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ABSTRACT:

Building semantic segmentation is key to many applications relying on 3D modeling of city buildings such as urban planning or
business intelligence. Recent works have shown great improvements in this area thanks to artificial intelligence, but even state of
the art neural networks encounter difficulties to generalize to buildings that are different from the training dataset. 3D modeling
applications also requires the elevation information often retrieved from a pair of High Resolution satellite images. In this article,
we show that using both images of a stereo pair as inputs to a neural network trained for building semantic segmentation achieves
better results than using a single view. Especially, stereo training gives a greater ability to generalize. We show that using neural
networks designed for disparity estimation performs well for building semantic segmentation from a pair of satellite views in
epipolar geometry. We also discuss how radiometry and disparity both affect the definition of what a building is depending on the
multi-view network architecture.

1. INTRODUCTION

Automatic acquisition of geospatial information is of great in-
terest especially in the context of 3D modeling of cities, and
more and more softwares like (Baillarin et al., 2020) require ac-
curate segmentation pipelines. Artificial intelligence technolo-
gies have permitted great improvements for semantic segmenta-
tion in the field of computer vision (Hao et al., 2020) but also for
remote sensing applications like building segmentation (Liu et
al., 2020). One of the main challenge of artificial intelligence is
generalization ability. In remote sensing, good generalization is
often difficult to achieve : a network trained in a particular city
will likely have difficulties when tested on a new city (Mag-
giori et al., 2017). The goal of this study is to improve building
segmentation results and generalization ability of networks, es-
pecially for 3D modeling applications. These applications use
stereo images in order to retrieve 3D information. More and
more satellite missions allow the production of high resolution
stereo images like WorldView and Pléiades, or the future CO3D
mission (Lebègue et al., 2020) which is especially designed for
3D applications. Our idea to improve the generalization abil-
ity of segmentation networks is to use stereo images as input
in order to give elevation clues to the network. The hypothesis
tested in this study is that a stereo neural network could have a
better characterization of a building by using elevation features
extracted from stereo images.

A review of the different architectures of neural networks used
for monocular semantic segmentation, multi-view semantic seg-
mentation and stereo disparity estimation is presented section 2.
Then the section 3 introduces the networks used, the dataset on
which we trained them and the methodology we followed. Res-
ults are shown on section 4. The section 5 presents additional
experiments that evaluates how much the stereo networks rely
on disparity features to infer segmentation.

∗ Corresponding author

2. RELATED WORK

2.1 Monocular semantic segmentation

Semantic segmentation is the task of assigning each pixel of an
image to the object class it belongs. In computer vision field,
most semantic segmentation methods use deep learning. The
networks used in remote sensing are often taken or inspired
from the ones designed for computer vision. The classical net-
work designed for semantic segmentation is U-Net (Ronneber-
ger et al., 2015). It is a fully convolutional neural network com-
posed of a downsampling feature extractor followed by an up-
sampler.

The convolutional neural networks designed afterwards follow
the same pattern as U-Net with additional modules like pyramid
spatial pooling (Zhao et al., 2017) or atrous convolutions (Chen
et al., 2017).

Several articles compared these architectures over different re-
mote sensing datasets of building segmentation as the Inria La-
beling Dataset (Maggiori et al., 2017) or Potsdam and Vaihin-
gen datasets from the ISPRS. (Hu et al., 2019) shows that U-
Net, Deeplab and PSPNet have similar results. Networks used
in this study will be similar to U-Net to keep a simple and effi-
cient architecture.

2.2 Multimodal semantic segmentation

Results presented on the section 2.1 concerns segmentation on
RGB images, or IRRG images for Vaihingen dataset. However
remote sensing data can often be associated to additional data
like multispectral images or Digital Surface Models (DSM). As
our goal is to give elevation clues to the network, one possibility
could be to associate the satellite image with a DSM. Several
networks have been designed for multimodal feature fusion of
remote sensing images. (Audebert et al., 2018) fuses IRRG

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2022-299-2022 | © Author(s) 2022. CC BY 4.0 License.

 
299



images with DSM, nDSM and NDVI data on the Postdam and
Vaihingen datasets. The results show a significant improvement
for vegetation class but not for building class. According to the
study the quality of the DSM could be a problem. (Lei et al.,
2021) uses attention mechanism for multi-modality and multi-
scale fusion. IRRG images and nDSM are used from the same
ISPRS datasets. The article show the efficiency of multi-modal
fusion between nDSM and IRRG image.

Fusion of image and DSM is an interesting solution but could
raise technical difficulties. First the quality of the segmentation
relies on the quality of the DSM, and DSM often lacks accuracy
particularly for small buildings. Then the image and the DSM
should be aligned which means the image should be orthorecti-
fied in the exact same geometry as the DSM. We choose to use
stereo images and rely on the neural network to extract eleva-
tion features instead of directly giving the DSM to the network
because it is a much simpler pipeline.

For this purpose we have to find or design a network able to
process multiple views.

2.3 Multi-view segmentation

Multi-view segmentation have not been heavily studied in com-
puter vision. Some networks have been designed to process
medical data (CT scans or MRI) for semantic segmentation from
the multiple views (Mortazi et al., 2017), but this type of archi-
tecture is not adapted to satellite images.

INSTR (Durner et al., 2021) is a classless instance segmenta-
tion network that works with stereo RGB images. The network
predicts both the segmentation on the left image and the dis-
parity between the two images. The ablation study have shown
an improvement of 8 to 11% of IoU for stereo segmentation
compared to monocular segmentation.

The Track 2 of the 2019 Data Fusion Contest (Bosch et al.,
2019) have gathered several researchers around challenges of
disparity estimation and semantic segmentation of stereo im-
ages. The dataset given is made of stereo images in epipolar
geometry took by WorldView-3 above the cities of Jacksonville
and Omaha (USA). The network used for stereo segmentation
by the winner of this contest (Chen et al., 2019) is called DFSN.
This network is different from all the ones presented above be-
cause it integrates a disparity estimation network called PSMNet
(Chang and Chen, 2018). DFSN has three convolutional en-
coders : one for the left image, one for the right image, and the
one of PSMNet that processes a cost volume with 3D convo-
lutions. The three feature maps obtained are concatenated and
given to the decoder. The results of DFSN have been compared
with a monocular network : SSN-RGB. DFSN improves the
results of the segmentation by 1.5% of IoU for all classes and by
0.2% of IoU for the specific building class. This improvement
cannot justify the use of a heavy disparity estimation network in
our case. However we could search for lighter solutions among
disparity estimation networks.

2.4 Disparity estimation networks

The majority of networks that process multi-view images are
intended for disparity estimation and some of them could be
adapted to semantic segmentation. Disparity estimation net-
works can fall into two categories. The simplest ones process
the image directly using 2D convolutions, like DispNetSimple
(DispNetS) or DispNetCorr (DispNetC) (Mayer et al., 2016).

However the best performances are obtained by another type
of networks that process the cost volume using 3D convolu-
tions, like GC-Net (Kendall et al., 2017), PSMNet (Chang and
Chen, 2018) and GA-Net (Yang et al., 2019). The networks
using volumetric methods gives very good results on classical
disparity estimation benchmarks like Middlebury, but are com-
putationally expensive and not easily adaptable to segmentation
tasks. On the contrary, networks like DispNetS and DispNetC
are very similar to U-Net so their architectures are ready to be
used for semantic segmentation.

Studies have shown that disparity estimation networks can be
efficient in remote sensing : (Xia et al., 2020) has obtained good
performances with GA-Net (Yang et al., 2019) over satellite im-
ages even from a network only trained on synthetic data.

To our knowledge networks like DispNetS or DispNetC have
not been tested on stereo satellite images. We will use these
networks for our study because they seem adapted for both se-
mantic segmentation and stereo processing.

3. PROPOSED METHODOLOGY

3.1 Dataset

For the training of our stereo networks, we need stereo images
in epipolar geometry. We process stereo-rectification on images
coming from different sources.

The first product used is a stereo image of Montpellier in France
acquired by Pléiades satellite (De Lussy et al., 2005), with a
panchromatic band (480-830nm) at 50cm resolution and 4 spec-
tral bands (Red, Green, Blue, NIR) at 2m resolution. The height
of the camera is 695 kilometers with respect to ground. The
B/H ratio is 0.375, the elevation angle is 77° for the left image
and 75° for the right image. The estimated ground sampling
distance is 0.517m horizontally and 0.510m vertically on the
raw panchromatic image. The image has been pansharpened
and only the first 3 bands have been used (RGB). The image
used has a size of 17000× 22000 pixels, which represents a 93
square kilometers area centered around the middle of the city.

Figure 1. Pléiades (PHR) image of Montpellier with the
associated building labels

We use OpenStreetMap labels as ground truth for the images.
We follow the method described in (Cournet et al., 2020) to
transform both the stereo pair and the labels into epipolar geo-
metry. The images are stereo-rectified with the software Chaı̂ne
Automatique de Restitution Stéréographique (CARS) (Michel
et al., 2020). Then direct localization is performed on the labels
to transform them from orthographic geometry to epipolar geo-
metry. The labels obtained correspond to the roofs of the build-
ings. The parts of the roofs occluded by trees are still classified
as roofs. An example image with building labels is presented at
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figure 1 and the left diagram at figure 3 summarizes the pipeline
employed to produce the images.

In addition to Montpellier dataset, we add images from US3D
(Foster et al., 2020). US3D is the dataset used for the 2019
Data Fusion Contest, but has been complemented in 2020 with
additional images from Jacksonville and Omaha, along with
new images of Atlanta from the SpaceNet4 (Weir et al., 2019)
contest. The images of Jacksonville and Omaha are acquired
by WorldView-3 and have a resolution of 31cm. The camera
height is 620 kilometers. The images of Atlanta are acquired
by WorldView-2 and have a resolution of 50cm. The camera
height is 772km. The B/H ratio ranges from 0.08 to 0.55 as
there is many points of view available from the dataset.

Figure 2. WorldView-2 image of Atlanta from the US3D dataset
with the associated building labels

These images were already associated with building labels and
in particular the roof masks. The method employed to produce
the classification is unknown to us. The parts of buildings oc-
cluded by trees are not classified as roof, but taking this into
account seems to have produced noisy labels as we can see fig-
ure 2. This dataset is still valuable for the training despite the
poor quality of the classification. The images were not rectified
into epipolar geometry on the official website of the dataset 1 so
we process stereo rectification on these images with CARS to
transform them into epipolar geometry. Label maps included in
the dataset were in the same geometry as the images so we ap-
ply the same rectification grids to transform them into epipolar
geometry.

Figure 3. Pipelines used for the registration of building labels
against satellite images : PHR image (left) and US3D dataset

(right)

In the end, all the images are cropped into patches of size 512×
512 pixels, without overlap. The number of patches are sum-
marized in Table 1

1 https://ieee-dataport.org/open-access/urban-semantic-3d-dataset

City Number of patches Area covered (km2)
Atlanta 1700 111.4

Jacksonville 700 8.8
Omaha 700 8.8

Montpellier 1300 85.2

Table 1. Quantity of data by city

The area covered on Jacksonville and Omaha is very small but
the resolution of the images is higher and there is two stereo
images from each part of the ground (with different point of
views). It explains that the number of patches is still balanced
compared to Atlanta or Montpellier.

We divide the dataset into a training set of 4000 patches and a
validation set of 400 patches. No area covered in the training
set is present on the validation set. The test dataset will be com-
posed of images from different cities : Toulouse (France) and
London (UK).

3.2 Stereo network

Among the networks presented in section 2, we chose the DispNet
neural networks (Mayer et al., 2016) for our task of stereo seg-
mentation. DispNet is the simplest and lightest network archi-
tecture that permits to work with stereo images. It shows good
results for the task of disparity estimation. Even if the network
has not been tested on segmentation tasks, its architecture is
very close to segmentation networks so the network can easily
be adapted for our problem.

DispNetS and DispNetC are direct adaptation of optical flow es-
timation networks FlowNetSimple and FlowNetCorr (Dosovit-
skiy et al., 2015) whose architectures are represented on figure
4.

Figure 4. FlowNet architectures (Dosovitskiy et al., 2015)

At the time of publication of FlowNet and DispNet networks,
residual connections and residual blocks (He et al., 2016) were
not used or at least not common in convolutional neural net-
works architectures. FADNet (Wang et al., 2020) is a recent
network using DispNetS and DispNetC architecure to build a
more efficient network. The architecture of the networks are
globally the same but each standard convolutional layer is re-
placed by two residual blocks. Residual connections permit to
make the networks deeper and improve the performances. We
use the source code of DispNetS and DispNetC PyTorch mod-
ules of the git repository of FADNet for our work 2.

DispNetS is a simple U-Net for which the two images IL (left
image) and IR (right image) of the stereo pair in epipolar geo-
metry are concatenated along the channel axis at the input of the
2 https://github.com/HKBU-HPML/FADNet
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network. With IL = (RL, GL, BL) and IR = (RR, GR, BR),
the input stereo image is I = (RL, GL, BL, RR, GR, BR).

DispNetC processes feature extraction on the two images sep-
arately with the same convolutional encoder E to produce two
distinct feature maps f = E(IL) and g = E(IR) in RH×W×F .
Then a correlation layer fuses the results between the left fea-
ture map f and the right feature map g shifted from f . With
D = dmax − dmin the range of possible shifts between f and
g, the correlation volume C ∈ RH×W×D is defined as :

Cijk =

F∑
h=0

fijhgi(j+k+dmin)h (1)

The correlation volume produced is then processed by 2D con-
volutions which directly squeezes the disparity dimension. In
the DispNetC version of the FADNet article (Wang et al., 2020)
and git repository, the dimensions (H,W ) of the feature maps
at the correlation stage are 1/8 of the original image (as shown
on figure 4). Applied to a satellite image acquired by Pléiades,
it gives feature maps of 4 meters resolution. Small houses could
easily be lost at this level of downsampling, so it can be relevant
to process the correlation volume C at a higher resolution (1/4
or 1/2).

Also, the disparity range D chosen in (Wang et al., 2020) is 20
pixels at 1/8 resolution, which covers disparities up to 20×8 =
160 pixels at the original resolution. This choice was relevant
because the dataset used in (Wang et al., 2020) can have dispar-
ities up to 192 pixels. However satellite images have a smal-
ler disparity range and disparities over 30 pixels are quite rare.
We prevent disparities higher than 60 pixels on our version of
DispNetC because increasing too much the disparity range and
the volume depth for just a few high buildings could decrease
the global performances of the network as (Wang et al., 2020)
shows. We also have to deal with both positive and negative
disparities in our dataset contrary to (Wang et al., 2020).

The networks were designed for disparity estimation but it is
not difficult to adapt the architecture for segmentation. The
only things we change is the activation function and the loss
function. The activation function was a ReLU (Rectified Linear
Unit) and we replace it by a sigmoid function in order to get
results between 0 and 1 (the probability of each pixel to repres-
ent the roof of a building). The loss function was a L1 loss for
disparity, and we replace it by the sum of Jaccard distance J
and binary crossentropy BCE. Let A ⊂ N2 be an array of the
size N ×N of an input image, pr : A → [0, 1] the output of the
network and gt : A → {0, 1} the ground truth of the building
labels, the loss function is defined as :

J(pr, gt) = 1−
∑

A pr × gt∑
A pr + gt− pr × gt

(2)

BCE(pr, gt) = − 1

N2

∑
A

gt log (pr) + (1− gt) log (1− pr)

(3)

loss(pr, gt) = J(pr, gt) +BCE(pr, gt) (4)

With these modifications the network is ready to be trained for
segmentation. Training has been done with PyTorch frame-
work. The optimizer used is Adam, the learning rate starts

at 4 × 10−4 and decreases linearly until 0 during 30 epochs.
The network is trained by batch of 8 images. All these hyper-
parameters have been manually fine-tuned. The weights of the
network are randomly initialized. The weights retained at the
end of training are not necessarily the ones of the last epoch
but the ones of the epoch that has produced the best results on
the validation dataset. Instance normalization is used as pre-
processing of images in order to improve generalization abilit-
ies.

3.3 Validation method

The main concern of this study is about the advantage of ste-
reo processing over monocular processing. The problem about
comparing a monocular network trained with monocular im-
ages and a stereo network trained with stereo images is that we
cannot be sure about whether the difference observed is due
to the contribution of stereo information or caused by differ-
ences in the architecture of the network (number of parameters
or number of layers). Therefore we decide to compare stereo
training with monocular training on the exact same stereo ar-
chitectures : DispNetS and DispNetC. To perform monocular
training on a stereo architecture, the left image of each stereo
pair is duplicated to form a fake stereo pair with twice the same
image. These fake stereo pairs can be used as input of DispNetS
or DispNetC to perform monocular training.

A real monocular network is still tested along with stereo net-
works ; it is the DispNetS network with 3 channels as input
instead of 6, which is a simple U-Net network.

4. EXPERIMENTS

4.1 Results on validation dataset

Five trainings have been made. Both DispNetS and DispNetC
have been trained once with duplicated monocular images and
once with real stereo pairs. The left images of the two training
datasets are exactly the same. U-Net have been trained with
simple monocular images. The results of these trainings on
the validation dataset of 400 images from Atlanta, Jacksonville,
Omaha and Montpellier are given in the table 2. The metric
used is IoU (Intersection over Union) which is the intersection
of predicted buildings and ground truth divided by the union of
predicted buildings and ground truth.

Network Training IoU (%) Loss
U-Net Monocular 64.5 0.513

DispNetS Monocular 63.8 0.515
Stereo 67.9 0.449

DispNetC Monocular 64.1 0.513
Stereo 69.8 0.432

Table 2. Metrics comparison between monocular and stereo
training on validation dataset

The advantage of stereo networks on the validation dataset is
clear. It may be more relevant to compare the results according
to the loss metrics because it is the one that is optimized. We
observe that the three monocular trainings have given very close
scores regarding the loss. Stereo trainings show significant im-
provements regarding the IoU or the loss: stereo improved the
loss by 12% for DispNetS and by 15% for DispNetC. The ad-
vantage of DipNetC over DispNetS was expected because of
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the better ability of DispNetC to perform stereo matching, but
DispNetS reaches good results which shows it manages to ex-
tract and use stereo information without any module dedicated
to it.

4.2 Results on Toulouse dataset

To test the generalization abilities of our network, we begin by
using an image quite similar to the ones of the training data-
set : a Pléiades (PHR) image of Toulouse. The B/H ratio of
the stereo image is 0.395 which is close to the Montpellier im-
age. The image has been pansharpened and stereo-rectified by
CARS as the Montpellier one from the training dataset. Both
DispNetC networks have been tested on Toulouse images : the
network trained with monocular images is tested with monocu-
lar images from Toulouse, and the network trained with stereo
pairs is tested with stereo pairs of Toulouse. In this section the
evaluation is only qualitative because the ground truth is not
precisely calibrated against the image.

Figure 5. Advantage of stereo training for DispNetC network
over an image of Toulouse (1). From left to right : image,
ground truth, monocular prediction and stereo prediction

For the patch shown figure 5, the monocular network misses
3 buildings (red circles) or at least has low confidence about
them, while the stereo network detects them well. Both net-
works get false positives on the elevated road but at different
locations (green circles). Both also have difficulties labeling
the buildings on the right of the image that are shadowed (blue
circle). Little buildings are slightly better labeled by the stereo
network. By observing attentively, we can note false positives
on the bottom building (yellow circle) for the stereo inference.
It may be caused by changes of disparity on top of this building
that disturb the stereo network.

Figure 6. Advantage of stereo training for DispNetC network
over an image of Toulouse (2). From left to right : image,
ground truth, monocular prediction and stereo prediction

The second patch shown figure 6 shows a building (red circle)
detected by the stereo network but not by the monocular net-
work. The white zone on top-middle of the image is a volleyball
court (green circle) and is labeled as building by the monocular
network. These two differences show a clear advantage for the
stereo network on difficult cases of building detection and sup-
ports the underlying idea that stereo information gives effective
clues about the presence or absence of buildings.

However the stereo network gives a few false positives on the
elevated road (blue circle). It shows that despite a global im-
provement given by stereo, a stereo network could have limits
and some disadvantages.

Both monocular and stereo networks label the football stadium
on the top-right corner of the image as a building while it is not
labeled as building by OpenStreetMap. It shows the ambiguity
about the definition of building.

Figure 7. Advantage of stereo training for DispNetC network
over other images of Toulouse (3, 4). From left to right : image,

ground truth, monocular prediction and stereo prediction

The first image of figure 7 shows a tennis court (green circle)
labeled as building by the monocular network which is avoided
by the stereo network. On the second image the color of the
buildings is very close to the color of the ground which makes
buildings very difficult to detect for both networks, but the ste-
reo network manages to detect two big buildings (red circles)
not recognized by the monocular network. However the ste-
reo network also shows some false positives (blue circles) not
present for the monocular result.

The analysis of these images permits to better understand the
quantitative results given on the validation dataset at the last
section because it shows which cases give an advantage to the
stereo network. It also validates the efficiency of our stereo
network over an unknown city, even if the environment is close
to the one of training.

4.3 Results on London dataset

Our networks have then been tested on a Pléiades (PHR) im-
age of London. This test dataset is different from the training
dataset. The network has never seen any image from United
Kingdom and the buildings architecture there is different from
the one of France or United States. More importantly, the azi-
muth viewing angle is reversed from the images in the training
dataset. It means the shadows of the buildings are not in the
same direction between the training images (at the left of build-
ings) and testing images (at the right of buildings). It could
significantly increase generalization difficulties especially for
monocular network that seems to use shadows to estimate the
elevation of buildings. The B/H ratio of the London stereo im-
age is 0.388 which is similar to the PHR image of Montpellier
in the training dataset and shouldn’t cause generalization diffi-
culties linked to stereo configuration.

Figure 8. Advantage of stereo training for DispNetC network
over an image of London (1). From left to right : image, ground

truth, monocular prediction and stereo prediction
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The results on figure 8 show an expected lack of generalization
for the monocular network. Besides, stereo training gives much
better results than monocular training. The difference between
the two trainings is much more significant for London than for
Toulouse, which could mean that the main advantage of stereo
matching is the generalization ability it permits. The improved
generalization ability of stereo networks could be explained :
defining what is a building according to its height above ground
is more relevant and more generalizable than characterizing it
according to radiometric information. The color of buildings
varies according to the city, and spectral information also de-
pends on the acquisition method of the image.

More results on London are shown below. We can notice some
buildings are missing from the OpenStreetMap labels on the
second ground truth.

Figure 9. Advantage of stereo training for DispNetC network
over other images of London (2, 3). From left to right : image,

ground truth, monocular prediction and stereo prediction

These results show a significant advantage for stereo training on
this particular network, with this particular training and testing
dataset.

5. DETAILS ANALYSIS

This section presents our attempts to understand the advantages
of stereo segmentation over monocular segmentation. As ex-
plained in the section 3.2, the DispNetC network uses a correl-
ation layer to manually perform a stereo matching of the image,
unlike DispNetS which extracts the stereo clues by direct re-
gression only. DispNetC shows slightly better results and is
easier to study thanks to the explicit construction of the cost
volume. We analyse the quality of the stereo matching per-
formed by DispNetC and test how much the network use it. We
compare DispNetS to DispNetC.

5.1 Analysis of the cost volumes produced by DispNetC

As explained in section 3.2, the correlation layer follows several
downsampling layers. In the original paper of DispNet the au-
thors used 3 downsampling layers which gives an image of 1/8
of the original resolution as input of the correlation layer. We
can study the effect of the downsampling level on the quality of
the cost volume. It is difficult to visualize the cost volume be-
cause its representation is three-dimensional. Thus, we decide
to show the disparity map induced by this cost volume instead
of the cost volume itself. We compute the disparity map from
the cost volume by applying a max function over its disparity
axis between -16 and 8 pixels (which are the usual disparities
for the image used). The disparity maps are shown on figure
10. The image taken as example for the visualisation of cost
volumes is the same as the one shown on figure 8.

(a) Correlation at
1/2 resolution
(DispNetC2)

(b) Correlation at
1/4 resolution
(DispNetC4)

(c) Correlation at
1/8 resolution
(DispNetC8)

Figure 10. Effect of downsampling on the cost volume /
disparity map of DispNetC

The original network DispNetC8 misses many details during
the correlation as we can see on the figure 10, and many small
buildings are completely lost on the cost volume. The network
has no way to retrieve disparity features other than with this
cost volume. It means the buildings that are too small to be
taken into account in the cost volume at 1/8 resolution have no
stereo information associated to them, which makes the use of
stereo images useless for these buildings.

Besides, at 1/4 resolution many buildings appear on the dispar-
ity map and borders are better defined. The quality of the dis-
parity map seems acceptable despite a little bit of noise, which
means that the cost volume could be efficiently used by the net-
work to induce a building segmentation even on small build-
ings.

At 1/2 resolution some borders are finer but no other buildings
appear and the resulting disparity map is very noisy. Moreover,
another problem of DispNetC2 is its runtime : most of the
time is taken by the correlation layer because the number of
operations needed for the correlation is multiplied by 8 over
DispNetC4 and by 64 over DispNetC8 (the complexity is O(n3)
with n the width of the square image expressed in pixels).

5.2 Performance of stereo networks deprived of stereo in-
formation

The goal of this experience is to evaluate how much the stereo
networks (trained with stereo images) use the right image and
the stereo information induced by stereo for inference.

Three networks have been used : DispNetS, DispNetC4 and
DispNetC8. They have been trained on the usual training data-
set with stereo images and tested on the Montpellier dataset.
For each network, two tests have been made : one with the
classical stereo pair (left and right images), and one with two
left images. Results are shown on table where the metric used
is Intersection over Union.

Network Left-Right IoU Left-Left IoU
DispNetS 75.1 47.4

DispNetC8 74.8 50.4
DispNetC4 75.8 35.7

Table 3. Performance of stereo networks with and without the
right image

As expected, stereo networks trained with stereo images give
poor results when tested on fake stereo image (Left-Left) com-
pared to real stereo images (Left-Right). It means that these
networks use the right image and the depth-related information
extracted from it to perform segmentation.
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The differences between DispNetS and DispNetC8 are too small
to be interpreted, but the results of DispNetC4 are very interest-
ing. It is the network that has the best IoU while not being
very far from the scores of DispNetS. But more significantly, it
is the network that has the worse results when deprived of the
right image. It could mean than this network relies more on ste-
reo clues than the other networks to perform the segmentation.
This interpretation is supported by the disparity maps shown on
figure 10 : DispNetC4 has a better cost volume so it is relevant
that it uses more this cost volume than spectral information of
the left image to infer the segmentation.

5.3 Effect of shifting left and right images on performance
of stereo networks

This experiment is of the same kind of the last one and aims at
analysing the behaviour of the networks when the stereo con-
figuration is altered.

Stereo networks seems to generalize better than monocular net-
works as shown in section 4.3. The hypothesis made is that
stereo networks rely more on disparity than radiometry which
is more robust to new images with different environments. But
the risk of our stereo networks is that it associates the presence
of buildings with a simple range of disparities (between 3 and 8
pixels for example).

Variation on the B/H ratio on a new image could alter the dis-
parities associated to buildings : a B/H twice as big would trans-
form the range of disparities from [3, 8] to [6, 16] for the same
building. Unfortunately the Pléiades images we used have sim-
ilar B/H ratios (between 0.37 and 0.40), so the influence of the
B/H ratio on the results have not been tested.

However a difference of disparity for similar buildings can oc-
cur without variation of B/H ratio. In case of undulating terrain,
the ground elevation would vary over a single image and so the
disparity associated to the ground, which would cause shifts of
the disparities associated to buildings (for example from [3, 8]
to [6, 11]). Our networks need to work despite these shifts.

To test the consistence of the networks, horizontal constant shifts
have been made between left and right images to simulate con-
stant altitude change. By doing that, the disparity associated to
buildings varies according to the shift. The results are on the
figure 11.

Figure 11. Effect of shift between left and right images upon
inference score

This time, it is the DispNetS network that has the worse res-
ults when the shift is above 5 pixels. Once again it can be

explained : DispNetS has no specific module for computing
disparity and rely exclusively on convolutions to do so. Convo-
lutions kernels are 7 by 7 on the first layer and then 3 by 3, so it
does not allow the network to detect large disparities, whereas
DispNetC could acknowledge every disparity level within its
disparity range [dmin, dmax] defined by the user (in our case
the disparity range is [−60, 60]).

DispNetC4 has lower scores than DispNetC8 even with small
shifts (between 2 and 5 pixels). It is the sign of a lack of gener-
alisation ability of DispNetC4 for changes on ground elevation
or building heights. We know DispNetC4 rely more on dispar-
ity than DispNetC8, which could mean that relying too much
on disparity rather than radiometry to infer segmentation could
lead to these generalization problems.

6. CONCLUSION

This study has shown that satellite stereo images could be used
efficiently to perform semantic segmentation of buildings. In
the specific context of this study, stereo networks generalized
better than monocular networks when tested on cities different
from the ones of the training dataset. Our explanation is that
stereo networks can characterize a building according to its el-
evation instead of its color or shadow, which is a more univer-
sal feature. However we saw stereo networks can be sensitive
to disparity shifts which can add new generalisation problems
associated to the epipolar geometry.

To conclude, stereo segmentation is able to outperform mon-
ocular segmentation because it uses more relevant features to
detect buildings. We believe stereo segmentation is a relevant
choice for building segmentation when stereo images are avail-
able, especially in the context of 3D modeling.

Very few studies have been conducted on stereo segmentation
and we hope these results will inspire new works on this sub-
ject. Stereo segmentation may be very efficient but its context of
utilization have to be delimited with other studies. Researches
on this subject could lead to a significant step in the area of
computer vision and remote sensing.
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