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ABSTRACT:

Building boundary extraction is an active research topic in the field of feature extraction from airborne LiDAR point cloud data.
Owing to the high complexity of most building extraction algorithms based on point clouds, multiple feature parameters must
often be combined with iterative operations, particularly in the process of mitigating the sawtooth phenomenon using the sleeve
algorithm and its improved versions. To improve the degree of automation and ensure accuracy, this study proposes a fast corner
point detection method based on a dimensionality reduction technique, which utilizes reduced data mapping from 3D to 2D. We
converted the boundaries extracted by the alpha shape algorithm to a 2D image and applied recursive Gaussian filtering with a
relatively high level of automation to smoothen the image edges and mitigate the sawtooth phenomenon, thereby improving upon the
sleeve algorithm, which requires a large number of iterations. Subsequently, the DouglasPeucker algorithm is used to retrieve the
contour key points after extracting the contour lines and obtaining the regularized building contours using the grouped orthogonal
regularization method. To verify the accuracy of the algorithm, it was compared with a cluster and adjustment (CAA)method
based on the sleeve algorithm using three major evaluation metrics with respect to four representative building instances in two
experimental datasets of urban areas. The value of the RMSE was reduced by an average of 43.79%. In addition, the time
complexity decreased from O(n2) to O(n). These results demonstrate that the proposed method improves not only the accuracy of
boundary extraction, but also the efficiency of data processing.

1. INTRODUCTION

The identification and extraction of building boundaries are im-
portant for topographic map repair, change detection, and many
location-based services (Rau, 2012). Light detection and ran-
ging (LiDAR) can provide precise surface 3D information of
buildings and is able to preserve the real structure of the build-
ings after extraction (Fan et al., 2014; Guo et al., 2021). How-
ever, the LiDAR data used to generate simplified boundary
lines require a significant number of iterations. By contrast,
extracting buildings from high-resolution images cannot guar-
antee the recovery of the real building shape because key build-
ing parts may be missing. Despite these limitations, the process
of building boundary extraction and simplification based on im-
ages is highly automatic and fast.

Guo et al. (2021) used two types of data, namely point cloud
and image, to extract buildings from the same area and demon-
strated that the method based on LiDAR can provide more
accurate extraction results. Therefore, the geometric proper-
ties and echo information of LiDAR point clouds are currently
used by most researchers for building extraction (Dey et al.,
2020; Polewski and Yao, 2019; Yao and Wu, 2021; Yi et al.,
2017; Zhang et al., 2018). The alpha-shape algorithm is gener-
ally used to determine building boundaries (Chen et al., 2017;
Jung et al., 2017; Sohn et al., 2012) and is simple, efficient,
and stable. However, the results of the alpha shape algorithm
exhibit sawtooth phenomenon and cannot be formed into reg-
ular shapes because of the discreteness of the point distribu-
tion. To solve these problems, the sleeve algorithm (Wei, 2008)
∗ Corresponding author

and its improved versions (Liu et al., 2020; Ping et al., 2020)
have been proposed to filter out the rough boundaries in the ex-
tracted point cloud and retain key corner points, such as turn
points. However, it is challenging to simultaneously find a suit-
able threshold for screening and obtain accurate results owing
to the presence of the sawtooth phenomenon. Moreover, a large
number of iterative experimental steps are generally required to
obtain satisfactory results. Hence, this process is time and re-
source intensive. Furthermore, Widyaningrum et al. (2020) ap-
plied a shrinking circle algorithm to convert the ALS boundary
points extracted by the alpha shape algorithm into medial axis
transform (MAT) points. These MAT points were grouped into
corresponding medial branches using corner-aware segmenta-
tion to extrapolate the corner point positions based on the radii.
The segmentation step requires a large number of iterations to
adapt the thresholds, which is time consuming. By contrast,
the process of building boundary extraction and simplification
based on images (Turker and Koc-San, 2015; Zhu et al., 2020)
is automatic and fast. RAN et al. (2020) proposed an auto-
mated method to extract and optimize building boundaries us-
ing Canny detection and the Hough algorithm. This method
features a high degree of automation in the boundary extraction
process without the need for a tedious iterative process. How-
ever, it does not make full use of the structural characteristics
or rules of the building target, which may affect the accuracy
of subsequent building extraction. Image-based methods for
building extraction can be broadly classified into two categor-
ies: (1) building extraction based on artificially designed fea-
tures (Alshehhi et al., 2017; Ghanea et al., 2016) and (2) build-
ing extraction based on deep learning (Lv et al., 2019; Szegedy
et al., 2015; Zhou et al., 2020). The artificial-feature-based ap-
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proach relies mainly on geometric, spectral, and architectural
information features to achieve building extraction in remote
sensing images. Owing to the complex background information
present in remote sensing imagery and the low distinguishabil-
ity between building features and backgrounds, building con-
tours can often be missing or distorted. Although an auto-
mated neural network can extract the distinctive features of an
input image, it may fail to detect certain object details because
of large variations in building textures. Therefore, the image-
based automatic building boundary extraction method may not
be suitable for accurate extraction of buildings from images, but
is more efficient.

To solve the problem of inaccurate and ineffective corner point
extraction resulting from simplifications in the sleeve algorithm,
this study proposes a method based on a dimensionality reduc-
tion technique, which reduces the initial contour extracted by
the alpha shape algorithm from airborne LiDAR data into a
2-D image. The image is used to mitigate the sawtooth phe-
nomenon by smoothing the image edges to achieve effective
corner point extraction. Subsequently, the building boundary is
extracted again and boundary simplification and regularization
are performed. This method can improve the degree of automa-
tion of the entire process while ensuring accuracy.

2. METHODOLOGY

In this study, we propose a fast corner-point detection method
based on dimensionality reduction. First, a method based on
airborne LiDAR data was used to extract the building points,
and the alpha shape algorithm was used to extract the initial
boundary. Second, the extracted contour was converted into a
2-D image. Finally, the image-based method was used to ex-
tract the boundary of the building again and perform boundary
simplification and regularization. This process is illustrated in
Figure 1.

Figure 1. Flow diagram of the proposed method

2.1 Building Extraction

Filtering is a technique of dividing a LiDAR point cloud into
ground and non-ground points. The non-ground points are sub-
sequently separated from the building points. This study util-
izes a filtering method based on the cloth simulation filter (CSF )
proposed by Zhang et al. (2016). The principle of the algorithm
is that a piece of virtual cloth sinks on the reversed surface of
the terrain due to gravity (Liu et al., 2020). The change in the

terrain can be observed directly and clearly by controlling ri-
gidity, which represents the stiffness of the cloth in the pre-
vious analogy. Buildings, automobiles, vegetation, and other
non-ground points were among the points generated using fil-
tering. To distinguish the buildings from the non-ground points,
we used a clustering segmentation method proposed by Hong
et al. (2014) using the convergence area and slope of the point
cloud as thresholds after classifying the point cloud based on
elevation. Specifically, the surface equation of the local region
(the eight neighborhoods of the point cloud) is fitted using the
least squares method (equation1). In space, the slope of the tan-
gent plane of the fitted surface at a point can be calculated using
the gradient formula (Equation 2 ).

f(xi, yi) = ax2
i + by2

i + cxiyi + dxi + eyi + f, (1)

|gradf(xi, yi)| =
√

(
∂f

∂xi
)2 + (

∂f

∂yi)
)2, (2)

where xi, yi are the coordinates of LiDAR points

The general steps of the algorithm are as follows: (1) select the
bottom-left point in the point cloud as the seed point and create
two 3 × 3 arrays C and N in the argument space; (2) fit the sur-
face equation corresponding to the area of array C using equa-
tion 1; (3) calculate the gradient values of the seed point and
its 8 neighboring points in the fitted surface and compare them
with the slope threshold: if a gradient value is greater than or
equal to the slope threshold, the corresponding position in C of
the point is assigned a value of 0; otherwise, the assigned value
is 1; (4) calculate the sum of all values in array C, which repres-
ents the area statistics of the local area where the seed point is
located. If the sum of C is larger than N, the seed point is con-
sidered a building point. (5) The remaining points are searched
from left to right and bottom to top, and the steps (1) through
(4) are repeated until all points are determined. This method can
effectively overcome the problem of missing details in the local
areas of buildings resulting from noise and observation errors
(Huo et al., 2019). After identifying the building points, each
building roof is extracted using the region growing segmenta-
tion algorithm, which is based on the angle difference between
the surface normal vectors to classify the point set associated
with the same plane.

2.2 Initial Boundary Extraction and Image Conversion

The alpha shape algorithm was used to perform the initial 2D
boundary extraction from the projected roof points. Figure 2
depicts the alpha shape algorithm workflow (Shen et al., 2008),
where the S1 point cluster randomly selects a point from S1

and selects a point P2 from the S2 point cluster, which is com-
posed of points whose distance to P1 is less than twice the alpha
value, as shown in Figure 2(a). A circle with radius alpha passes
through any two points P1 and P2. If there are no points in this
circle, the two points are regarded as boundary points and the
line between P1 and P2 as the boundary line. The specific judg-
ment process is as follows: we can use the distance intersection
algorithm (Pradhan et al., 2019) hybrid to obtain the center of
the circle when the coordinates of P1(x1,y1) and P2(x2,y2) are
known:

xcenter = x1 +
1

2
(x2 − x1) +

√
H(y2 − y1), (3)
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ycenter = y1 +
1

2
(y2 − y1) +

√
H(x2 − x1), (4)

where H = ((α2 − S2)− 1/4)
S = (x2 − x1)

2 + (y2 − y1)
2

After acquiring the center of the circle, we determine if there are
other points falling into this circle by comparing the distance
between the points in S2 and the center of the circle with radius
alpha. If the distance is less than alpha, the point is within the
circle, and the line between P1 and P2 is not a boundary line.
Finally, another point from S1 is selected, and the procedure is
repeated until all points in S1 are classified, as shown in Figure
2(b).

Figure 2. Alpha Shapes algorithm principle

In Figure 3(a), the initial boundary exhibits the sawtooth phe-
nomenon owing to uneven point density. To mitigate this and
improve operational efficiency, this study used image-based bound-
ary smoothing instead of the popular point-cloud-based sleeve
algorithm. This process consists of two steps. First, the ini-
tial contour point cloud is rasterized at a certain resolution (0.1
m/pixel in this study) to a 2D image using the initial contour,
as shown in Figure 3(b). Second, this image is smoothed by re-
cursive Gaussian filtering (Van Vliet et al., 1998), which divides
the two-dimensional convolution into independent convolutions
in the X and Y directions for the smoothing operation. Sub-
sequently, the image is converted to a binary image, as shown
in Figure 3(c). Comparing Figure 3 (a) and (c), it can be seen
that the sawtooth phenomenon is effectively suppressed, which
provides a good basis for efficient and accurate boundary ex-
traction from the binary image.

Figure 3. From point cloud to data rasterization: (a) initial
boundary extracted by alpha shapes algorithm; (b) image
Rasterization; and (c) image Gaussian convolution and

binarization

2.3 Boundary Extraction and Regularization

After boundary smoothing in the binarized image by Gaussian
convolution, the sawtooth phenomenon of the original point
cloud is effectively alleviated the resulting image can be easily
filtered to obtain the key corner points. The boundary-tracking

algorithm (Suzuki et al., 1985) was applied for fast contour de-
tection on the binary image. The border point judgment prin-
ciple underlying this function is as follows: in the 4-(8-) con-
nected case, a 1-pixel containing a 0-pixel in its 8-(4) neighbor-
hood is designated as a border point. The boundary represented
by the topological structure derived from the algorithm can be
applied to the image storage. This is because the topology al-
lows simpler image processing without the need to restore the
original image. The image processing include feature extrac-
tion for the boundary, such as the perimeter and area of the
connected domain, which is useful for calculating the area of
the extracted buildings. Subsequently, polygon construction is
implemented using the D-P algorithm (Douglas and Peucker,
1973), as shown in Figure 4. First, we set a distance threshold ε
and formed the baseline by connecting the first and last bound-
ary grid vertices. Next, the distance of the remaining points to
the line was calculated; if the largest distance was greater than
ε, the point with the greatest distance was retained; otherwise,
all the points between the two endpoints of the baseline were
discarded. Finally, the calculation and judgment procedure are
repeated until the distance between the points and the line is
less than or equal to ε.

Figure 4. Principle of D-P algorithm

Starting from the polygons, the direction of the longest edge
was set as the main direction, and the other lines were sorted
in the clockwise direction. The cosine of the angle between
the remaining lines and the main direction was calculated to
perform regularization. If the absolute value of the angle was
greater than or equal to a, the line was considered parallel to the
main direction and the slope of the main direction was assigned.
Similarly, if the absolute value was between 0 and b, the line
was considered perpendicular to the main direction; a cosine
value between a and b indicates a straight line, which does not
need to be regularized. In the final step, all adjusted lines were
connected to generate the outline polygon (Figure 5).

3. EXPERIMENTS AND ANALYSIS

3.1 Data Sets

Two test areas were selected from airborne LiDAR point cloud
datasets: the ISPRS V aihingen dataset (area V) and the ISPRS
Toronto dataset (area T) (Rottensteiner et al., 2012). Most of
the buildings in area V are rural buildings with a sparse distri-
bution density and relatively homogeneous shapes. It has an
average point density of 4 point/m2. By contrast, the build-
ings in Toronto are denser and more variable, with an average
point density of 6 points/m2. Applying the proposed bound-
ary extraction method to two completely different scenarios, the
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Figure 5. An example of regularized building contour

extraction results are convincing. As shown in Figure 6, the
original point clouds of area V and area T are colored by clas-
sification labels. The grey points are the ground extracted by
CSF , with the classification thresholds of 0.5m for the both
areas . The green points denote trees while the red points in-
dicate buildings, which are classified using the slope threshold
(2.0 in area V; 1.5 in area T) and the area threshold ( 50m2 in
area V; 30m2 in area T ).

3.2 Evaluation Metrics

To quantitatively analyze the performance of the direction pre-
diction algorithm, we selected three evaluation metrics proposed
in Guo et al. (2020):

3.2.1 MAD: This reflects the maximum deviation degree
of the extracted corner points by the method. The smaller the
MAD value, the better the method.

MAD = max[
√

(xi − xj)2 + (yi − yj)2], (5)

where xi, yi are the coordinates of the extracted point, and
xj , yj are the coordinates of the point in the ground truth

3.2.2 RMSE: It reflects the true error of corner point ex-
traction. The closer the RMSE value is to zero, the better the
extraction result.

RMSE =

√√√√ 1

N

N∑
i=1

[(xi − xj)2 + (yi − yj)2], (6)

where xi, yi are the coordinates of the extracted point,
xj , yj are the coordinates of the point in the ground
truth, and
N is the total number of extracted points

3.2.3 REA: It reflects the overall extraction effect of the
method on the building boundaries. The smaller the value of
REA, the closer the extracted building footprint is to the actual
value.

REA =
|Sc − Sr|

Sr
, (7)

where Sc is the area of the extracted building, and
Sr is the reference area of the extracted building

3.3 Results

After extracting the buildings from the datasets, the region-
growing algorithm to was used to perform monolithic extrac-
tion of the roof of each building, as depicted in Figure 7. The
reason for the missing buildings compared to Figure 6 is that
the proposed method cannot be applied to buildings with non-
polygonal shapes such as circular arcs; therefore irregular build-
ings are manually removed before roof extraction. In addition,
the extracted building in area T loses some points on the roof
due to the shading effect resulting from vegetation and noise.
However, this effect only occurs inside the roof and has negli-
gible influence on the corner of the roof; therefore, it can pre-
serve the basic shape of the building.

Figure 8 shows the boundary extraction results using the pro-
posed method introduced in section 2.2 and 2.3. As is evident,
building border point extraction is relatively complete and con-
forms to the outline of the building. The average results of each
evaluation metric are presented in Table 1 to provide a quant-
itative comparison. The value of RMSE in area T (0.0537)
is higher than that in area V (0.0418); because more complex
buildings and vegetation are present in area T, the loss of a few
point clouds will significantly affect the extraction accuracy ow-
ing to increased occlusion. However, the values of RMSE in
both the areas are lower than 0.5, which indicates that the pro-
posed method extracts corner points with high precision. In
addition, the value of REA in area V and area T are 0.0418 and
0.0537, respectively, which indicates that the building outlines
composed of the boundary extracted by the proposed method
are consistent with the real shapes. In conclusion, the pro-
posed method exhibited good boundary extraction performance
for regular buildings in areas V and T.

Table 1. Average Results of Boundary Extraction

Area MAD(m) RMSE(m) REA(m2)

Area V 0.557 0.361 0.0418

Area T 0.764 0.497 0.0537

3.4 Comparison and Analysis

To demonstrate the advantage of the proposed method with re-
spect to building boundary extraction over the sleeve algorithm,
we conducted a comparison based on two aspects: (1) algorithmic
time complexity, and (2) boundary extraction precision.

(1) Algorithmic time complexity: The most significant differ-
ence between the proposed method and the method based on the
sleeve algorithm is that this method uses image recursive Gaus-
sian filtering instead of the sleeve algorithm to mitigate the saw-
tooth phenomenon resulting from the point cloud. Therefore,
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(a) (b)

Figure 6. Test areas: (a) area V: ISPRS Vaihingen data set; (b) area T: ISPRS Toronto data set

(a) (b)

Figure 7. Results of building roof extraction

we only compared the time complexity of recursive Gaussian
filtering with that of the sleeve algorithm. Recursive Gaussian
filtering has a time complexity of O(n), whereas, the sleeve al-
gorithm, which uses angle and distance thresholds to perform
nested judgments for filtering the initial boundary, has a time
complexity of O(n2). This implies that the convergence time
of the sleeve algorithm increases by an order of n2 compared
to that of the proposed method when the size of the data in-
creases by n times. This shows that the proposed method can
significantly improve the efficiency by mitigating the sawtooth
phenomenon close to boundaries. In addition, as opposed to the
sleeve algorithm, which requires two thresholds, Gaussian fil-
tering only requires one threshold (standard deviation) in prac-
tice. This results in a decrease in the number of iterations re-
quired to find a suitable threshold and the associated costs com-
pared to the sleeve algorithm.

(2) Boundary extraction precision. We select the four specific
building instances in area V (shown in Figure 9) as examples
to perform a comparison in terms of precision with the CAA

method proposed in Guo et al. (2020), which is based on an
improved version of sleeve algorithm. This comparison re-
flects the effectiveness of the proposed method in mitigating the
sawtooth phenomenon and improving the accuracy of building
boundary extraction. The results of this comparison are presen-
ted in Table 2.

Table 2. Comparison of Boundary Extraction Results

Building
No. Method MAD(m) RMSE(m) REA(m2)

I
CAA 1.428 0.903 0.165

Proposed method 0.487 0.317 0.011

II
CAA 0.682 0.42 0.085

Proposed method 0.513 0.372 0.005

III
CAA 0.817 0.493 0.097

Proposed method 0.541 0.366 0.019

IV
CAA 0.548 0.446 0.074

Proposed method 0.146 0.12 0.004
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(a) (b)

Figure 8. Results of building boundary extraction

(a) Building I (b) Building II

(c) Building III (d) Building IV

Figure 9. Four specific building instances

As is evident from the results in Table 2, the values of the three
evaluation metrics are lower for the proposed method compared
to those of the CAA method proposed in Guo et al. (2020), in-
dicating that the proposed method exhibits better performance
in building boundary extraction. The higher precision is be-
cause of the supplementary effect of Gaussian filtering on parts
of the building corner. Specifically, owing to uneven point dens-
ity and occlusion, the point cloud at the corner may be miss-
ing. Gaussian filtering introduces a dilation effect on the image
boundaries, which complements missing corner points to a cer-
tain extent. Therefore, the proposed method can recover corner
points closer to the true value to obtain a more precise shape.
In addition, among the four buildings listed in Table 2, the en-
hancement effect of the proposed approach for building I was
the most significant. The value of MAD decreased from 1.428
to 0.487, RMSE was reduced by approximately three times,
and REA decreased from 0.165 to 0.011. Notably, the shape of
building I was the most complex among the four buildings, with

the largest number of corner points. The accuracy of each ex-
tracted corner point may be improved; thus, it reaches the max-
imum cumulative improvement in precision. In other words,
the proposed method can effectively improve the precision of
the building boundary extraction.

4. CONCLUSION

In order to achieve fast and accurate extraction of building bound-
ary, this paper proposed a method based on feature dimension
reduction of the LiDAR point clouds. First, the alpha shape al-
gorithm is employed to conduct the initial boundary extraction
from the point clouds of building roofs extracted by the region
growing algorithm. Next, the initial boundary points are con-
verted into the two-dimensional image. The contour lines are
then extracted again on the image using boundary tracking al-
gorithm after Gaussian smoothing. Finally, the DouglasPeucker
algorithm is used to extract the contour key points and obtain
the regular building outlines by using the grouped orthogonal
regularization method. The extraction results (RMSE) of the
proposed method upon two experimental airborne data are prom-
ising: 0.361 m in area V and 0.497 m in area T. To verify the
accuracy of the pipeline, the algorithm is compared against the
CAA method proposed in Guo et al. (2020), which is based on
an improved version of sleeve algorithm for four representative
building objects in area V. By contrast, the values of RMSE is
reduced by 43.79% on average. In addition, the time complex-
ity of the proposed method (O(n)) is lower than CAA method
proposed in Guo et al. (2020) (O(n2)). Based on the above ana-
lysis, it is proved that the proposed method not only improves
the accuracy of boundary extraction but also increases the effi-
ciency of data processing.
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