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ABSTRACT:

Refraction effects, their description and modeling are important aspects of underwater and multimedia photogrammetry. For
hemispherical interfaces, the usual approach to refraction is to rely on standard pinhole representations, e.g. by employing the
Brown model. This is strictly only possible if entrance pupil of the lens and dome center coincide which is not trivial to achieve.
However, simulations and other authors show that systematic residual errors occur with these approaches up to considerable margins
if offsets of some millimeters are present. Hence, we propose a novel efficient, yet strict optimization algorithm to account for offsets
between dome port centers and entrance pupil. It is about two orders of magnitude faster than standard ray tracing implementations
that account for refraction while providing similar or equal results. The algorithm is employed for analysis on a simulation and
two real data sets and performance of additionally estimating the dome center is investigated. Our method is capable of improving
accuracy in one data set at a maximum of 30% but even so cannot provide improvements for the second data sets. An explicit
calibration model is hence to be chosen carefully and most likely relies on the offset’s margins and each individual application.

1. INTRODUCTION

Multimedia imagery, especially captured under water, suffers
from many detrimental factors affecting both image quality and
geometry, compared to single-media image acquisition. Firstly,
the light from the object travels through multiple media (air,
glass, water) and is refracted at the separating interfaces. This,
among other influences, introduces astigmatism, chromatic
aberration and absorbs colors from long wavelengths in shallow
waters to medium and short wavelengths in higher depths.
This creates color shift towards green and blue in medium
depth waters to approx. 30m and decreases image quality and
sharpness (Shortis, 2015). Moreover, the ray path is altered at
refracting interfaces according to Snell’s law, thus rendering the
standard pinhole model with additional distortion parameters
invalid (Treibitz et al., 2012). For flat interfaces, this is often
compensated by either calibrating under water with standard
parameters of photogrammetric models (e.g. Brown 1971),
designed for air-applications to implicitly calibrate the imaging
geometry, or by explicit calibration of the refractive imaging
properties.

Refraction can also be encountered by employing a
hemispherical interface (dome port). If the entrance pupil
of the lens is aligned with the hemisphere’s center, all rays pass
the interface orthogonally and no refraction occurs. However,
it is a rather complicated task to mechanically align a camera
inside a dome housing to the point that no residual errors are
introduced (e.g. by visual servoing). Very fine positioning with
special methods are required for that (She et al., 2019). Even
when aligned, the position of the entrance pupil may change
with varying focal distances which enforces realignment for
different settings (Menna et al., 2016). This also applies to
∗ Corresponding author

added water pressure which might force dome ports out of their
aligned position. As investigated by Kunz and Singh (2008),
unresolved misalignments result in nonlinear distortions that
cannot be fully compensated by standard distortion models.
Another disadvantage is that the spherical shape of a dome
port creates an inverse lens in front of the camera and hence
virtually images objects at about three times the dome radius.
This can produce very close projections with small dome radii
of a few inches, as is the case with many standard underwater
housings (Menna et al., 2016). If the camera lens is not capable
of focusing at such short distance, a dome port cannot be
employed to its full capabilities and blurry images are formed.
This restriction could be omitted by adding a diopter for macro
focus to the lens which would in turn include another element
into the optical ray path (Nocerino et al. 2016; Menna et al.
2017a).

One major advantage of an explicit dome calibration is, apart
from a possible accuracy improvement, the possibility to align
the dome port more accurately by applying the calibrated values
to the dome position until no significant distortions occur. This
could be performed in a closed control loop that could even be
automated (e.g. visual servoing). When using non-customized
dome ports, as e.g. from BlueRobotics1, it is rather complicated
finding the dome center (Kahmen and Luhmann, 2022). With
certain lenses, it can even become impossible to center the
dome because the camera has to be moved very close to the
dome which might be blocked by a sealing flange or the lens
itself. Hence, it is desirable to be able to account for such cases
by introducing an explicit calibration model.

Dome ports are usually better suited for any kind of optical
application when well-centered. This holds especially true in
1 https://bluerobotics.com/product-category/watertight-enclosures
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high pressure environments, e.g. deep sea, where the favorable
spherical geometry is better suited, as forces spread wider on
the entire surface (She et al., 2022). Additionally, the field of
view is limited and refraction is significantly higher resulting in
decreased image quality with flat ports (Menna et al., 2017a).

The most relevant contributions of this paper are an efficient
optimization procedure for ray tracing with hemispherical dome
interfaces on the one hand and the transfer of the procedure
to analytical derivatives for a significant computation time
improvement towards real-time applications on the other hand.

2. RELATED WORK

The alignment of a dome center with the camera’s entrance
pupil is not trivial because both the entrance pupil and the dome
center are not physically tangible. For one, She et al. (2019)
proposed exploiting the geometric image constraint that straight
lines over and under water have to remain straight lines at the
media transition if the alignment is correct. Hence, the authors
set up a camera such that the dome is half-way under water and
faces parallel to the water surface. The camera can be moved
accurately in axial direction and hence iteratively positioned to
collimate lines under and over water. This approach requires a
specially constructed water container with an integrated dome
and linear unit. This might be impractical for many operators to
obtain. Kahmen and Luhmann (2022) proposed an individually
designed additive shell construction that is mounted onto the
front of a camera lens. The shell is an inverted shape of the
dome and constrains the camera center to coincide with the
dome center, given an accurate axial centering of the camera.
The distance for the shell construction can be obtained from
data sheets of the dome and the lens and have to be adapted for
each individual lens-dome setup. Minor adjustments regarding
focus settings may also be necessary since the entrance pupil
shifts with focus, as stated by Menna et al. (2016). Results
showed very high imaging quality but the authors have not
quantified the accuracy of the alignment, yet.

Kunz and Singh (2008) simulated the effect of both, a
decentered dome port (on the order of one millimeter per
direction) and a flat port with a simplified stereo baseline of
75 cm. The basic physics of Snell’s law are applied iteratively
to obtain image coordinates that fulfill the refractive geometry
under water and a standard pinhole model is used to calculate
3D coordinates from the resulting image coordinates. The
results show larger deviations on the order of centimeters
for the flat port and smaller ones for a dome port of a few
millimeters. However, both procedures produce systematic
errors in object space with highest magnitudes in the image
corners, if refraction is neglected. Contrary, Nocerino et al.
(2016) provide an order of few millimeters where no significant
distortions are said to occur. The same is stated for offsets from
concentricity of the two dome radii.

References, such as Kunz and Singh (2008) or Nocerino
et al. (2016) state that dome systems underwater can well
be modeled by the standard pinhole model with additional
distortion parameters, e.g. by Brown (1971). However,
especially in highly accurate applications, such as underwater
inspection (e.g. Kahmen and Luhmann 2022), calibrating
dome offsets remains of interest to exploit the full potential
of underwater photogrammetry. She et al. (2019) tackled
the issue by taking an image in both air and water at the
same position and optimizing for the residual errors with

least squares. Later, in She et al. (2022), the authors
extended the model of an axial camera, formulated in Agrawal
et al. (2012) and Treibitz et al. (2012) for flat ports and
applied it to the hemispherical dome case. With additional
optimization of projected errors on a checkerboard, the need
for air/water images of an object at the same position are
not required anymore, creating a leaner calibration process
without additional iterations. Iscar and Johnson-Roberson
(2020) calibrated a stereo camera system inside a single dome
port housing which creates major refractive effects in the
imagery. The authors proposed, using the point spread function
to describe the refractive effects. From there, correction on both
geometry and the image itself can be performed. The procedure
itself however, requires an extensive experiment of about 200
camera positions and constant environmental conditions which
limits the approaches practical feasibility. Yang et al. (2021)
developed a methodology, based on the coplanarity constraint,
to account for spherical refraction. However, their application
is based on mining environments with refraction only taking
place at a rather small glass interface which is of considerable
less effect than the underwater application with air-glass-water
ray paths.

The ray tracing approach, introduced by Kotowski (1987,
1988), and subsequent extensions based on the same approach,
e.g. by Mulsow (2010) or Mulsow and Maas (2014),
are generically formulated to cover all kinds of surface
shapes of first and second order. However, the works
mostly focus on object-invariant cases with different shapes,
such as cylinders and cuboids. Special considerations on
dome calibration, such as the determinability of offsets from
the dome center and refractive indices, are not covered.
Rofallski and Luhmann (2022) improved the optimization
strategy for the aforementioned ray tracing algorithms by
shifting the error function from image space to object space.
Hereby, computational speed was significantly increased while
maintaining a strict physical representation of the imaging
geometry for flat ports. Bosch et al. (2015) developed
an omnidirectional camera and calibrated it, employing ray
tracing through a sphere-cylinder composite. The procedure
is iterative and comparable to Kotowski (1987) and Mulsow
and Maas (2014) to reproject the object points to image space.
However, explicit calibration can introduce high mathematical
correlations between the interior orientation (i.e. camera
constant c and principal point, x′

p, y′
p) and the dome center

coordinates. It may thus be advisable to calibrate in a two-step
procedure, as recommended by Bosch et al. (2015).

This contribution bases on the findings by Rofallski and
Luhmann (2022) for flat ports and extends the basic idea of
optimization in object space for dome ports. Hence, we employ
ray tracing fundamentals and include an improved optimization
strategy to perform bundle adjustment for underwater
photogrammetry with highly improved computation speed.
Furthermore, we show that the model is capable of handling
analytical derivatives which is a major shortcoming of other
ray tracing approaches and improves computation speed even
further with the same strict mathematical description.

3. METHODOLOGY

Our approach is based on the methodology described in
Rofallski and Luhmann (2022). This approach shifts the ray
tracing optimization problem for flat port housings from image
space - requiring additional complex iterative procedures - to
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Figure 1. Forward ray tracing through n media for a single point.
From the measured point p′m, distortion correction is applied to

gain p′u. The outgoing ray A⃗i (red) is then refracted at n− 1
interfaces ti, considering refractive indices µi and µi+1 and the
normal vectors at their intersection points N⃗i. An unrefracted

ray (green) with the projected point p′∗ is depicted for reference.

object space to overcome these limitations. Our approach
extends these findings by including hemispherical dome ports,
assuming two interfaces of spheres. The approach is generic to
cover other cases with, e.g. multiple interfaces, simultaneous
camera calibration or object-invariant interfaces.

For alignment of the camera objective with the dome port, the
generic optical system representation has to be considered. This
includes the description with entrance and exit pupil through
which all rays on the object side (entrance) and image side
(exit) pass, assuming a straight ray path before and after the
pupils. In photogrammetry, the pinhole model is widely used
and represents a simplification of the former. In this case, no
lens in front of the aperture is present and hence perspective
center and entrance pupil coincide (Luhmann et al., 2020). In
general, the entrance pupil and the dome center have to be
aligned to obtain a refraction-free image which is the basis
for the physical alignment. In a mathematical representation
with a single viewpoint however (which is the case for the
following), deviations from the perfect alignment are expressed
with respect to the mathematical perspective center.

3.1 Ray Tracing

As shown in Figure 1, a measured image coordinate p′m is
first undistorted at given approximate or calibrated values,
according to its (approximate) interior orientation parameters
in air (IOP). The model for the IOP can be any model that
allows for undistortion of image coordinates. We used the
common model by Brown (1971). The procedure is performed
iteratively using Gauß-Newton optimization for correction
of radial-symmetric and tangential-asymmetric (decentering)
distortion, affinity and shear and principal point shift (Luhmann
et al., 2020). The undistorted point p′u is then transformed
to a vector from the given sensor position passing through
the perspective center by employing parameters of interior
and exterior orientation. This creates an arbitrarily scaled
directional 3D vector A⃗1.A1x

A1y

A1z

 = R ·

x′

y′

c

 (1)

R Rotation matrix
A1x , A1y , A1z Directional vector in first medium

x′, y′ Undistorted metric image coordinates from p′u

c Principal distance

With a given starting point P0i = (X0i , Y0i , Z0i)
T, the image

ray can be represented as a vector in the global coordinate
system. For the first medium, the approximate position of the
perspective center O′ is used whereas the intersection points of
the ray with the next interface is used for all subsequent media:

⃗P0i+1 =

X0i

Y0i

Z0i

+ si ·

Aix

Aiy

Aiz

 (2)

For n media, the dome port is parametrized as n− 1 concentric
spheres (i.e. centers X⃗di =

⃗Xdi+1 = (δx, δy, δz)
T) with given

radii (rdi , Figure 1). The values are expressed bundle-invariant
in the local camera coordinate system w.r.t. the perspective
center. The fixed radii can usually be obtained from the
manufacturer’s data sheet. The searched intersection point
⃗P0i+1 on a sphere, given by its center X⃗di and radius rdi in

the local coordinate system, fulfills the following relation:

( ⃗P0i+1 − X⃗di)
2 − r2di = 0 (3)

The local dome offset coordinates X⃗di are transformed to the
global coordinate system by a 6DOF Helmert-Transformation.
All subsequent Equations are related to the global coordinate
system. Inserting Equation 2 into Equation 3 yields the
following quadratic equation which has to be solved for the
ray’s scaling parameter si (Hanrahan, 1989):

0 = (P⃗0i + si · A⃗i − X⃗di)
2 − r2di

= s2i · A⃗i
2
+ 2si · A⃗i · (P⃗0i − X⃗di)

+ (P⃗0i − X⃗di)
2 − r2di

(4)

Obviously, this is a quadratic equation of the form
as2i + bsi + c = 0 and can be solved analytically:

si =
−b±

√
b2 − 4ac

2a
(5)

a = A2
i

b = 2 · A⃗i · (P⃗0i − X⃗di)

c = (P⃗0i − X⃗di)
2 − r2di

As the origin of the ray lies inside the sphere, two
possible solutions can be obtained from the positive definite
discriminant. Since we are only focused on the points in front
of the camera, a positive value for si has to be obtained for
determination of the intersection point. Since all vectors from
the sphere center to a point on the sphere intersect the surface
perpendicularly, the normal direction at each intersection point
⃗P0i+1 is given by the vector from the sphere center to the point:

N⃗i = X⃗di − ⃗P0i+1 (6)

With these parameters, we refract the 3D vector at the first
spherical interface which results in the directional vector that
travels through the next medium (Glassner, 1989):
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⃗Ai+1 =µrel · A⃗i

+

(
µrel · Ci −

√
1 + µ2

rel · (C2
i − 1)

)
· N⃗i

(7)

A⃗i Directional vector in ith medium

N⃗i Normal vector on ith interface

Ci Reversed incidence angle − cos(θi) = −N⃗i · A⃗i

µrel Relative refractive index µi/µi+1

This relation is valid for all interface types that allow for
calculating a normal vector and an intersection point. The
algorithm from Equation 2 to 7 is performed recursively until
all involved media are passed, e.g. twice for the common
bundle-invariant case, air-glass-water. The last vector with a
point on the outer interface P⃗0n represents the outgoing ray An

(Figures 1 and 2). This algorithm is performed for all exterior
orientations (EOP) k and observed object points (OP) j.

3.2 Error function in object space

As stated in Rofallski and Luhmann (2022), the error function
for optimization (e.g. for bundle adjustment) can be formulated
in object space (Figure 2). Hence, the orthogonal distance
between the outgoing ray A⃗n and the approximate value for
the corresponding object point is obtained according to Mulsow
and Maas (2014) and minimized to obtain a 3D residual vector

⃗∆xyzk,j , as follows:

⃗∆xyzk,j = P⃗j − P⃗0n(k, j)

− A⃗n ·

 A⃗n · (P⃗j − P⃗0n(k, j))∣∣∣A⃗n

∣∣∣2
 (8)

P⃗j jth point in object space

P⃗0n(k, j) Starting point of the outgoing ray for point j
and exterior orientation k

A⃗n Direction vector of outgoing ray

Contrary to usual bundle adjustment error functions where
the reprojection error is minimized in image space, this has
a handful of advantages, as pointed out by Rofallski and
Luhmann (2022). Most importantly, after computationally
cheaper undistortion, no iterative model coordinate has to be
obtained in image space which is a major improvement over
other ray tracing procedures in terms of computation speed and
analytical evaluation, such as in Mulsow and Maas (2014).

The model was integrated into our high-performance bundle
adjustment program, based on the C++ library Ceres-solver
(Agarwal et al., 2022). In further contrast to Rofallski
and Luhmann (2022), we integrated the model with the use
of analytic derivatives for all parts, except for the iterative
undistortion of the measured image coordinate. Strict use of
the chain rule, as is the case with ”automatic differentiation” in
Ceres, obtains the strict derivatives with respect to all unknown
parameters, resulting in a significant speed improvement over
numerically determined (i.e. finite differences) derivatives.
However, the undistortion part of the computation either fills
in seamlessly with the analytical derivatives, if distortion
parameters are optimized or they can be fully omitted if
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Figure 2. Visualization of the error function in object space. The
orthogonal line-point distance ∆xyzk,j is calculated as a 3D

vector that is subject to minimization by means of least squares.

distortion parameters are not estimated in the optimization
process. This results in an even higher computation speed gain.

After obtaining the resulting Jacobian J and the residual vector
d⃗l, the normal equation system can be formulated:

(JT ·P · J) · d⃗x = JT ·P · d⃗l (9)

J Jacobian containing partial derivatives
P Weight matrix

d⃗x Reduced vector of unknowns

d⃗l Reduced vector of observations

For datum definition, we use Helmert constraints for translation
and rotation and distance constraints for scale definition
and hence a free network adjustment. The constraints are
formalized in the matrix of constraints B and the vector of
discrepancies w⃗. These are bordered on the normal equation
matrix and absolute term vector (Luhmann et al., 2020).

C =

(
JTPJ BT

B 0

)
c⃗ =

(
JTP d⃗l

w⃗

)
(10)

For computational stability, we employ an implementation
of the well-known Levenberg-Marquardt algorithm with
multiplicative extension, according to Marquardt (1963). A
pseudo code for the entire method is shown in Algorithm 1.

4. ERROR-FREE SIMULATION

To motivate for the evaluated data sets, we first show
the theoretical effects of dome decentering in a simulation
with error-free image coordinates. These were obtained by
employing the ray tracing model by Mulsow and Maas (2014)
and explicitly projecting the refracted image coordinate to the
sensor. This procedure was performed iteratively, based on a
small close-range data set with a GSD of about 30 µm and an
average image scale of 1 : 5 (section 5.1). The major interest
here is the resulting residual pattern when neglecting refraction.

We have simulated three data sets with a dome center shift
of each 5mm for each direction and an additional data
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Algorithm 1 Pseudo code for the optimization algorithm
to optimize the squared sum of weighted residuals SSR

Require: p′m, EOP , IOP , OP , All Xd, All µ
ϵ← 1e−6
n← Number of media
P ←Diag. weights for all p′m
if Optimize distortion is false then

p′u(k, j)← undistort(p′m(k, j), IOP ) ▷ Only once
end if
while CostChange > ϵ do

if Optimize distortion is true then
p′u(k, j)← undistort(p′m(k, j), IOP ) ▷ Each iter.

end if
for All undistorted points p′u(k, j) do

A1 ← coord2ray(p′u(k, j), EOPk, IOP ) ▷ Eq. 1
P01 ← O′

for i← 1 to n− 1 do
P0i+1 ← int ray sphere(Ai, Xdi) ▷ Eq. 3
Ni ← Xdi − P0i+1 ▷ Eq. 6
Ai+1 ← FRT (Ai, Ni, µi, µi+1) ▷ Eq. 7

end for
dl← dist ray2point(An+1, OPj) ▷ Eq. 8
J ← calculate derivatives

end for
B ← set datum(OP )
C ← concat(JTPJ,BT ; (B, 0)) ▷ Eq. 10
c← concat(JTPdl;w) ▷ Eq. 10
SSRold ← eval function(Parametersold)
dx← Levenberg Marquardt(C, c)
IOP,EOP,OP,Xd, µ← +dx
SSRnew ← eval function(Parametersnew)
cost change← (SSRold − SSRnew)/SSRnew

end while
Sx ← covariance(C)

set with all three coordinate components shifted by 5mm.
Both modeled spheres coincided, i.e. X⃗d1 = X⃗d2 . Apart
from the camera constant set to c = −11mm, all parameters
were simulated with zero value. Subsequently, the data sets
were adjusted using the Brown model with radial-symmetric
and tangential-asymmetric (decentering) distortion, as well as
affinity and shear to show the capability of absorbing the
refraction parameters.

Figure 3 shows the median residuals in a predefined grid over
all images. Quite prominently, lateral shifts in X and Y cause
systematic effects in the order of 1/3 px. In contrast, the
longitudinal deviation in Z does not cause any major effects
although small systematic patterns persist in the edges. The
highest residual distortions arise from a shift in all coordinate
directions up to 1 px. Table 1 shows the accuracy and precision
details, comparing to the simulated reference coordinates.
Relative accuracy is determined as the relation of RMSXY Z

with the maximum object extent of 106.4mm. Principally, a

Table 1. Results of simulated data sets with different dome
center shifts of each 5mm, optimized with the Brown model

including all distortion parameters. RA is the relative accuracy,
referring to the ratio of the maximum object dimension of

106.4mm and the RMSXY Z value.

σ0

[µm]
RMSX

[mm]
RMSY

[mm]
RMSZ

[mm]
RMSXY Z

[mm]
RA

[1 : N]

δX 0.470 0.0015 0.0014 0.0053 0.0057 18982
δY 0.511 0.0015 0.0017 0.0033 0.0040 27050
δZ 0.008 4.1E-5 3.7E-5 3.2E-4 3.3E-4 327879
δXYZ 1.032 0.0055 0.0050 0.0075 0.0106 10208
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1/3 px
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(d) δX = δY = δZ = 5mm

Figure 3. Residual pattern for simulated dome center offsets for
offsets in X (a), Y (b), Z (c) and XYZ combined (d). Especially

lateral offsets cause systematic residual patterns whereas
longitudinal deviations (Z-direction) are well absorbed by the

Brown model. Note: (c) is scaled by factor 100.

perfectly axis-symmetrical behavior would be anticipated for
shifts in δX and δY and point-symmetrical for δZ which is only
approximately the case. The residual asymmetries most likely
arise from an irregular point and camera station network from
the original data set which was the base for this simulation.

Results in object space confirm the systematic residuals in
image space and show a considerable accuracy loss which
cannot be fully absorbed, especially for the laterally shifted
data sets. The object space residuals (exemplary shown
in Figure 4 for δX = δY = δZ = 5mm) after transformation
show a systematic wave-like radial pattern with outside vectors
pointing in and inside vectors pointing out. Hence theoretically,
errors arise from neglecting refraction in the camera model,

Figure 4. Object space residuals compared to reference data set
for δX = δY = δZ = 5mm
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especially if lateral shifts are present. This however is on the
margin that most likely only affects measurements of highest
quality.

It has to be considered that the simulated image coordinates
are free of any errors and might scale with measurement
uncertainty in image space or the dome offset in the respective
coordinate direction. However, increased noise in the data
might as well ”smear” the shown patterns and conceal the
systematic effects that occur with smaller margin. To
investigate on this behavior, real calibration data sets are
evaluated in the next section.

5. EVALUATION ON REAL DATA SETS

Two data sets with different dimensions were evaluated to
show possible limitations and applications for the model with
real data. First, a close-range data set with a small flat
calibration artifact (60mm× 60mm) was evaluated. Secondly,
we focused on a medium-size calibration with a more
three-dimensional calibration artifact of considerably larger
size (1500mm× 1000mm× 200mm). The camera systems
and exemplary images are provided in Figure 5.

In addition to our approach, we also implemented the
approach, given by Mulsow and Maas (2014) for hemispherical
dome ports. Since the underlying physics are equal to
our representation and only the optimization procedure is
changed from image space to object space, it is assumed
that results deviate only in small margins. However, the
changed optimization procedure constrains the derivatives to be
numerical and hence should require significantly more time per
iteration than our model. The denomination for our approach
will be ”Ray tracing with minimization in object space” (RTO)
whereas the standard by Mulsow and Maas (2014) will be
referred to as ”Standard ray tracing” (RT).

For all evaluations, we set the refractive index of air to
µair = 1.00028 and for glass to µglass = 1.49. Additionally,
the dome radii were fixed, as stated from the data sheets of the
respective dome ports and presented in Table 2. Apart from
that, all parameters (i.e. exterior orientations [EOP], interior
orientation [IOP], object points [OP], position of coinciding
dome centers and refractive index of water) were part of
adjustment if not stated otherwise for a given data set.

For precision verification, we considered internal statistics,
such as standard deviation of unit weight σ0 and respective
standard deviations for some parameters, obtained from the
cofactor matrix. Accuracy was evaluated differently between
the data sets. In data set 1, a set of reference coordinates
was available. Resulting coordinates of each data sets were
transformed by Helmert transformation without scale (6DOF)

Table 2. Relevant setup parameters for both evaluated data sets

Data set 1 Data set 2

Camera Basler Ace acA2040-25gm Nikon D750
Focal length 10mm 24mm
Resolution 2048 × 2048 px 6016 × 4016 px
Pixel pitch 5.5 µm × 5.5 µm 6.0 µm × 6.0 µm

Interface material Acrylic glass Acrylic glass
Dome radii r1; r2 31.3mm; 34.4mm 75.7mm; 83.4mm

No. images 12 25
No. image points 2883 2471
Image scale [1:m] 5 50
Artifact dimensions 60 × 60mm2 1500 × 1000 × 200mm3

External reference Coordinates Lengths

(a) Camera system for close-range
data set. A Basler Ace machine
vision camera in a 3” acrylic dome
port housing from BlueRobotics
(Kahmen and Luhmann, 2022)

(b) Camera system for
close-range data set. A Nikon
D750 with 24mm lens in a
NiMAR NI3D750ZM housing
with dome port

(c) Exemplary image of
close-range data set

(d) Exemplary image of
medium-size data set (snippet)

Figure 5. Camera systems of the two data sets (a, b) and an
exemplary image from the bundles (c, d). Note: Due to poor

focus, the elevated points visible in (c) for the close-range data
set were removed, resulting in the described 2D artifact.

to the reference coordinates, and RMS values of residuals
were analyzed. For the second data set, 12 accurately
determined reference lengths were available that were not used
as constraints for adjustment. These were evaluated towards the
length measurement error (LME) between actual and reference
lengths, according to German guideline VDI/VDE 2634-1.
Stated RMS and MAX values refer to the LME. The average
uncertainty of the reference lengths was 2.8 µm in air. Not all
of the stated reference lengths by Menna et al. (2018b) were
available, hence LME errors are not fully comparable to the
mentioned contribution.

5.1 Close-range calibration (data set 1)

This data set was acquired in a small water tank, filled
with clear fresh water and originally obtained for calibrating
an ultra-close-range underwater weld-inspection system by
Kahmen and Luhmann (2022). A single monochromatic
camera with 10mm lens observed a flat calibration artifact
that was marked with ring-coded targets. It was integrated
in a low-cost acrylic housing with a 3” dome port which
was not customized for the used camera and its placement
was determined iteratively by the procedure in Kahmen and
Luhmann (2022). Hence, offsets might be increased, compared
to a commercial and customized dome housing that is available
for DSLR cameras. The GSD was about 30 µm.

Placed about 100mm below the water surface, the artifact
was imaged at an average distance of 50mm following a
standard self-calibration protocol with convergent images and
roll diversity which resulted in 12 images. Due to the limited
depth of field in such close range, camera tilting could only
coarsely be performed, as targets quickly run out of focus.
Additionally, illumination was very challenging which led to
underexposing targets in image corners.
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Figure 6. Bundle configuration for the close-range data set 1.
Cameras are shown in red, points are colored in blue.

Three well-spread length constraints were introduced for
scaling, as stated best practice by Luhmann et al. (2020). All
object points observed with less than four rays and exterior
orientations with less than six corresponding points in object
space were excluded from the bundle. A dry calibration in
air was obtained before the dome port was mounted onto the
acrylic tube and the calibration underwater was performed. The
IOP of the dry dataset were provided as fixed parameters for
further analyses.

5.2 Medium-distance calibration (data set 2)

The presented data set resulted from a camera calibration,
carried out at Baia del Rogiolo in Tuscany, Italy. For reference,
the data was part of earlier contributions (Menna et al. 2017a;
Menna et al. 2018b; Menna et al. 2018a).

A 1500 × 1000mm2 aluminum Dibond composite board
with 160 circular coded targets was imaged with a Nikon
D750 DSLR camera and 24mm lens in a commercial dome
port housing. This housing was customized for the specific
camera-lens setup and should hence provide a well-centered
configuration. The dome radius was more than twice the size
of the radius from the first data set. Some elevated points
at about 20 cm above the plane were present for additional
depth variation in the artifact. The relevant parameters are
summarized in Table 2. The test field was placed about five
meters below water surface and imaged at an average distance
of 1.2m following a standard self-calibration protocol with
convergent images and roll diversity which resulted in 25
images. The Ground Sample Distance (GSD) was 0.3mm.
Again, all coordinates with less than four image rays and
images with less than six observed points were eliminated from
the bundle beforehand. Figure 7 provides an overview of the
imaging geometry.

5.3 Results

We analyzed the data sets with the following parameters:
First, as a reference, we obtained the Brown model calibration
with all camera and distortion parameters taking part in the
optimization (BRN). Secondly, we optimized for the dome
offsets while keeping the interior orientation constant either
at values, provided by in-air calibration (RT/RTO Air) or
those resulting from the aforementioned Brown calibration
with the same data points as a two-step procedure (RT/RTO
UW). Since no dry calibration was available for the second
data set, the air-analyses were only performed for the first
close-range data set. It is worth noting that between the in-air

Figure 7. Bundle configuration for the medium-distance data set
2. Cameras are shown in red, points are colored in blue.

calibration (without dome) and the underwater calibration, the
camera remained stable. Additionally, we also simultaneously
optimized for both the dome offsets and the full camera
parameters in the Brown model (RT/RTO + IOP). Results are
depicted in Table 3. The analyses were performed on a new
notebook with Intel i9, 10th Gen., 2.40 GHz, 64Gb RAM. No
observations were weighed according to any apriori standard
deviations to solely focus on the performance of the models.

For the close-range data set, an overall high precision and
accuracy can be stated from σ0 and RMSXY Z in all analyses.
The Brown approach had a σ0 value of about 1/12 px. The
own implemented RTO algorithm produces similar results
to the RT algorithm, apart from the values for the RTO +
IOP estimation. These differ strongly between the two ray
tracing algorithms. In general, estimating the dome offsets
improves the accuracy, depending on the chosen configuration
by 13 - 34%. The best performance was obtained from
employing the two-step calibration by first solving for the
Brown parameters and then fusing these as fixed parameters
into the RT/RTO model. Calibration with simultaneous
determination of IOP and the dome offsets were generally
solvable in both models but produced highly unreliable
results which differed significantly from all other parameter
estimations. We observed that estimated parameters were,
according to the parameters’ standard deviations, significant
but are highly doubtful concerning their physical meaning.
Dome offsets were estimated significantly, except for the
estimation with predetermined Brown parameters. In this
case, offsets were rather small in lateral direction and at least
one order of magnitude lower than with the in-air calibration
for the longitudinal Z-direction. The processing time of the
Brown model and the RTO model was equally fast at about
0.02 s without estimation of IOP and about factor ten slower
when simultaneously estimating interior parameters, as well.
Compared to standard ray tracing, this is a computation time
decrease of about factor 80 and 40, respectively.

For the medium-size data set, high accuracy and precision
persisted. The value of σ0 in image space was about 1/4 px.
Relative accuracy was about three times higher than with the
close-range data set. However, no accuracy or precision gain
was obtainable by introducing the dome offset parameters by
RT and RTO. Dome offset parameters again were consistent
among the ray tracing algorithms for the sole estimation of
the offset despite not being estimated significantly. Adding
the IOP to the problem causes unstable results and only rough
accordance between the two ray tracing algorithms, as either the
absolute value seems quite high (RT) or the standard deviation
is very high (RTO). The mean LME is negative throughout all
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Table 3. Real data set results for Brown (BRN) and both ray tracing (RT/RTO) methods. Bracketed σ0 for RTO shows standard
deviation (SD) in object space. δxyz are the respective dome offsets with bracketed SD below. RA is the relative accuracy, tit

represents the time for a single iteration. Bold entries have highest accuracy or lowest computation time per column and data set.

σ0

[µm]
δx

[mm]
δy

[mm]
δz

[mm]
RMSXY Z

[mm]
Mean LME

[mm]
RMS LME

[mm]
Max LME

[mm]
RA

[1 : N ]
tit
[s]

C
lo

se
-r

an
ge

da
ta

se
t

BRN 0.45 0.018 6016 0.02
RT (Air) 0.93 -0.107

(0.005)
-0.711
(0.005)

-0.918
(0.029) 0.016 6820 2.3

RT (UW) 0.48 0.000
(0.003)

0.000
(0.003)

-0.053
(0.015) 0.014 7788 1.6

RT + IOP 0.42 0.023
(0.002)

-0.663
(0.002)

13.565
(0.039) 0.015 6889 8.2

RTO (Air) -
(5.24)

-0.102
(0.004)

-0.712
(0.004)

-0.879
(0.022) 0.015 6996 0.02

RTO (UW) -
(2.70)

0.000
(0.002)

-0.001
(0.002)

-0.037
(0.012) 0.013 8038 0.02

RTO + IOP -
(2.43)

0.668
(0.084)

-4.107
(0.096)

-3.061
(0.397) 0.019 5751 0.2

M
ed

iu
m

-s
iz

e
da

ta
se

t BRN 1.41 -0.031 0.072 -0.169 21679 0.02
RT (UW) 1.41 0.001

(0.007)
-0.002
(0.008)

-0.001
(0.013) -0.031 0.072 -0.169 21703 1.4

RT + IOP 1.41 0.126
(0.055)

-0.332
(0.095)

-2.599
(0.714) -0.034 0.076 -0.176 20554 5.7

RTO (UW) -
(53.79)

0.004
(0.006)

-0.005
(0.006)

0.001
(0.010) -0.033 0.077 -0.175 20480 0.02

RTO + IOP -
(55.74)

0.176
(0.074)

-0.583
(0.097)

-0.013
(12.74) 0.002 0.083 -0.204 18949 0.3

analyses at about 0.03mm. Speed of the RTO algorithm was
again equal to the Brown model when fixing interior orientation
parameters. If these are optimized for as well, the time per
iteration again decreases by factor ten in the RTO model. RT
was again comparably slow and computation time relations
from the first data set are reflected here, again.

5.4 Discussion

The two presented data sets are quite diverse in their
dimensions, accuracies and known parameters. Firstly, we
were able to determine offsets in all analyses but with different
physical meanings and statistical reliability. Regarding physical
interpretability, an in-air calibrated camera with added dome
center should be calibrated to obtain meaningful parameters.
Hence, dome offset parameters from RT/RTO (Air) are most
likely closest to the actual parameters. This strict representation
improved the accuracy of data set 1 but so did other analyses,
as well. Unfortunately, we were unable to obtain a dry
calibration for the second data set, disabling an independent
verification. Next, calibrating the Brown parameters first with
additional ray tracing is not strictly physical, for the calibrated
distortion parameters absorb most of the resulting distortion.
Residual offsets only add an additional radial correction term
with a different principal point and small margin to account
for any residual error patterns. This might as well cause
overparametrization, especially in case of data set 2 where
accuracy is decreased by introducing ray tracing parameters.
Results from the first and other (unpresented) data sets indicate
an accuracy improvement from this procedure, despite its
questionable physical meaning. Simultaneous estimation of
IOP and dome offsets led to degenerated systems of equations.
Major correlations of the dome offset with the principal point
and camera constant arose and were close to |ri| = 1 (δX
with x′

p, δY with y′
p and δZ with c). We tried excluding these

parameters and adjusting for distortion parameters only but

could not obtain any results of higher accuracy from this setting,
either. This remained, even though all major correlations were
eliminated with that step.

The ambiguous accuracies between data sets and accuracy loss
for the ray tracing approaches in data set 2 may result from
many factors which cannot be fully decided within this paper.
A possible reason may be the degrading image quality towards
the edges. As mentioned by Menna et al. (2018b), effects such
as chromatic aberration, astigmatism and coma might cause an
image quality loss which is significantly higher than refractive
effects. Despite being a considerably bigger issue for flat ports,
imperfectly centered dome ports suffer from these effects, as
well. Also, the field curvature effect (i.e. a spherical focus field,
enhanced by the lens character of the dome port) creates blurry
areas in image corners (Menna et al., 2017b) which should
cause the main image quality loss. Figure 8 shows a snippet of
data set 2 from the image center and the top left corner. A strong
decrease in sharpness can be observed in the top left image
(b) whereas the center image contains sharp targets. Despite
resulting from a customized housing and a high-quality DSLR
camera, the sharpness decrease and refraction effects might
overlay each other. It can thus be assumed that the centering
is quite well and offsets are too small to be determined.

Additionally, the determinability might be affected by the
given dome radii. With the first data set, rather small radii
were present whereas the second data set had twice as large
dome radii. Due to a higher curvature in a smaller radius,
offsets might increase effects in the image and hence their
determinability in the presented models. Also, the relation
between the acquisition distance and the dome offset might
have an effect.

The mean LME in the medium-size data set is negative
throughout all analyses (except for the rather unreliable RTO +
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(a) Image center (b) Top left image corner

Figure 8. Exemplary targets in image center (a) and in the top
left image corner (b). Sharpness reduction can be observed
towards the edges, probably overlaying refraction effects.

IOP), pointing towards a possible temperature-induced scaling
effect. This might be caused by the water temperature affecting
the calibrated lengths. However, temperature correction was
performed beforehand by applying the given linear expansion
coefficient of aluminum Dibond panels α = 0.024mm/m ·K
to the lengths. However, temperature gradients can still occur
and affect the assumed length deviations, probably causing the
shown offset for the mean LME.

In the close-range data set, a comparably low relative accuracy
is presented. This should be caused by the very large image
scale which pushes towards the limits of photogrammetry.
This concerns imaging quality, camera and object stability,
heterogeneous illumination and even the targets’ printing
quality where very small errors cause a high relative error
magnitude due to small object dimensions.

Computation time was significantly reduced with the RTO
model. The algorithm can be described fully analytical if
no interior orientation parameters are optimized. Hence, the
method is as fast as the standard Brown model with the added
value of obtaining a strictly physical model to the underwater
analysis. Adding IOP to the problem, a numerical module
is added which solves for the undistortion and its derivatives
numerically and adds the result to the analytical values. Hence,
a considerable speed decrease can be observed which still
provides a speed improvement on the order of factor 40 - 80
over the standard ray tracing. This speed improvement is even
considerably higher than the stated factors by Rofallski and
Luhmann (2022) who found a factor of roughly ten between
their numerical implementation of the algorithm for flat ports
and its counterpart by Mulsow and Maas (2014). Thus,
analytical derivatives decrease computation time by factor eight
in this case. We refrained from optimizing the refractive index
as it is highly correlated and no useful results came from the
inclusion of the parameter.

6. CONCLUSION

A versatile and efficient optimization model for dome ports,
capable of providing statistical metrics in object space, was
presented in this contribution. We have shown the theoretical
relevance with simulated data. Furthermore, we presented
two real data sets with different outcomes regarding accuracy
improvement and parameter determinability. Computation time
decreased significantly while results were similar to a standard
ray tracing algorithm from literature. Thus, a significant
improvement towards larger data sets and real-time applications
is made for underwater analysis without loss of accuracy.

The presented computation time decrease can also be
transferred to the flat port model by integrating analytical

derivatives into the given model, as well. It is assumed that
computation time would be comparable to the Brown model
implementations, hence enabling real-time applications for
both flat and dome ports with this improvement. Especially
applications with ROV and other unmanned systems, relying
on automated visual navigation (i.e. Simultaneous Localization
and Mapping) might benefit from this model.

Large Structure from Motion configurations which include
several thousands or millions of observations are currently
impractical to solve with the standard ray tracing procedures.
Here, the proposed methodology might improve significantly
towards reasonable computing times. We will focus on this in
future work. Of special concern might be a trivial solution to
the error function which hasn’t raised any issues for us, so far.
When coinciding all points and perspective centers in one single
point, all rays pass exactly through all object points and residual
errors become infinitely small. Only distance constraints or
ground control points would cause any discrepancy in the
model. Hence, good approximate values and probably more
than one distance constraint or several ground control points are
necessary to avoid this trivial solution, especially when many
points are present. As stated before, this has not yet been
an issue with any data set but should be kept in mind when
designing the bundle geometry.

Fundamentally, the concentric sphere assumption, as well as
fixed radii, can be eliminated if the bundle configuration allows
for meaningful results. However, it has been shown that
parameter determination is already rather complicated with
small dome offsets. Hence, an even higher degree of freedom
which would result from estimating additional radii or sphere
centers may be unrewarding for future work. Especially
changes in the radii have shown no observable accuracy
influence and are very likely to not produce any meaningful
results, if adjusted simultaneously. Additionally, the values can
be gained from manufacturers’ data sheets.

The accuracy gain in the presented data is rather small and
probably not of practical concern. However, both our own
presented simulations with error-free image coordinates and
other simulations, e.g. by Kunz and Singh (2008), indicate a
possible accuracy gain if the offset between entrance pupil (or
perspective center in our model) and the dome center is high
enough. A dependence on the dome radii might be possible and
thus an explicit model be the more important for small radii.
Simulation series on shifted dome offsets, different dome radii,
measurement accuracy in image space and other functional
constraints should be carried out in the future and can form a
sharper picture on the matter.

The problematic determinability of the small offset parameters
can complicate a closed control loop for automated camera
centering inside dome port housings. Constraining one or
two coordinate directions of the offset might be sufficient
with conventional manufacturing accuracies. With only one
remaining free direction of offset, results might stabilize and
visual servoing be possible with the presented method.

All in all, we have presented a novel methodology with
high potential towards large data sets which are currently
hard to evaluate with the state-of-the-art ray tracing models.
Dome offsets can be estimated from the evaluated data sets,
further investigations towards the limits and advantages of
such methodology have to be performed. However, the main
advantage of the major computation time decrease persists and
should benefit the multimedia photogrammetry community.
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