the instance masks. The area-rescoring function can
be described as follows

si ←
aisi

A

1
wa , (3)

where the parameter wa controls the impact of the correspond-
ing area ai. As a result, detections with a larger area are as-
signed higher corresponding scores and smaller areas result in a
score reduction. After the area-rescoring, we iterate through the
list of detections in a descending order regarding their comple-
mentary scores. The detection hm with the highest score smax

is removed from the listM and added to the list of final detec-
tions F . Likewise, we utilize hm to remove further detections
fromM. Similar to box-based NMS approaches, we are look-
ing for detections mi which overlap with hm. Yet comparing
shapes is a more comlex task, and therefore, we compare hm

only with detections mi within a specified radius dt. For these
detections, we apply the Gaussian soft-NMS penalty function

Input: M = {m1, ...,mN}, dt, wa

S = {s1, ..., sN}, σ, nt

M is the list of initial detections masks
S contains corresponding detection scores
wa influences the area rescoring
dt is the distance threshold
nt is the NMS threshold for Greedy-NMS
σ is the Gaussian parameter for Soft-NMS

begin
F ← {}

A ← area(M)

A ← mean(A)
for si in S do

si ← f(si, ai,A, wa)
end

Area-Rescoring

whileM ̸= empty do
smax ← argmaxS
hm ← msmax

F ← F
⋃

hm;M←M− hm

for mi inM do
if distance(hm,mi) < dt then

if iou(hm,mi) ≥ nt then
M←M−mi;S ← S − si

end
Greedy-NMS

si ← sif(iou(hm,mi, σ))
Soft-NMS

end
end

end
return F ,S

end

Figure 2. The Pseudocode of our proposed approach is similar
to greedy-NMS or soft-NMS. The main difference is utilizing

instance masksM instead of bounding boxes B.
The pseudocode in the blue box exhibits additional

modifications. Area-rescoring leads to favoring larger areas in
order to select better-aligned detections. The distance function

decreases the computational complexity.

to reduce the score of the detections with respect to their shape-
based IoU. We repeat this step until M is empty. Finally, we
return the final detection list F with their corresponding scores
S.

3.2 Implementation Details

Our proposed method is flexible and can be easily adjusted. We
have implemented the following variations:

• Shapes: Two-dimensional object shapes can be described
as a binary mask, a run-length encoded mask, or as a poly-
gon. State-of-the-art instance segmentation pipelines usu-
ally output a binary mask in the size of the original image
for every detected object. This can easily lead to a com-
putational bottleneck for large-scale images with a high
object density. Consequently, a compression method is
needed. Merging all binary shapes into a single one-hot
encoded map is not feasible due to overlapping masks. In
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Figure 3. Tiling Schemes. We train our model on independent
image patches, but for the evualuation process we produce

detection lists on overlapping patches.

contrast, run-length encoded masks for every object can be
an efficient approach to store and compare object shapes.
For example, the MS COCO API (Lin et al., 2014) uses
run-length encoding for evaluation purposes. Another pro-
cedure is to transform the masks into polygons. Polygons
can be stored efficiently, are easier to visualize than run-
length encoded masks, and can be comfortably implemen-
ted in other applications. As a result, we utilize polygons
to store and calculate the overlap of object shapes.

• Classes: Our proposed method can be applied individually
to each object category or jointly to all of them. Using our
proposed approach jointly can improve detection accuracy
if many double detections with different classification res-
ults exist.

• Distance: In order to reduce the computational complex-
ity, we compare only objects if their distance is smaller
than a certain radius. We use the Euclidean distance between
the center points of the detections to calculate the distance.
Other alternatives would be using only the first vertex of
the polygon to save further computational steps or utiliz-
ing bounding boxes to determine proximity.

• Overlap metric: IoU is still the primary metric to com-
pare the overlap between two shapes. IoU can be formu-
lated as follows

IoU =
mi ∩mj

mi ∪mj
, mi,j ∈M, (4)

where mi and mj are two shapes, and we divide their in-
tersection over their union. One of the most suitable char-
acteristics of IoU is that it is scale-independent. This can
lead to problems with partial detections. The IoU of a par-
tial detection is usually low and may, therefore, be over-
looked. For the case of an accumulation of partial detec-
tions, we implement an additional metric: IoMin. IoMin
can be described as

IoMin =
mi ∩mj

min(ai, aj)
, mi,j ∈M, ai,j ∈ A. (5)

The difference between IoU and IoMin is that we divide
the intersection of both shapes by the area of the smaller
shape instead of the union.

4. EXPERIMENTS

In order to demonstrate the effectiveness of our approach, we
apply Mask R-CNN on the dataset iSaid to get lists of detec-
tions for large-scale images. We use these lists of detections to

Figure 4. Density and class distribution of the evaluation
dataset. From the iSaid validation dataset we select all images
with less than 1500 objects for evaluation. (a) In this chart, we
show the amount of images for the given object count intervals.
(b) This barplot exhibits the class distribution of the evaluation

dataset on a logarithmic scale.

evaluate our method and compare them to box-based greedy-
NMS and soft-NMS. For the evaluation, we use a considerable
parameter grid. Furthermore, we show in the ablation study that
our improvements to Mask-NMS are reasonable.

4.1 Dataset

The iSaid (Waqas Zamir et al., 2019) dataset is a large-scale
aerial image dataset and is derived from the DOTA (Xia et al.,
2018) dataset. It appends to the DOTA dataset object shape
informations. iSaid contains 2,806 high-resolution images col-
lected from multiple sensors and platforms, including 655,451
object instances of 15 categories. The object categories vary
from mobile categories like ”ship’ or ”car” to static categories
like ”storage tank” or ”bridge”. Every category consists of a
large number of instances. Furthermore, the dataset exhibits a
high object scale variation. For example, the ship class ranges
from small boats to large aircraft carriers. The distribution of
the objects in a given scene is often imbalanced and uneven to
represent real-life conditions. Due to performance issues of the
COCO API with a large number of objects, we select only im-
ages up to a maximum of 1500 ground-truth objects, which are
439 of 458 images from the iSaid validation dataset. In Fig-
ure 4, we display the object density and class distribution.

4.2 Instance Segmentation

Detection lists with shape information are required to compre-
hensively evaluate our proposed method. For this, we utilize
the popular instance segmentation method Mask R-CNN (He et
al., 2017). For training the network, we crop the iSaid images
into patches with a resolution of 800 × 800. We split the ori-
ginal iSaid training dataset randomly into a training dataset and
a validation dataset. 95% of the images are used for training,
the rest for validation. We train Mask R-CNN on all 15 cat-
egories of iSaid on two Nvidia V100 graphic processing units
without pretraining except for the backbone. As a backbone,
we use an Imagenet (Russakovsky et al., 2015) pre-trained Res-
net101 (He et al., 2016) to extract features for further processing
steps. We utilize the default anchor configuration following (He
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Table 1. Evaluation parameter grid.
method [shape-based, box-based]

penalty function soft-NMS greedy-NMS
IoU threshold - [0.01, 0.25, 0.5, 0.75]

sigma [0.1, 0.2, 0.3] -
score threshold [0.01, 0.1, 0.2, 0.5]
unique labels [True, False]
overlap metric [IoU, IoMin]
area-rescoring [True, False]

Table 2. ARM-NMS ablation results. We present the best mean
average precision results under the defined settings.

metric segmentation
unique labels True True True False
overlap metric IoU IoMin IoU IoU
area-rescoring True True False True
AP [0.50:0.95] 28.6 28.2 25.9 27.6

AP 0.50 53.5 52.7 50.7 52
AP 0.75 26.9 26.5 23.2 25.8

AP[0.50:0.95] small 18.9 18.9 17.2 18.3
AP [0.50:0.95] medium 32.0 31.8 28.9 30.9

AP [0.50:0.95] large 35.6 35.0 33.8 34.4
AR [0.50:0.95] @100 32.1 31.1 31.7 31.4

AR [0.50:0.95] @1000 37.0 35.7 36.8 36.2
AR [0.50:0.95] @1500 37.1 35.7 36.8 36.2
AR [0.50:0.95] small 26.9 25.8 26.8 26.4

AR [0.50:0.95] medium 38.0 37.2 37.8 36.9
AR [0.50:0.95] large 43.8 42.2 43.4 42.8

et al., 2017). Nevertheless, we modify hyperparameters that
limit the amount of maximum detections per image. Hence, we
significantly increase the number of possible detections per im-
age to 1000. During training, we start with a learning rate of
α = 3 · 10−3 and uniformly reduce α to 10−3 over 50 epochs.
We choose a batch size of sixteen and utilize the AdamW op-
timizer (You et al., 2019) with a weight decay of 10−4.

4.3 Evaluation Details

To demonstrate the effectiveness of our method, we compare
our approach to the widely-used greedy-NMS and soft-NMS
in large-scale images. We perform the experiments on the val-
idation dataset of iSaid. Instead of evaluating our method on
independent cropped images, we test on the full images. One
example is given in Figure 3. Consequently, we utilize the ob-
ject detector in a sliding-window approach with a kernel size of
800 × 800 pixels and a stride of 600 pixels in each direction.
The resulting overlap of 200 pixels is quite large, but it ensures
that no object is overlooked or divided into two parts because
it lies on the border between two tiles. The produced binary
masks are transformed into polygons, and their local vertices
are adjusted to their location in the complete image. As a com-
parison metric, we utilize the common metrics mean average
precision and mean average recall, which are implemented in
the COCO API (Lin et al., 2014).

Figure 5. Visualization results on the iSaid: coast. The image
sections show the unfiltered base detections, the box-based

soft-NMS, and our proposed shape-based ARM-NMS results.
(1) The annotation density in this clustered image section can be
used to indicate the detection density. Box-NMS can reduce the

number of detections, but ARM-NMS outperforms its
counterpart significantly. (2) We display a relatively sparse

scene with double detections among the vessels.

4.4 Parameter Grid

Non-maximum suppression methods are parameter-sensitive ap-
proaches. Table 1 shows the used parameters and the performed
method variations. Fields marked with an ”-” are not considered
for the evaluation. We implement greedy-NMS and soft-Nms
box-based and also integrate them into our shape-based ARM-
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Table 3. NMS Results on the iSaid dataset. We compare our proposed shape-based ARM-NMS with box-based NMS.

metric segmentation box
method none ARM-NMS Box-NMS none ARM-NMS Box-NMS

penalty function - - soft greedy soft greedy - - soft greedy soft greedy
overlapping tiles False True True True True True False True True True True True

iou threshold - - - 0.5 - 0.5 - - - 0.25 0.1 0.5
sigma - - 0.1 - 0.1 - - - 0.1 - - -

score threshold - - 0.01 0.01 0.01 0.5 - - 0.01 0.01 0.01 0.5
unique labels - - True True True True - - True True True True
overlap metric - - IoU IoMin - - - - IoU IoU - -
area-rescoring - - True True - - - - True True - -
AP [0.50:0.95] 24.6 20.7 28.6 28.2 25.3 25.2 28.4 24.2 32.9 32.4 29.4 29.3

AP 0.50 48.4 38.6 53.5 52.5 48.5 49 52.1 41.8 57.1 56 52.5 52.8
AP 0.75 22.2 19.3 26.9 26.5 23.1 22.6 27.5 25.2 34.0 33.6 29.6 29.1

AP[0.50:0.95] small 16.1 13.5 18.9 18.8 16.6 16.6 23 20.9 25.7 25.2 23.6 23.6
AP [0.50:0.95] medium 28.3 22.6 32.0 31.7 28.2 28.2 30.7 24.7 35.6 35.2 31.4 31.3

AP [0.50:0.95] large 31.5 28.5 35.6 34.9 33.5 33.6 29.5 25.0 37.0 36.5 32.7 32.6
AR [0.50:0.95] @100 30.0 31.3 32.1 31.1 31.6 31.4 33.4 35.2 36.0 35.1 35.3 35.0

AR [0.50:0.95] @1000 34.9 37.9 37.0 35.7 36.8 36.5 39.4 43.5 42.2 41.0 41.8 41.4
AR [0.50:0.95] @1500 35.0 38.1 37.1 35.7 36.9 36.6 39.5 43.6 42.2 41.1 41.8 41.5
AR [0.50:0.95] small 25.9 27.7 26.9 25.8 26.8 26.8 31.5 33.7 32.7 31.4 32.5 32.5

AR [0.50:0.95] medium 36.1 38.7 38.0 37.2 37.7 37.4 39.3 43.7 42.5 41.7 42.2 41.9
AR [0.50:0.95] large 39.9 44.7 43.8 42.1 43.4 43 42.6 49.6 48.1 46.8 47.4 46.9

NMS. For greedy-NMS, we apply different IoU thresholds nt,
which range from 0.001 to 0.75. In the case of soft-NMS, we
use a σ of 0.1, 0.2, and 0.3. Additionally, we apply different
score thresholds, ranging from 0.01 to 0.5. Furthermore, we
perform further variations for the shape-based approaches. We
filter each class separately and jointly. Additionally, we util-
ize IoU and IoMin as overlap metric. Finally, we examine the
effectiveness of the proposed area-rescoring.

5. RESULTS

In this section, we evaluate the effectiveness of our shape-based
NMS. First, we show the quantitative results of the box-based
and the shape-based ARM-NMS approaches. Then, we discuss
some qualitative results. Finally, we display the ablation study.

5.1 Quantative Results

In Table 3, we compare shape-based and box-based NMS ap-
proaches on detection lists produced by Mask R-CNN on the
iSaid validation dataset. Fields with an ”-” are considered ir-
relevant for the corresponding method. We apply the COCO-
style mean average precision (mAP) and mean average recall
(mAR) for segmentations and boxes. The unfiltered detection
results are labeled ”none” under the method row and are used
as a baseline. For each case, segmentations and boxes, the av-
erage precision is generally higher for the unfiltered detections
without overlapping tiles. In contrast, for the non-overlapping
tiles, the detections indicate a higher average recall. This is
reasonable because overlapping tiles lead to double detections,
but they reduce the possibility of missing detections on the bor-
der of the tiles. On average, the mask-shaped approaches are 2.8
times slower than the box-shaped ones. The results seen here
are selected from experiments on a comprehensive parameter
grid and for each method. We present the best results regard-
ing overall mean average precision. Regarding the metric for

the segmentations, we can see that our proposed shape-based
approach with a Gaussian soft-max penalty function achieves
not only a higher average precision than the unfiltered detec-
tions but can beat the box-based alternative by 3.3 points. The
implementation with the soft-NMS performs better in all met-
rics than the greedy-NMS variant. Our approach has a slightly
lower average recall for a max detection limit of 1500 instances
than the unfiltered detections with overlapping tiles, but obtains
a higher average recall than those without overlapping tiles.
However, the average precision improves by 7.9 points com-
pared to the unfiltered detection with overlapping tiles and by
4.0 points without overlaps. Furthermore, ARM-NMS accom-
plishes a higher average recall than the box-based NMS meth-
ods. The best combination of parameters and variants for our
method is using a Gaussian penalty soft-NMS function, detec-
tions with overlapping tiles, a sigma of 0.1, a score threshold
of 0.01, filtering for each label separately, IoU as a comparison
metric and with area-rescoring. A similar result can be seen
for the box metrics. Our method accomplish the highest mean
average precision while reaching, except for the unfiltered over-
lapping baseline, the highest mean average recall score.

5.2 Qualitative Results

We show a few qualitative results in Figures 5, 6 and 7. The de-
tection results on entire images are filtered by ARM-NMS. Fur-
thermore, we illustrate some image sections in more detail and
display the unfiltered detections, detections filtered by ARM-
NMS, and detections filtered by a box-shaped method. The set-
tings of the NMS methods are based on the best results from
Table 3. In Figure 5 we show a coastal scene with many ves-
sels. In the image section one, we can see how ARM-NMS
outperforms Box-NMS significantly in a cluster of object de-
tections. Likewise, as seen in image section two, ARM-NMS
handles sparse double detections well. Figure 6 displays an
airplane graveyard. Airplanes are concave objects with a high
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Figure 6. Visualization results on the iSaid: airplane graveyard. The image subsets show the unfiltered box-based soft-NMS, and
our proposed shape-based ARM-NMS results: (1) Example for multiple detections.

(2) Example for the intersection of two overlapping image patches.

Figure 7. Visualization results on the iSaid: parking spot. The diagonally-aligned buses in the image section are a challenge for
box-based NMS approaches. In contrast to ARM-NMS, Box-NMS eliminates true-positive detections due to overlapping boxes.

overlap potential for bounding boxes. Image section one shows
how ARM-NMS excels in partial detections. The box-based
approach performs worse in this scene. This is also the case for
the second image section. The narrow concave objects cause an
overlap of bounding boxes despite the underlying objects not
actually overlapping. Furthermore, this image section is part of
the intersection of two overlapping image patches. Therefore,
high-scored partial detections are present. ARM-NMS excels
in this case, while Box-NMS falls behind. In the last example,
Figure 7 shows a parking spot. The difficulty in this scene is
the diagonally-aligned buses. Diagonally-aligned objects can
lead to a high overlap of bounding boxes similar to concave ob-
jects. We observe that ARM-NMS outperforms Box-NMS in
this scenario too.

5.3 Ablations

In order to determine the best composition for our approach
and compare it to Mask-NMS, we evaluate the impact of the
different variations on ARM-NMS. ARM-NMS with no area-
rescoring, unique labels and IoU is idententical to Mask-NMS.
Table 2 shows the best results on iSaid for a specific parameter

combination regarding the COCO-style mAP metric.

• Labels: In the default case of NMS, each class is filtered
separately. Therefore, double detections with different la-
bels are ignored in the filtering process. Filtering all classes
simultaneously may lead to better results in certain cases,
but overall it decreases the average precision and the av-
erage recall score. Furthermore, it leads to an increased
conputing time due to the increase of objects compared to
each other.

• Overlap: IoU is an integral part of most of the NMS meth-
ods. In this case, where the compared detections differ
strongly in size, NMS does not suppress any detections.
IoMin may perform better in some cases than IoU, but it
slightly decreases average precision.

• Area-rescoring: Area-rescoring adjusts the detection scores
favoring larger areas. Ideally, partial detections should
receive a drop in their score and thus, are less likely to
suppress better-aligned detections. However, reducing the
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scores of all small objects by a large margin can lead to
missing final detections. In general, area-rescoring leads
to a significant increase in average precision in our exper-
iments. A possible reason for this observation could be
the use of the applied tiling scheme. Partial detections
on the edges of a patch could still reach a high detec-
tion score and, therefore, suppress the overlapping patch’s
better-aligned detections. The partial detections are smal-
ler than their better-aligned counterparts and, therefore, re-
ceive a higher penalty from area-rescoring. Consequently,
the chance that partial detections suppress better-aligned
detections is reduced.

6. CONCLUSION

In this paper, we propose ARM-NMS. ARM-NMS utilizes
shapes in order to filter unnecessary object detections. It does
not require any retraining and, thus, can be easily implemented
in existing instance segmentation methods. To demonstrate the
effectiveness of our method, we created detection lists by the
popular Mask R-CNN detector applied to entire images of the
iSaid validation dataset. ARM-NMS outperforms box-shaped
filtering algorithms by more than three points on the COCO-
style mAP metric. Furthermore, we confirmed our hypothesis
that rescoring detections based on the shape and area of the ob-
jects leads to an improvement in detection performance. Future
research will address the improvement of the final detections by
analyzing different approaches for merging overlapping detec-
tions.
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