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ABSTRACT:

The generalized camera model allows handling a broad range of imaging systems for which the common central perspective model
no longer applies. While offering greater modeling flexibility, designated orientation procedures need to support its application. In
that respect, models that facilitate the computation of the bundle-adjustment solution are imperative as a means to solve the motion
and structure of a large set of images. Being non-linear, the bundle adjustment solution requires good initial estimates and the
filtering of outlying matches. To facilitate such a solution, we propose in this paper a method for estimating the global rotations
of a set of views independent of their translation and the scene structure. This method is then used to improve the robustness,
efficiency, and convergence of the solution when used as a refinement to the global rotations. The proposed pipeline is evaluated
by experiments on synthetic and real-world data of axial flat-refractive cameras. It shows that the proposed method produces more
accurate and optimal initial estimates of the global rotations than the state-of-the-art rotation averaging method.

1. INTRODUCTION

The use of the generalized camera model (GCM) has seen a
growing interest in recent years with the advancement of imag-
ing systems and multicamera installations (Miraldo and Car-
doso, 2020). Notable examples include fish-eye (Castanheiro et
al., 2021), central or noncentral catadioptric (Filin et al., 2020),
rolling shutter (Fan and Dai, 2021), panoramic (Ji et al., 2020),
and underwater cameras (Telem and Filin, 2010), as well as
multi-view rigs (Miraldo and Cardoso, 2020). The generalized
form facilitates the modeling of a broad range of imaging sys-
tems but it also requires suitable pose estimation procedures to
support it. Because of the deviation from the central perspective
form, integration into structure-from-motion (SfM) and bun-
dle adjustment (BA) solutions requires also robust procedures
that generate good initial estimates for the pose parameters and
the filtering of outlying matches. The predominant strategy of
recent years initializes such solutions by estimating the global
motion of each view via an averaging procedure whose aim is
to recover global motions from a set of relative ones. Such a
scheme, commonly termed motion averaging, provides a fast
and accurate method for the cameras’ motion estimation with a
wide range of applications, including view registration, robotic
path estimation, super-resolution, etc. (Chatterjee and Govindu,
2013; Eriksson et al., 2018).

Motion averaging can be partitioned into rotation averaging
(RA) followed by translation averaging (TA) procedures (Hart-
ley et al., 2013; Chatterjee and Govindu, 2017; Schonberger
and Frahm, 2016; Eriksson et al., 2019; Chen et al., 2021).
RA consists of estimating global camera orientations (in refer-
ence to a predefined datum) that best agree with the complete
set of plausible pairwise relative orientations within the im-
age set. These global orientations are estimated such that the
disagreement is minimized and the errors are distributed over
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the entire set of pairwise constraints. Differing from the BA
solution, in RA only the rotations are estimated as a function
of the relative pairwise rotations but not so that the image-
related reprojection errors are minimized (Chen et al., 2021).
As the set of unknown parameters is small, compared to the
full BA framework (involving structure + motion), the compu-
tation is faster and the procedure is simpler to perform. Being
an indirect minimization form, not in reference to the image
measurements, and as all relative rotations are treated equally,
even when a different number of points is utilized for the in-
dividual estimations, this procedure is not optimal. Recently,
a method that considers both pair-wise rotation estimates and
image measurements was proposed for central cameras (Lee
and Civera, 2021). There, given the RA estimates, a rotation-
only bundle adjustment (ROBA) solution, which optimizes the
rotations over all image measurements, was performed. For
that, the authors extended a pair-wise relative orientation model
that allows the rotation to be recovered independently of the
translation into a multiple-view framework. While offering
better initial estimates, their solution only fits central cameras
and cannot handle non-conventional imaging systems.

Considering the growing utilization of the generalized camera
models, we study in this paper the computation of global ro-
tations as an optimization form and use the image rays direc-
tion as the direct input. This solution can be integrated into
the SfM pipeline to refine the initial absolute rotations by RA
methods before the BA solution commences. While our solu-
tion form is general, we demonstrate its application on under-
water flat refractive imaging configurations. It has been identi-
fied that the flat refractive configuration is axial by nature (cf.,
Telem and Filin, 2010), also demonstrating that the nature of
this system translates to depth dependence in terms of the im-
age related corrections (Telem and Filin, 2010; Nocerino et al.,
2021). The literature shows that the predominant method to
handle the axial nature of this system is by approximating it as a
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Figure 1: Geometry of the generalized relative pose problem for
multi-camera systems. The unknowns are the transformation
parameters between the two viewpoints b and b′, given by t
and R. The observation vectors vi and v′

i and the position of the
camera centers c(1) and c(2) with respect to b and b′, given by
tc(1) and tc(2) , respectively.

perspective one with distortions (Chadebecq et al., 2020). This
produces aberrations and inaccuracies in the reconstruction be-
cause of the depth-dependent 3-D error in the system. To allevi-
ate such errors, reweighted BA procedures have been recently
proposed, where the weights assigned to the image measure-
ments are changed according to the error introduced by their
depth (Nocerino et al., 2021). Aspiring for a physically ex-
act solution to the flat-refractive camera model, we utilize the
GCM and solve the global orientations as initial estimates for
the BA solution. The advantages of such a representation are
the direct form by which the measurements are introduced into
the model and the physically exact modeling of the system. We
extend a pairwise rotation-only relative orientation solution to
handle multiple views by aggregating a set of two-view costs
and minimizing them through nonlinear optimization. We test
the proposed generalized rotation only bundle BA through a set
of simulated tests and on real-world data. As the results show,
under typical configurations, the obtained parameters are suffi-
ciently close to the actual ones and may facilitate a variety of
applications such as coarse reconstruction or coarse localiza-
tion. Finally, we compare our results to the state-of-the-art RA
method (Chatterjee and Govindu, 2017) and demonstrate con-
sistent and significant gains in accuracy. The organization of
this paper is as follows: Sec. (2) develops the generalized two-
view rotation-only solution to the flat-refractive setup. Sec. (3)
describes the generalized rotation-only solution. In Sec. (4) we
present the experimental results, and Sec. (5) presents the dis-
cussion and conclusions.

2. GENERALIZED CAMERA MODEL

Image-related measurements for the GCM are usually ex-
pressed by Plücker coordinates, a 6-D vector of which the
first three elements correspond to the ray direction, and the lat-
ter three are given by the cross-product between a point on the
line and its direction. For a multi-camera system whose center
does not coincide with a specific camera center, we denote its
positions at two different epochs by b and b′, and relate them
by a 3-D rigid body transformation, where t and R are the re-
spective translation and rotation (Fig. 1). We also consider two
different cameras centers, c(1) and c(2), each viewing at a dif-
ferent epoch the same object-space point by the two respective
rays, vi and v′

i, in reference to b and b′ (Fig. 1). In that form,
the Plücker line coordinates of the two observations are given

Figure 2: Geometry of the axial camera relative pose problem as
a multi-camera system. The unknowns are the transformation
parameters between the two viewpoints b and b′, given by t
and R. The observation vectors vi and v′

i and the position of
the camera centers c(1) and c(2) with respect to b and b′, given
by tc(1) = kn = [0, 0,−k]T and tc(2) = k′n = [0, 0,−k′]T ,
respectively. The axial nature dictates that all camera centers to
be on the same system axis, n (dashed red line) for each one of
the viewpoints. Note that, b and b′ must also lie on the axes of
the systems.

by:

Li =

(
vi

tc(1) × vi

)
L′

i =

(
v′
i

tc(2) × v′
i

)
(1)

Integration of the Plücker line transformation and the intersection-
constraint (cf. Förstner and Wrobel, 2016, for more details)
leads to the generalized epipolar constraint (GEC):

LT
i

(
[t]×R R

R 0

)
L′

i = 0 (2)

where [t]× represents the skew-symmetric form of t. Substi-
tuting Eq. (1) into Eq. (2), we obtain the generalized epipolar
constraint (GEC):

vT
i [t]×Rv′

i + vT
i (R[tc(1) ]× − [tc(2) ]×R) v′

i = 0 (3)

Similar to the central case, this formulation allows solving lin-
early for the relative pose. However, the linear solution has
a large redundant parametrization and requires 17 correspon-
dences for solving only 6 DoF (Kim et al., 2009).

2.1 Application to flat-refractive geometry of underwater
cameras

When applied to underwater cameras that image through a flat
interface, one needs to account for refraction at the interface
that bends the incident ray direction and introduces a non-linear
trajectory (Fig. 2). We can maintain the collinearity of the in-
cident ray by offsetting the camera center along an axis whose
direction is the normal to the interface by a magnitude k̃f , such
that the modified ray direction under such a formulation be-
comes,

vRi =
(
xi, yi, f

(
1 + k̃i

))T
(4)

where xi, yi, are the image plane coordinates given in the cali-
brated camera frame, and k̃ is a correction factor to the principal
distance, f , whose magnitude depends on the image point co-
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ordinates (cf. Appendix A). Next, defining ki as the correction
to the principal distance, where tc(i) = kin = [0, 0,−ki]

T and
n = [0, 0, 1]T , the image ray can be expressed in the Plücker
line representation by,

Li =

(
vRi

− (ki[n]×vRi)

)
(5)

=
(
xi yi f(1 + k̃i) −kiyi kixi 0

)T
such that kin is the modified position of the camera center and
vRi is the ray direction. Note that Eq. (5) defines a linear form
of the ray trajectory through refraction which is expressed by
image-related quantities only. Substituting the Plücker line-
coordinates from Eq. (5) into Eq. (2) and with further deriva-
tions we obtain:(

vRi × Rv′
Ri

)
t + vT

Ri

(
k′
iR[n]× − ki[n]×R

)
v′
Ri = 0 (6)

equivalent to Eq. (3), thereby establishing the analogy of the
flat-refractive camera model to the GCM and GEC forms.

2.2 GEC rotation-only solution

Denoting t̄ = [t, 1]T , Kneip and Li (2014) expressed Eq. (6) as
follows:

gT
i t̄ =

(
vRi × Rv′

Ri

vT
Ri (k

′
iR[n]× − ki[n]×R) v′

Ri

)T

t̄ = 0 (7)

where gi is termed the generalized epipolar plane normal vec-
tor, and t̄ the homogeneous translation vector, which has an ar-
bitrary scale. Having n generalized normal vectors, the follow-
ing constraint can be generated:

GT
i t̄ = (g1 . . . gn)

T t̄ = 0 (8)

This expression constrains t̄ by a n × 4 matrix that depends
only on the rotation parameters. As the trivial solution is not
allowed, the rank of G has to be 3. Hence, given an arbitrary
number of correspondences, n, a rank minimization of G over
R can be reached by minimizing the smallest eigenvalue of

H = GGT =

i=1∑
n

ggT (9)

Solving R through H can be done by the minimization of

R∗ = argmin
R

λH (R) (10)

where λH (R) is the smallest eigenvalue of H, which is a func-
tion of R. Let aλ4 + bλ3 + cλ2 + dλ + e = 0 be the fourth
degree polynomial whose roots are the eigenvalues of H. The
coefficients {a, b, c, d, e} can be derived from det (H − λI4×4).
The smallest root can be obtained in closed form by applying
Ferrari’s solution:

α = −3b2/8 + c; β = b3/8 − bc/2 + d (11)
γ = −3b4/256 + b2c/16 − bd/4 + e; p = −α2

/12 − γ (12)
q = −α3

/108 + αγ/3 − β2
/8; h = −p3/27 (13)

θ1 = h
1/6cos (1/3 arccos (−q/2

√
h)) ; θ2 = h

1/3 (14)

y = −5α

6
− pθ1

3θ2
+ θ1; w =

√
α+ 2y (15)

and,

λH,min = − b

4
− w/2 − 1/2

√
−3α− 2y + 2β/w (16)

Hence, R∗ that minimizes the GEC (Eq. 6) can be obtained
directly by nonlinearly solving Eq. (15). The GEC rotation-
only solution allows computing pair-wise orientations between
all image pairs with a sufficient number of correspondences.

3. GENERALIZED ROTATION ONLY BUNDLE
ADJUSTMENT (G-ROBA)

Given the set of plausible relative orientations, it is possible
to reconstruct a view-graph G that encodes all connections be-
tween the pair of views. We define G = {V, E} such that ∥V∥ =
N and ∥E∥ = M , where V is the set of N cameras and E is the
set of M edges representing the relative orientation between
individual cameras. In this representation the edge ij ∈ E
represents the computed relative rotation Rij between the cam-
eras i and j, such that [i, j] ∈ V . We denote the collection
of all relative rotations by RE . The set of all 3-D rotations
RV = {R1,R1, . . . ,RN} completely specifies the global rota-
tion of all the cameras with respect to a given reference frame.
If E spans the entire view graph, the global rotations of all the
cameras can be solved by using the pairwise relative rotations.
As the cameras i and j have global rotations of Ri and Rj

respectively in a given reference frame, the relative rotation
between them should obey the relationship, Rij = RjRT

i ,
∀ ij ∈ E .

The problem of relative rotation averaging can be stated as fol-
lows: given a sufficient number of relative rotations Rij ∈ RE ,
we seek an estimate of the global camera rotations, RV . In
practice, we always have a larger number of edges than what
is required to span the view-graph, i.e., M > N − 1, im-
plying that we have a redundant set of observations. We also
note that due to the presence of noise or outliers, the set of rel-
ative rotations is inconsistent, i.e., we cannot find a solution
RV = {R1,R1, . . . ,RN} that exactly satisfies all constraints
{Rij = RjRT

i |∀ij ∈ E}.

We seek to find an estimate of RV that is most consistent with
the observed relative rotations. This can be obtained by mini-
mizing a cost function that penalizes the discrepancy between
the observed relative rotations Rij and the one suggested by the
estimate RjRT

i , i.e.,

RV = argmin
{R1,R1,...,RN}

∑
(i,j)∈E

ρ
(
d
(

Rij ,RjRT
i

))
(17)

where d(.) is a distance measure between two rotations in
SO(3) and ρ(.) is a loss function defined over this distance
measure. We follow Chatterjee and Govindu (2017) that apply
a two-step approach in which first an L1-iterative reweighted
least-squares (L1-IRLS) is used for initialization and is then
switched to an L1/2-IRLS for additional refinement.

Next, we extend the idea of utilizing the two-view rotation-only
solution for a rotation-only BA (ROBA, Lee and Civera, 2021)
to the case of generalized cameras. Given the set of all edges
E , the global rotations of the N cameras are computed using
the RA. This provides the set of global rotations denoted by
{R1, . . . ,RN}. For each edge in E a constraint on two rota-
tions from the set of N global rotations can be generated using
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Eq. (7). This form allows minimizing the repreojection as it
is directly related to the image measurements. However, in its
form, it can only relate two views. To extend the relative orien-
tation problem to handle multiple views, we define a cost given
by λH,min which can be considered as a measure of how good
is the estimate and amounts to zero when no noise exists in the
system. For each edge, the value of λH,min is computed while
using the global rotation estimates as inputs and the sum of all
costs is then minimized in a single optimization. Lee and Civera
(2021) showed that the cost

√
λH,min performed better and im-

proved the convergence rate. Hence, the optimization problem
can be formulated as

{R∗
1, . . . ,R∗

N} = argmin
R1,...,RN

C (R1, . . . ,RN ) (18)

with,

C (R1, . . . ,RN ) =
∑

(j,k)∈E

√
λH (Rjk) (19)

To solve Eq. (18) iteratively, the first-order gradient-based op-
timization algorithm for stochastic objective functions, ADAM
(Kingma and Ba, 2014) was used. The hyper-parameters, β1

and β2, were set to the default values (i.e., β1 = 0.9, β2 =
0.999). The step size was set to α = 0.01 at the beginning from
which was then switched to α = 0.001 permanently once the
cost increased in five successive iterations.

4. EXPERIMENTS

To test the performance of the proposed global rotation estima-
tion solution, experiments were carried out via simulations and
validated using real-world data. For the simulated experiments,
we use a 640 × 480 pixels frame camera with a 525 pixel fo-
cal length. The distance to the interface, d was set to 30 mm,
and the indices of refraction to µ0 = 1 and µ1 = 1.33. We
generated 3-D points at random distances D ∼ U (1, 5) m from
the xy-plane while ensuring that each view observed at least
10 corresponding points with neighboring views. The image
points were formed by forward-projecting the generated 3-D
points using ray-tracing (Kunz and Singh, 2008). They were
then perturbed by Gaussian noise characterized by N

(
0, σ2

)
.

Image pairs with more than nin corresponding points formed
an edge in E . Our base setup consisted of nviews = 100, and
we set nin = 50 and σ = 1 pixel. We then evaluated also
the influence of the following alterations to the base setup: i)
an increase in the number of minimal corresponding points to
nin = 100, thereby limiting the number of permissible pair-
wise connections; ii) fewer views covering the same scene to
nviews = 30, thereby reducing the overlap; iii) more views,
to nviews = 300, thereby increasing the overlap; iv) decreased
noise level, to σ = 0.5 pixel; and v) increased noise level, to
σ = 2 pixels. Each setup was simulated by 200 different con-
figurations of randomly sampled camera rotations and a 3-D set
of points. We tested these setups on two imaging scenarios: i)
of a closed-loop where n cameras were uniformly distributed
one unit apart from one another, while their optical axis direc-
tion was uniformly perturbed by an θ ∼ U (0, 20◦) with respect
to the z-axis; and ii) of an image block made of nstrips strips,
with nviews images per strip. The rotations were uniformly per-
turbed by θ ∼ U (0, 5◦) off the nadir direction.

To simulate as realistic as a possible scenario, the relative rota-
tion estimates were computed using the method from Sec. (2.2),

The rotation, Rij between images i and j initialized the RA
solution. Finally, the output of the RA was introduced to the
G-ROBA solution. To compute the RA solution, the state-of-
the-art model by Chatterjee and Govindu (2017) was used. Its
implementation was based on the code publicly shared by the
authors. For performance evaluation, we note that our method
was implemented in Python and tested on an Intel i7-3770 CPU,
3.40GHz PC 16GB RAM.

As the simulated parameters are given in absolute terms and our
solutions is in reference to an arbitrary datum, the global ro-
tation estimates (R̂1, . . . , R̂N ) do not share the same reference
frame as their ground-truth counterparts (Rgt

1 , . . . ,Rgt
N ). There-

fore, they must first be aligned with the ground-truth to evaluate
the accuracy. To do so, it is customary to estimate a rotation that
transforms the estimated global rotations to the ground-truth
system. Being a nonlinear single rotation-averaging problem,
it is solved iteratively (Hartley et al., 2013). We compute this
by minimizing the L1 and L2 norms, yielding two such rota-
tions, RL1 and RL2 , respectively that are estimated by:

RL1 = argmin
RL1

N∑
j=1

d
(

RL1 ,RT
j Rgt

j

)
(20)

and,

RL2 = argmin
RL2

N∑
j=1

d
(

RL2 ,RT
j Rgt

j

)2
(21)

where d(·, ·) denotes the geodesic distance between the two ro-
tations, i.e., d(R1,R2) = arccos

(
(tr(R1RT

2 )−1)/2
)
. Next, all

the estimated global rotations are rotated by RL1 and RL2 to
produce two different alignments corresponding to the L1 and
L2 minimization norms. The mean and median angular errors
using these two alignment methods are presented and analyzed.

We compare the performance of the application of the RA and
G-ROBA in terms of the mean angular error following the L1

and L2 alignment. For evaluation, we define the metrics mn1
and mn2 as the mean angular error (in degrees) following the
L1/L2 alignment, respectively. Similarly, we also denote the
median angular error for the L1/L2 alignments as md1 and md2,
respectively. Figures 4, 5, 6, and 7 illustrate the results in which
on each box, the central mark indicates the median, and the
bottom and top edges of the box indicate the 25th and 75th per-
centiles (Q1 and Q3), respectively. The whiskers extend to the
most extreme data points not considered outliers, and the out-
liers are plotted as blobs, individually.

Closed-loop configuration – Figs. 4 & 5 plot the results of
the closed-loop simulation. In all settings considered, the G-
ROBA solution demonstrated an improvement over the RA.
For example, for the baseline case and using the L1 alignment
(Fig. 4), the mean angular error dropped from 2.41◦ ± 0.63◦

when using the RA to 1.38◦ ± 0.57◦ using the G-ROBA. For
the L2 alignment, the mean angular error dropped from 2.39◦±
0.67◦ to 1.41◦±0.59◦ (Fig. 5). The addition of more points im-
proved the results, reaching a mean as low as 1.05◦ when using
our method. Furthermore, using fewer views improved the re-
sults when compared to the baseline and more views cases with
0.29◦ compared to 1.38◦ and 3.89◦, respectively. Finally, the
noise test showed that our method scales well with the increase
of noise, reaching a mean of 1.22◦, 1.38◦, and 1.62 for 0.5, 1,
and 2 pixels, respectively. This demonstrates the model’s capa-
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Figure 3: Simulated imaging configurations. (left) We simulate a block structure with nstrips as the number of strips, each con-
taining nviews number of views. The rotations are perturbed by random angles θ ∼ U (0, 5◦); (right) we uniformly distribute n
cameras on a circle on the xy-plane such that the neighbors are evenly spaced along the circle perimeter. After aligning their optical
axes with the z-axis, we perturb the rotations by random angles θ ∼ U (0, 20◦).

Figure 4: Results of the synthetic data test settings. Comparison
between RA and G-ROBA (initialized by RA) in terms of the
mean angular error after the L1 alignment.

bility to handle large quantities of noise while also maintaining
a linear trend.

Block configuration – For the base case, and using the L1

alignment, the mean angular error was 1.18◦ ± 0.29◦ when us-
ing the RA and 0.51◦ ± 0.18◦ for the G-ROBA solution. Us-
ing the L2 alignment, the respective mean angular errors were
1.42◦±0.36◦ and 0.62◦±0.24◦ (Fig. 5). Additional points im-
proved the results with a mean error of 0.39◦ and fewer views
improved the results even further, reaching a 0.17◦ mean error.
These results show, similar to the closed-loop simulation, that
both methods performed better for the cases where more points
were added and lesser views of the same scene were observed.
Comparing these settings to the baseline and more views cases
show an improvement by a factor with 0.5◦ and 1.15◦ for the
base and more views cases, respectively. Hence, for all settings
considered, the G-ROBA solution demonstrated improved re-
sults compared to the RA. Here also the angular error for all
six settings was lower than that of the closed-loop configura-
tion. We attribute this to the number of edges gained by the
side overlap between adjacent strips.

4.1 Real-world experiments

To validate our method in real-world conditions we compared
the computation of our global rotations to a publicly shared
dataset by Bender et al. (2013) of the O’Hara Reef, Tasman
Peninsula, Tasmania. The data consists of the raw onboard sen-
sor information of the Sirius autonomous underwater vehicle
(AUV), a modified version of the SeaBED AUV (Bender et

Figure 5: Results of the synthetic data test settings. Comparison
between RA and G-ROBA (initialized by RA) in terms of the
mean angular error after the L2 alignment.

Figure 6: Results of the synthetic data test settings. Comparison
between RA and G-ROBA (initialized by RA) in terms of the
mean angular error after the L1 alignment.

Figure 7: Results of the synthetic data test settings. Comparison
between RA and G-ROBA (initialized by RA) in terms of the
mean angular error after the L2 alignment.
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Settings RA RA + G-ROBA
mn1 md1 σ1 mn2 md2 σ2 mn1 md1 σ1 mn2 md2 σ2

Baseline 2.40 2.40 0.63 2.39 2.38 0.64 1.38 1.26 0.57 1.41 1.28 0.57
More points 2.04 1.92 0.50 1.97 1.86 0.50 1.05 1.01 0.47 1.12 1.08 0.47
Fewer views 1.08 1.05 0.31 1.18 1.15 0.31 0.29 0.28 0.11 0.37 0.36 0.11
More views 4.59 4.45 1.03 4.74 4.60 1.04 3.89 3.77 1.12 3.93 3.81 1.12
Less noise 2.25 2.21 0.63 2.28 2.24 0.64 1.22 1.11 0.62 1.25 1.14 0.62
More noise 2.40 2.39 0.56 2.42 2.40 0.57 1.62 1.55 0.50 1.58 1.51 0.50

Table 1: Results of the closed-loop simulation. The metrics, mn/md/σ/1/2: mean/median angular error (in degrees) after the L1/L2

alignment, respectively. For all settings, the RA + G-ROBA improves the results of the RA.

Settings RA RA + G-ROBA
mn1 md1 σ1 mn2 md2 σ2 mn1 md1 σ1 mn2 md2 σ2

Baseline 1.18 1.17 0.29 1.40 1.40 0.35 0.50 0.47 0.18 0.61 0.55 0.24
More points 0.81 0.76 0.23 1.23 1.16 0.28 0.39 0.38 0.15 0.45 0.44 0.20
Fewer views 0.51 0.49 0.14 0.73 0.71 0.17 0.17 0.17 0.03 0.18 0.17 0.05
More views 2.14 2.08 0.47 2.47 2.39 0.58 1.15 1.12 0.35 1.65 1.60 0.47
Less noise 1.16 1.14 0.29 1.26 1.24 0.35 0.39 0.35 0.19 0.56 0.52 0.26
More noise 0.95 0.95 0.26 1.34 1.33 0.32 0.47 0.44 0.16 0.64 0.60 0.21

Table 2: Results of the block simulation. The metrics, mn/md/σ/1/2: mean/median angular error (in degrees) after the L1/L2

alignment, respectively. For all settings, the RA + G-ROBA improves the results of the RA.

al., 2012). The vehicle was designed for high-resolution, geo-
referenced imaging (Bryson et al., 2013). It includes 11,278
stereo image pairs and an onboard Imagenex DeltaT 260kHz
Multibeam sensor. Integration of both data streams was used in
a SLAM solution that is utilized here as a baseline for valida-
tion.1 The set of images covers a seabed strip, more than 4 km
long. The trajectory consists of a 4 km long straight transect,
and a zig-zag path that traverses this transect, crossing it five
times (Fig. 8). In our analysis we studied the RA and G-ROBA
performance on i) the 4 km long open-end strip and the zig-
zag path, ii) on both setups using only the left and then right
cameras and iii) on the whole dataset, whose overall length was
8 km, and facilitates a loop closure.

Data processing: We used SIFT (Lowe, 2004) to extract fea-
ture points and the FLANN (Muja and Lowe, 2014) for the
matching. To improve the efficiency of the matching stage and
as the image order was known, we limited the possible matches
to the five neighboring images in both directions. Considering
the fact that the images were acquired in a strip-like campaign,
this simplification had hardly any effect on the edges in the view
graph. The underwater system parameters were calibrated using
the recently proposed method of Elnashef and Filin (2022), and
then the relative rotation of each edge we estimated according
to Sec. (2.2). As a means to remove bad matches, we computed
the relative orientation over all stereo-pairs and removed out-
lying matches using the random sample consensus (RanSaC)
algorithm. Next, we computed the RA solutions and refined
them using the proposed G-ROBA solution.

Validations: Results of the three scenarios and test sets are
listed in Table (4.1). For all scenarios and subsets, our solu-
tion outperformed RA error-wise. In scenario #1, we computed
the angular error for the two subsets, namely, a zig-zag path
with 6278 stereo images, and a straight path with 5000 stereo
images with respect to their baseline. We observe that in the
straight path set, the RA error was large, reaching a mean error
of 6.22◦, these results were improved by our solution reducing
the error to 4.89◦. Also, we listed the run-time for each set and
show that the RA method is more efficient by at least an order of
magnitude compared to our solution (Table 4.1). The applica-
tion of both methods in scenario #2 shows that the error reached
are slightly better than those from scenario #1. This we believe

1Tasmania O’Hara 7 - http://marine.acfr.usyd.edu.au/datasets/#home

Figure 8: Validations scenarios in real-world experiments.
(Top) The data are partitioned into two patches, a zig-zag path,
and a straight path; (Middle) The data are partitioned into left
and right images of the stereo-pair. Note that, the offset between
the two lines is enlarged for a better illustration; (Bottom) Full
dataset with a side view magnification at the intersection be-
tween the zig-zag and straight paths.

is a consequence of adding more edges at the loop closure posi-
tions, namely, the intersection between the zig-zag and straight
paths (Fig. 8). To measure the consistency of the solution, we
computed the angular error of the alignments between the left
(11278 images) and right (11278 images) sets (Table 4.1). The
mean errors were as low as 0.16◦ when using G-ROBA. Apply-
ing both methods over the entire dataset (scenario #3), yielded
errors as low as 3.52◦ in comparison to mn1=2.27◦ for the RA
and G-ROBA, respectively. Demonstrating once again that our
solution provides an improvement over the RA and reduces the
overall error.

5. CONCLUSIONS

This paper proposed a generalized version of the rotation-only
bundle adjustment for the generalized camera model. It pre-
sented a complete pipeline adapted for that purpose that begins
with a relative orientation of this axial camera form, through
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Scenario Data RA RA + G-ROBA
mn1 md1 mn2 md2 t [sec] mn1 md1 mn2 md2 t [sec]

I Zig-Zag 4.01 2.52 4.28 2.78 26 1.82 0.33 1.61 0.59 317
Straight line 6.22 1.52 8.26 4.06 15 4.89 0.45 7.22 3.02 278

II
Right 5.59 4.19 5.87 3.92 166 2.89 0.88 3.06 1.11 611
Left 5.42 4.22 5.70 3.88 166 2.76 0.95 3.15 1.02 611

Relative 0.28 0.10 0.31 0.14 2 0.16 0.05 0.19 0.10 10
III Full dataset 3.52 2.30 3.62 2.17 422 2.27 1.92 2.38 1.89 1288

Table 3: Comparison of the real-world results against the baseline dataset (Bryson et al., 2013) divided into three scenarios. (1)
The data are partitioned into two sets, a zig-zag path (6278 stereo images), and a straight path (5000 stereo images), and solved
independently from one another. Both sets are compared to their baseline counterpart, respectively. (2) The data are partitioned
into left (11278 images) and right (11278 images) images. The two sets are then compared to their baseline counterpart and to one
another (relative rotation between the left and right trajectories). (3) Full dataset (11278 stereo images). In all experiments, the RA
+ G-ROBA outperformed the RA, error-wise.

the establishment of a view-graph for the image set, the ini-
tialization by applying a rotation averaging procedure, and the
generalized refinement of the global rotations. The sequential
process poses little computational demand on the complete bun-
dle adjustment solution while improving the estimated param-
eters that are introduced into it and the ability to filter outly-
ing matches. Our experiments demonstrate that the proposed
pipeline is general, and performs well even when no loop clo-
sure is enforced on the image block. With the introduction
of the loop closure, the estimated rotations further improve, in
some typical constellations providing accurate results sufficient
for some coarse mapping tasks. Our evaluations also demon-
strated that in all setups the G-ROBA solution outperformed
the standard RA. Future research would study the integration of
these solutions, into a global bundle adjustment and SfM pro-
cedures, as a means to obtain a suited underwater global orien-
tation solution.
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A. AXIAL FLAT-REFRACTIVE UNDERWATER
CAMERA MODEL

Flat-refractive imaging systems consist of a camera observing
reference points through an interface (Fig. 2). The system is
characterized by the refractive interface parameters, including
the surface normal, n = [0, 0,−1]T , and the distance from the
camera center to the interface, d; and by the index of refraction
of the imaged medium, µ. Without loss of generality, we also
consider the index of refraction of the medium in which the
camera is stored to equal one. The image ray in the camera
frame is defined by v0 = [x, y, f ]T , where x, y, are the image
plane coordinates given in the calibrated camera frame, and f
is the principal distance. The ray sequence [v0, v1], from the
perspective center to an object-space point, describes the light
traversal within the plane of refraction. We use the vector form

of Snell’s law of refraction where the direction of the incident
ray, v1, is defined as a function of the emergent ray, v0, and n
(Hecht, 2002):

v1 = ξv0 + δn (22)

where ξ = 1/µ, and:

δ = −ξvT
0 n −

√
ξ2 (vT

0 n)2 + (1− ξ2) vT
0 v0 (23)

Rather than tracing the ray trajectory (Eq. 22), a principal dis-
tance correction whose aim is to reestablish the collinearity be-
tween, v1 the direction of the incident ray, and, vR the direction
of the modified image-ray (Fig. 2) is introduced. Such correc-
tion is valid as the incident and emergent rays and the optical
axis lie on the same plane of refraction. Defining tbci = kin, as
the vector form of this offset, where k is a scalar correction to
the principal distance, we express the renewed collinearity by
the cross-product between the vectors v1 and q1 − tbci , where
q1 = −d

vT0 n v0 is the point of refraction at the interface (Fig. 2).
Using Eq. (22), we write:

v1 × (q1 +∆c) =(ξv0 + δn)×
(

−d

vT
0 n

vη − kn
)

= 0

(24)

from which the following expressions for k and vR can be de-
rived,

k = d

(
1

ξ

√
(vT

0 n)2 + (1− ξ2) ∥v0 × n∥2

(vT
0 n)2

− 1

)
(25)

and,

vR =
(
x, y, f

(
1 + k̃

))T
(26)

where k̃ = k/d. Next by setting, tbci = kin as the camera
position along the system axis and vR,i as the ray direction,
leads to (Elnashef and Filin, 2020):

L =
(
vT
R − (k[n]×vR)

T
)T

(27)

=
(
x y f(1 + k̃) −ky kx 0

)T
Note that, Eq. (27) defines a linear form of the ray trajec-
tory through refraction which is expressed by image-related
quantities only. Substituting the Plücker line-coordinates from
Eq. (27) in Eq. (22) leads to:(

vi × Rv′
i

)
t + vT

i

(
k′R[n]× − k[n]×R

)
v′
i = 0 (28)

with, the axial epipolar plane normal vector defined as follows:

gRi =

(
vi × Rv′

i

vT
i (k′R[n]× − k[n]×R) v′

i

)
(29)
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