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ABSTRACT: 

 

In the geomatics domain the use of deep learning, a subset of machine learning, is becoming more and more widespread. In this 

context, the 3D semantic segmentation of heritage point clouds presents an interesting and promising approach for modelling 

automation, in light of the heterogeneous nature of historical building styles and features. However, this heterogeneity also presents 

an obstacle in terms of generating the training data for use in deep learning, hitherto performed largely manually. The current 

generally low availability of labelled data also presents a motivation to aid the process of training data generation. In this paper, we 

propose the use of approaches based on geometric rules to automate to a certain degree this task. One object class will be discussed 

in this paper, namely the pillars class. Results show that the approach managed to extract pillars with satisfactory quality (98.5% of 

correctly detected pillars with the proposed algorithm). Tests were also performed to use the outputs in a deep learning segmentation 

setting, with a favourable outcome in terms of reducing the overall labelling time (-66.5%). Certain particularities were nevertheless 

observed, which also influence the result of the deep learning segmentation. 

 

 

*  Corresponding author 

 

1. INTRODUCTION 

As the documentation of heritage objects is undertaken more 

and more in 3D, point cloud data has become ubiquitous in the 

heritage community. With the advent of laser scanners and 

advanced photogrammetric processing, the documentation 

process is becoming more and more streamlined. The next issue 

of interest in the point cloud processing community is how to 

annotate the geometric point cloud with the addition of semantic 

attributes. This is required when the point cloud is needed for 

analysis, modelling, and predictions. A semantically annotated 

point cloud can thereafter be used to create information-rich 3D 

GIS and/or HBIM (Heritage Building Information Models) 

(Campanaro et al., 2016). 

Machine learning (ML), and more precisely deep learning (DL) 

techniques, has witnessed a surge in overall interest in this age 

of big data (Bello et al., 2020). The possibility to use large 

quantities of data to train the computer to perform semantic 

segmentation automatically is indeed a very interesting concept 

and currently a promising field of research, as it provides a 

robust segmentation result with quick processing time. 

However, the main bottleneck problem in implementing DL 

techniques is mainly related to the availability of labelled 

datasets (Maalek et al., 2019). In the case of heritage point 

cloud, this problem is exacerbated by the diversity of classes 

and architectural features, as well as the general lack of labelled 

datasets. As such, the usual way to obtain training data is by 

manual annotation (Malinverni et al., 2019). 

Considering these issues, a combination of more traditional 

segmentation based on geometric axioms and DL techniques 

will be presented in this paper. In particular, deep learning 

techniques will allow validating objects segmented by 

traditional methods. The algorithmic segmentation uses the 

functions in the Matlab toolbox M_HERACLES to generate 

training data for the DL technique. The toolbox is a set of 

Matlab functions (https://github.com/murtiad/M_HERACLES, 

accessed 4 October 2021) specifically developed to perform 

semantic segmentation on heritage objects  (Murtiyoso and 

Grussenmeyer, 2020).  

While the geometric approach may be used to directly generate 

segmented point cloud, many limitations are inherent in this 

method. Indeed, this type of approach mainly uses case-specific 

hard-coded prior knowledge and geometric rules in each 

function, therefore limiting its use for a holistic semantic 

segmentation. This rigidity is however counterbalanced by rapid 

processing time and a straightforward and open nature as 

opposed to the more closed system of DL techniques. As such, 

we postulate that both geometric rules-based and DL methods 

have their own advantages and disadvantages which may play 

well to support each other.     

The main idea proposed in this paper is therefore to use the two 

semantic segmentation approaches, namely the geometric rules-

based and DL methods, to complement each other. Our 

proposed method therefore tries to automate as much as 

possible the semantic segmentation workflow in the case of 
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heritage buildings, from the generation of DL training data up to 

the use of DL itself for the abovementioned task. In this case, 

the DL framework is developed by testing the data on a specific 

neural network, namely the DGCNN (Dynamic Graph 

Convolutional Neural Network) (Wang et al., 2019), specially 

modified for the semantic segmentation in the field of cultural 

heritage (Matrone et al., 2020a; Pierdicca et al., 2020). 

M_HERACLES will be used to detect objects from the 3D 

scene (with the specific class of pillars is chosen for this study). 

Comparison of its results as opposed to manually labelled data 

will then be performed. Both the manual and automatic (i.e., 

resulting from M_HERACLES) results will then be used as 

input training data for our DGCNN framework. The results will 

then be compared in terms of processing time and quality. The 

paper does not aim to improve on the results of the neural 

network; rather, the main objective is to determine whether the 

use of geometric rules-aided automatic training data may help 

achieve similar results as manual annotation with expected gain 

in overall labelling time. 

2. STATE OF THE ART 

Semantic segmentation as a research topic stems as a logical 

consequence to the use of point clouds as 3D archive. The 

unorganised nature possessed by point clouds by default 

requires classification in order to permit a better understanding 

of the scene (Poux et al., 2016). In the architecture and civil 

engineering (ACE) domain, this has evolved into the need for a 

“scan-to-BIM” process with Building Information Models 

(BIM) as the final product (Macher et al., 2017; Xiong et al., 

2013). As regards to heritage point clouds, semantic 

segmentation enables the otherwise purely geometric data to 

receive tangible semantic information (Murtiyoso and 

Grussenmeyer, 2020) and thus may ultimately aid the creation 

of Heritage Building Information Models (HBIM) (Chiabrando 

et al., 2016). 

Various approaches to point cloud processing may be taken to 

perform this task. Grilli et al., (2017) categorised these 

approaches into region growing methods (Bassier et al., 2017a), 

edge-based reconstruction (Boulaassal et al., 2007), model-

fitting (Sanchez and Zakhor, 2012), machine learning-based 

methods (Bassier et al., 2017b), and hybrid approaches. In an 

article by Nguyen and Le (2013), a dual distinction between 

segmentation by machine learning and by the use of geometric 

axioms was made, also called “constraints” or hard-coded 

knowledge. Furthermore, Bassier et al. (2017b) refer to the 

latter as heuristic approach in contrast to machine learning; in 

essence an algorithmic approach to the problem of 3D point 

classification. With the advent of big data, DL as a part of the 

machine learning approach is today considered as another viable 

approach (Matrone et al., 2020a). Two methodologies 

encountered in the literature for the semantic segmentation task 

of point clouds concern deep learning and rules-based 

approaches. 

2.1 Deep learning for point cloud segmentation 

Three-dimensional point clouds are currently used in many 

applications thanks to the recent wide availability of 3D 

scanners and reconstruction techniques such as lidar, Structure-

from-Motion (SfM) and other sensors like Kinect and Xtion. 

These are 3D unstructured vectors that compute 3D coordinates 

and other characteristics such as reflection, colour and normal. 

One of the pioneering research that used deep learning to 

process raw point clouds is presented in Qi et al. (2017a), where 

the PointNet architecture is used to process point clouds for 

semantic segmentation and classification. One limitation of this 

approach is its inability to extract the local features of point 

clouds, learning only global features through the max-pooling 

layer. To overcome this problem, the PointNet++ architecture 

(Qi et al., 2017b) was developed to allow the encoding of local 

features by dividing locally the point cloud. The authors of the 

architecture propose essentially hierarchical feature learning for 

object classification and semantic segmentation of 3D point 

clouds.  

A recent approach inspired by PointNet and PointNet++ is the 

Dynamic Graph Convolutional Neural Networks (DGCNN) 

(Wang et al., 2019). Unlike PointNet++, DGCNN extracts local 

features by using an EdgeConv layer. DGCNN builds a 

neighbourhood graph that allows exploiting the local geometric 

structures, defining a link between the central point chosen and 

the edge vector connecting its neighbours to itself. The main 

advantage is that DGCNN presents a robust result to the 

variation of the input to obtain satisfactory results in both 

indoor and outdoor scenes.  

In the Digital Cultural Heritage (DCH) domain, the work of 

Pierdicca et al. (2020) attempted to exploit an improved 

DGCNN architecture in order to semantically segment 3D point 

clouds, which is both interesting and useful for the automatic 

interpretation of architectural objects. Furthermore, the authors 

proposed a novel approach using additional point cloud 

features. A completely new dataset involving both indoor and 

outdoor scenes was used, belonging to different historical 

periods and different styles. The dataset has been manually 

labelled by experts to increase its level of trustworthiness.  

However, creating a huge amount of labelled point clouds 

through manual annotation is very time-consuming and often 

impractical. This issue becomes more exacerbated by the 

complex variations in architectural styles and details in the case 

of heritage sites. A possible solution to this problem is the 

creation of synthetic training datasets, even though this 

procedure is less common in the DCH domain (Pierdicca et al., 

2019). Pellis et al. (2021) also proposed reprojection of 3D 

point cloud labelling into the 2D space of photogrammetric 

images in order to augment 2D semantic segmentation training 

data in a DCH context. Other recent approaches for the 

generation of new data include techniques based on generative 

models, in particular generative adversarial networks (GAN) 

(Goodfellow et al., 2016).  

In this work the DGCNN-Mod (Pierdicca et al., 2020) network 

will be used to validate the scenes segmented by rules-based 

approach provided by M_HERACLES. This particular network 

was chosen primarily because it was recently implemented in 

the DCH domain and showed promising results (Malinverni et 

al., 2019). Furthermore, as an initial experiment and proof of 

concept this paper will focus mainly on the pillars class in some 

cultural heritage scenes.  

2.2 Geometric rules-based approach to the problem of 

point classification 

The rules-based approach, as has been mentioned previously, 

employs geometric rules and constraints to detect and classify 

certain architectural features from the point cloud scene. The 

rules are generally prior knowledge hard coded into the 

algorithm (Maalek et al., 2019) and may consist of simple 

axioms (Macher et al., 2016; Murtiyoso and Grussenmeyer, 

2019a) to more complex ontological networks (Poux et al., 

2018). This heuristic approach can be rapidly employed without 

the need for training and is thus adaptable for simpler cases 

(Nguyen and Le, 2013); however it may suffer from higher 
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noise rate and rigidity, which leads to its limited use when 

compared to other approaches based on ML/DL.  

Several types of geometric axioms can be used to detect very 

specific object classes. For example, in Riveiro et al. (2016) the 

authors detected planar surfaces for wall detection in an outdoor 

setting. In Rodríguez-Cuenca et al. (2015), the authors 

attempted to detect pole-like objects from an unorganised point 

cloud. Poux et al. (2017) took advantage of other point cloud 

features to perform segmentation, while in Poux et al. (2018) 

and Drap et al. (2017) more complex ontological relations were 

designed. Murtiyoso and Grussenmeyer (2019b) used pre-

existing GIS layers to perform a similar task in a smaller-scale 

data setup. 

In this paper, a part of the toolbox M_HERACLES was used to 

perform semantic segmentation for the class of pillars, i.e., 

structural supports. Structural supports such as columns present 

a particular interest for the heritage community, as often they 

present a valuable example of historical engineering and 

architectural design. Several study have been done in the field 

of structural support automatic 3D modelling (Maalek et al., 

2019), but most focus on simple pillars or supports. In this 

regard, automation for heritage-related structural support 

remains difficult due to the many different types linked to the 

architectural style. M_HERACLES was specifically conceived 

to tackle this problem using rules-based approaches (Murtiyoso 

and Grussenmeyer, 2020). 

As has been previously established, this study will be focused 

on the semantic segmentation of pillars. M_HERACLES will 

therefore be used to detect and classify pillars from the available 

datasets. These automatically segmented scenes will be used 

thereafter to train the DGCNN-Mod for the semantic 

segmentation task and the results will be compared against 

those obtained from manual labelling. 

3. METHODOLOGY 

The tests were conducted on a small, labelled dataset of point 

clouds of cultural heritage to quantitatively compare the 

labelling time and the consequent results of the neural network 

with the two different inputs, namely the dataset manually 

annotated and the one automatically segmented via 

M_HERACLES. The toolbox performs segmentation in the 

case of pillars using geometrical rules, namely the circularity of 

the cross-sections. Moreover, the scenes of the dataset were 

divided into training, validation, and test. More specifically, we 

want to understand the behaviour of the neural network with 

respect to the two test scenes with completely different 

architectural styles, namely European and Southeast Asian. 

Among the five selected case studies (Figure 1), three are in the 

European architectural style: the “Sala delle Colonne” of 

Valentino Palace in Turin, Italy (“Valentino”) and two point 

clouds from the Sacro Monte di Varallo site (“Ghiffa” and 

“Pilato”). These sites are all included in the UNESCO World 

Heritage List. Meanwhile, the Southeast Asian dataset 

comprises of two pavilions (“Kasepuhan_1” and 

“Kasepuhan_2”) from the Kasepuhan Palace, a 15th century 

royal complex in Cirebon, Indonesia. All of these point clouds 

are part of the public ArCH dataset (Matrone et al., 2020b) 

(http://archdataset.polito.it/, accessed 5 October 2021). 

Two distinct experiments were performed for the purposes of 

this paper. In the first experiment, the automatic point cloud 

labelling using the M_HERACLES toolbox will be discussed. 

In order to quantitatively analyse the results, the results were 

compared against manually labelled data to assess the proposed 

rules-based method’s performance in terms of statistical 

qualities and processing time. The main objective of this first 

experiment is to test M_HERACLES's reliability for automatic 

point cloud labelling. 

The second experiment is the more elaborate of the two. In this 

experiment, a real application of M_HERACLES's results was 

fed into a DL network to test its reliability in terms of use for 

DL training data generation. These results were then compared 

to the ones acquired from the manual labelling process as a 

point of reference.  

 

 

 

Figure 1. The point clouds used for the experiments' section, with basic metadata as retrieved from the ArCH website. The number of 

pillars corresponds to free-standing pillars, i.e. does not include engaged columns. 

 

Figure 2. Configuration of the different datasets used in the two scenarios for the second experiment. 
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Figure 3. Visual result of the automatic segmentation and labelling for all five datasets. 

Pursuing the aim of ensuring the repeatability, the second 

experiment is further divided into two scenarios in which 

different datasets were used for the training, validation, and 

testing phases. The configurations of the datasets used in these 

two scenarios are described in Figure 2. 

Scenes containing an adequate number of columns with 

different characteristics and dimensions were chosen for the 

training of the network. For the test, on the other hand, the main 

criterion was the representativeness of different and diverse 

architectural styles, to test the generalization of the method. 

Indeed, Scenario 1 will perform the test on a Southeast Asian 

data while Scenario 2 will be applied to the European one. 

The DL framework used in this experiment is the DGCNN-Mod 

developed by Pierdicca et al. (2020) with the geometric 

coordinates (XYZ), radiometric component (RGB) and the 

normal vectors as inputs. The normal vector was previously 

computed using the third-party software CloudCompare. The 

3D features have not been added in this case (Matrone et al., 

2020a),  since the purpose of the tests is to investigate, by way 

of a comparison, if and how the automatic rules-based 

annotation affects the final prediction. The DGCNN-Mod 

training was set with hyperparameters identical to the values 

tested in Pierdicca et al. (2020), namely block dimensions of 

1x1m, 4096 subsampled points for each block and a stride value 

of 1. Tests with 2x2m block size, 8192 points subsampled and 

stride 1 (in order to have overlapping blocks) have been carried 

out as well, but as no relevant differences emerged, only the 

prior ones will be shown and discussed in this paper. An 

NVIDIA RTX 2080 TI 11 GB, 128 GB RAM with processor 

Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz was used for 

DL-related processing. 

Finally, in this second experiment for each scenario the training 

will be performed twice: the first uses manually annotated point 

clouds while in the second the “column” class of the scene was 

replaced by the one predicted automatically by M_HERACLES 

as presented at the end of the first experiment. 

4. RESULTS AND DISCUSSIONS 

This section will be divided into two subsections, each 

describing the findings related to the first and second 

experiments respectively. The first subsection will describe the 

results of the automatic segmentation and labelling of pillars in 

the five available datasets using functions taken from the 

M_HERACLES toolbox. The second subsection will describe 

results from the second experiment, namely the use of outcomes 

from the previous subsection as training data for the developed 

DL algorithm and the assessment of its performance in 

comparison to manually labelled training data. Two scenarios 

will be presented in this second part of the section.  

4.1 Automatic segmentation and labelling 

As far as the rules-based segmentation and labelling is 

concerned, results show that the algorithm managed to properly 

detect the correct number of pillars in 4 out of the 5 datasets 

(FIGURE 3). In the case of the Pilato dataset, one pillar failed to 

be detected by M_HERACLES since it was attached to a wall 

segment. Similarly, the algorithm was unable to detect the 

engaged columns attached to the walls in the Valentino dataset, 

but otherwise successfully predicted the six free standing pillars 

at the centre of the scene. In terms of processing time, all 

datasets were processed in a reasonably fast processing time as 

also shown in FIGURE 3. This is arguably faster than manual 

labelling and moreover requires less human intervention and 

thus human-induced error. The experiment was performed by 

using an Intel(R) Xeon(R) E5645 2.4 GHz CPU. A more 

detailed comparison especially in terms of processing time vis-

à-vis manual labelling shall be performed further in the text. 

 

(a) Section of the Valentino's Castle courtroom 

 

 

(b) SMV - Pilato Palace, South façade 

 

 

(c) SMV - Pilato Palace, North façade 

 

 

(d) Section of the Kasepuhan_2 Palace 

Figure 4. Sample of pillars from each dataset, showing 

results of manual labelling as reference (red, left-hand side) 

and those from M_HERACLES (blue, right hand side). 
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Object 
Point count 

True Positives 
Erroneous points 

%P %R %F1 
Manual M_HERACLES False positives False negatives 

Kasepuhan_1 24 607 16 227 16 219 8 8 388 99.95 65.91 79.44 

Kasepuhan_2 40 942 32 230 31 481 749 9 461 97.68 76.89 86.05 

Valentino 228 516 303 439 202 777 100 662 25 739 66.83 88.74 76.24 

Pilato 408 771 744 802 386 481 358 321 22 290 51.89 94.55 67.01 

Ghiffa 403 749 642 923 339 817 303 106 63 932 52.86 84.17 64.93 

     Mean 73.84 82.05 74.73 

Table 1. Table presenting the results of automatic pillar detection and classification using M_HERACLES for the five available 

datasets. %P, %R and %F1 indicate respectively Precision, Recall and F1-Score metrics. 

Annotation Kasepuhan_1 Kasepuhan_2 Valentino Pilato Ghiffa 

Manual 3 mins 5 mins 8 mins 17 mins 14 mins 

M_HERACLES 0.25 mins 0.5 mins 5 mins 6 mins 4 mins 

Table 2. Comparison of annotation time. 

As far as the processing time is concerned, lower point count 

seems to influence the overall duration. However, the number of 

detected objects is also an important factor. Indeed, the 

processing time for Valentino is much higher in spite of it 

having the fewest pillars because M_HERACLES attempted to 

detect (and rejected) candidate pillars from the surrounding 

scene i.e., walls and engaged columns. In reality, for the 

Valentino scene M_HERACLES detected 20 potential pillars, 

of which only 6 were retained. However, this also shows one of 

the shortcomings of the rules-based approach. Indeed, the 

ground truth received from manual labelling also classes 

engaged columns as "pillars". M_HERACLES, however, failed 

to take this into account and instead generated only free-

standing pillars in its result.  

Quantitatively speaking, the algorithm managed to obtain an 

average recall of 82.05% across the five datasets, even though 

the average precision is lower at 73.84% (Table 1). It is also 

worth noting that in Table 1 the point count of for manual 

labelling and M_HERACLES is different, because the manual 

labelling presents the reference ground truth and as such may be 

assumed as free from erroneous classification.  

Furthermore, as may be inferred from Table 1, the two 

Kasepuhan datasets gave higher precision values with lower 

recall rates, while the other three datasets received a better 

recall score at the expense of the precision. This is due mainly 

to the nature of the datasets. The two Kasepuhan pavilions are 

particular as they do not possess ceilings; the roofs having been 

suppressed automatically by M_HERACLES beforehand 

(Murtiyoso and Grussenmeyer, 2019a). On the contrary, the 

other three Italian datasets possess either ceilings or arches at 

the top of each column. The 2.5D approach used by 

M_HERACLES means that it encountered problems when 

dealing with different classes of objects in the vertical space 

(Figure 4). Figure 4 further demonstrates the limitations of the 

current M_HERACLES implementation (blue) of the 

algorithmic approach in 2.5D. In Valentino, a part of the ceiling 

was also labelled as “pillar”. A similar phenomenon occurred 

with the arches and the pedestal in Pilato. 

Consequently, for the European point clouds Type I error (false 

positives) was more dominant while for the Kasepuhan Type II 

error (false negatives) was more important; hence explaining the 

precision and recall values for both cases. The normalised F1 

score value showed less discrepancy between the different 

architectural styles, with a mean value of 74.73%. 

Furthermore, this type of semantic segmentation is less robust 

to noise; indeed, the systematic higher recall value is validated 

by the fact that M_HERACLES employs geometric rules to 

perform the detection. In this regard, due to the systematic hard 

knowledge embedded within the algorithm, the precision, recall, 

and F1 score values depend strongly on the choice of geometric 

parameters inputted into the algorithm. The main goal of this 

step is not to create the final semantic segmentation, but rather 

to accelerate the training data generation for further DL 

processing. 

4.2 Comparison of processing time  

Table 2 shows a comparison between the annotation times 

required for the different scenes using manual means and 

automatically using M_HERACLES. This simple comparison 

shows that manual annotation generally takes more time than 

the M_HERACLES algorithm. Furthermore, manual annotation 

also encounters the problem in that it requires an expert in 

domain to be able to correctly perform the labelling, as opposed 

to rules-based approaches in which this knowledge is already 

hard-coded into the algorithm. 

If we consider the overall results, manual annotation generally 

guarantees more accurate predictions. However, the question 

that we would like to answer in this regard is whether this 

increase in accuracy at the expense of time and expertise can be 

replaced by rules-based segmentation, particularly within the 

context of using them further as input for neural networks. It 

can be beneficial to find a balance or a compromise between the 

quality of the results and the pre-processing times. The 

following subsection shall try to answer this question by feeding 

the results of the two approaches (manual and M_HERACLES) 

into our DL network and analysing the quality of the resulting 

semantic segmentation. 

4.3 Application in deep learning training 

This subsection will describe the use of the results from the 

previous subsection as input in DL training and how it can 

affect the semantic segmentation of point clouds. Two types of 

input scenes are used for training neural networks: manually 

labelled data and automatic labelled data obtained from 

M_HERACLES. For the experiments the DGCNN-Mod, a 

state-of-the-art neural network designed for the cultural heritage 

domain, will be used. As has already been explained, this work 

focuses only on the pillars/columns class objects. Therefore, 

only results related to this class will be shown and compared. 

Visual results and the main metrics for the segmentation task 

will be shown for every test. As has been previously 

established, experiments were performed on two different 

scenarios.  
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Figure 5. Predicted scenes of the first scenario on Kasepuhan_1. 

On the left side (red) the semantically segmented column class 

from the training using manually labelled data is shown. The 

results shown on the right (blue) used results derived from 

M_HERACLES for the training process. 

 

Figure 6. Predicted scenes for the second scenario. On the top 

side the result (red) from the manually labelled scenes used as 

training; on the bottom results (blue) from training using data 

derived from M_HERACLES. 

4.3.1 Scenario 1: Result of the semantic segmentation as 

performed on the Kasepuhan_1 dataset can be seen in Figure 5. 

The results show a good level of identification of the column 

class in both cases. More specifically, from Figure 5 it can be 

seen how with the manually annotated data the columns are 

classified along their entire length. Meanwhile in the case of 

M_HERACLES results used as training data; the upper part of 

the columns was not included in the training set due to the 

algorithm’s cropping of the ceilings. This resulted in the upper 

parts of the columns not included by the final prediction.  

Another interesting point to note is that in the manually 

annotated scene, parts of the base of the pillars are recognised as 

the column class, while in the case of automatic annotation this 

misclassification is seen to be of a lesser extent. Theoretically 

speaking, the result from both approaches should be similar 

since no column base was included in either class. The reduced 

number of points in M_HERACLES’s case due to its inherent 

denoising functions may have inadvertently reduced this effect 

for the automatic training data. Furthermore, since the neural 

networks are by nature opaque in some of their parts, it was not 

possible at this point to define the nature and source of this 

particular error.  

When considering the metrics of the single class of columns as 

displayed in Table 3, the precision and the F1-score are greater 

in the case of manual labelling. The result is inverted in the case 

of the recall score. High precision score in this case indicates 

that manual labelling allows the training of a network that 

manages to correctly predict the column class. On the other 

hand, the M_HERACLES-based method with the higher recall 

score, creates a more generic network able to predict other 

classes outside of the column class. 

4.3.2 Scenario 2: For the second scenario a starker 

difference between the two training datasets can be observed. 

As can be seen in Figure 6, semantic segmentation results 

derived from automatic annotation is visually noisier and tended 

to classify engaged columns on the walls behind to the arcade of 

the Ghiffa scene as columns.  

Figure 7 further attempts to investigate this result in more detail. 

Indeed, the presence of some parts of the mouldings visible in 

the upper part of the columns in the case of the automatic 

automation may have led to these results.  

The upper mouldings included by M_HERACLES in the 

training dataset it provided have many similar shape and 

geometric features as those of the engaged columns and half-

pilasters. Furthermore, this behaviour is accentuated by the fact 

that only the radiometric component and normals have been 

used as input features. Indeed, the latter is shown to have 

significant influence in predicting the semantic segmentation 

results. 

Quantitatively speaking, the general metrics as displayed in 

Table 4 are lower than those presented in the article by Matrone 

et al. (2020a), due to the lower number of scenes in the training 

set. Furthermore, compared to the previous scenario and 

considering solely those of the class of columns, a greater 

deviation between the manual and automatic-derived results in 

terms of Precision, Recall, F1-Score and IoU can also be 

observed. This result comes despite the relatively noise-free 

result from M_HERACLES, thus adding further to the 

argument put forward in the previous paragraph in which the 

misclassification of mouldings as columns generated a 

significant error. 

 

 

Figure 7. From left to right: detail of the point cloud in RGB, manual annotation of the columns, automatic annotation and finally the 

prediction results. Notice how the upper mouldings labelled as columns by M_HERACLES are very similar to the engaged columns 

on the wall behind.  
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Metrics Annotation Accuracy Precision Recall F1-Score IoU 

Overall 
Manual 0.9246 0.9359 0.9264 0.9264 0.3379 

M_HERACLES 0.9183 0.9353 0.9184 0.9159 0.3982 

Columns 
Manual - 0.7615 0.9097 0.8290 0.7079 

M_HERACLES - 0.6233 0.9240 0.7445 0.5929 

Table 3. Results of the tests performed on the first scenario. 

Metrics Annotation Accuracy Precision Recall F1-Score IoU 

Overall 
Manual 0.7292 0.7671 0.7292 0.7360 0.3825 

M_HERACLES 0.6332 0.7115 0.6332 0.6625 0.3036 

Columns 
Manual - 0.7227 0.6378 0.6776 0.5123 

M_HERACLES - 0.3851 0.5093 0.4386 0.2808 

Table 4. Results of the tests performed on the second scenario. 

 

5. CONCLUSIONS 

This article described an alternative methodology to be applied 

for automatic labelling of point clouds. The output of the 

analysed algorithm can be, in fact, used as input for deep 

learning techniques. Being a preliminary study, this research 

focused mainly on the column class to evaluate a possible 

extension of this methodology to other classes. 

The results obtained show that the proposed method managed to 

cut processing time by up to an average of six times faster than 

traditional manual labelling. The first scenario of DL 

implementation showed that despite lower annotation accuracy 

of automatic approaches, in simpler settings the proposed 

approach managed to attain similar quality as manual labelling. 

However, in the second scenario the more complex nature of the 

data presented other challenges. Automatically derived training 

data was essentially faced with a systematic error in the form of 

misclassified points. In this case we can observe that annotation 

accuracy is also important, at least in this case and using this 

neural network architecture. Additionally, the importance and 

great relevance of normal vectors in class recognition was 

demonstrated particularly in this scenario. 

Although the metrics derived from the DL training based on 

automatic annotation are lower than the manual ones in both 

scenarios (in Scenario 2 more so than in Scenario 1), it is also 

important to note that the rules-based approach is both modular 

and adjustable. By knowing specific problems, the 

M_HERACLES functions can be tuned to adapt to specific 

cases and can thereafter be easily and rapidly deployed in a 

repeated manner. Although this may seem counter-intuitive, we 

argue that the margin of processing time gained by the proposed 

method permits a further in-depth tune up of rules-based 

approaches to increase the results.  

Most importantly, we argue that the methodology described in 

this paper can provide a compromise between the pursuit of the 

best neural network performances and the reduction of overall 

processing times. Indeed, in the context of DCH this is crucial 

due to the virtually countless types of potential objects for DL 

training. Such compromise is therefore an interesting solution to 

greatly reduce processing time by pertaining to the required 

geometric specifications.  

Some critical issues related to the difficulty of error track back 

in the proposed neural network remain, as is expected from the 

black-box nature of deep learning architectures. In this case, this 

issue meant that errors related to semantic segmentation results 

were more difficult to ascertain and, in some cases, to prove. 

Furthermore, the rules-based approach used in this paper as 

represented by the M_HERACLES toolbox also faces issues 

such as the requirement for further parameter tune-up to 

improve the results. These two issues, respectively pertaining to 

ML-based and geometric rules-based approaches are known and 

continue to be interesting topics to explore in the future. Future 

developments of this work can be an expansion of the proposed 

method into other classes in the cultural heritage context. 
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