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ABSTRACT: 

Land Surface Temperature (LST) products from thermal infrared imaging rely on information about the spatial distribution of Land 

Surface Emissivity (LSE). For portable, broadband thermal cameras for drone- or ground-based measurements with camera to object 

distances up to a few kilometres and with meter-scale resolution, threshold-based retrieval of LSE from Fractional green Vegetation 

Cover (FVC) can be used. As seasonal changes in vegetation LSE over the year cannot be accounted for by single satellite images or 

aerial orthophotos, this study evaluates an approach for FVC retrieval via permanently installed RGB webcams and derived Excess 

Green vegetation index (ExG) time series at a high-mountain test site in the European Alps. Daily ExG values were derived from the 

imagery of 27 days between 12/07/2021 and 30/10/2021 and projected to a 0.5 m Digital Surface Model (DSM). FVC reference data 

from 765 in-situ vegetation plots were used to assess the relationship between ExG and the vegetation cover and to determine the 

thresholds of ExG for no vegetation cover and full vegetation cover. Despite the bad correlation between ExG and in-field FVC with 

an R² score of 0.15, an approach using a well-tested orthophoto-retrieved NDVI for FVC retrieval performs just slightly better. The 

comparison of the remotely sensed data and the field measurements therefore remains complex. Time series analysis of both ExG and 

FVC for highly vegetated areas showed a significant decrease from summer to autumn, which reflects the seasonal changes of LSE for 

senescent vegetation. Calculated emissivities for vegetated pixels ranged from the minimum of 0.95 to the maximum of 0.985 over the 

season, while emissivity values for less vegetated pixels stayed constant during the season. The results of this study will be used as 

input to a correction model for remote LST measurements in the context of micro-scale investigations of the thermal niche of Alpine 

flora. 

1. INTRODUCTION

Local plant species distribution in a high alpine environment can 

be traced back to topographically induced differences of micro-

climatic conditions (Scherrer & Körner, 2011). For micro-scale 

investigation and monitoring of alpine plant species distribution 

in relation to thermal niches, land surface temperature (LST) 

plays a key role. Therefore, a high spatio-temporal resolution for 

thermal mapping is necessary to account for the large variety in 

thermal niches, plants can find in a heterogeneous alpine terrain. 

In contrast to soil and air temperature, LST can be surveyed in a 

spatially explicit way by remote sensing. Most LST products are 

satellite-derived and therefore limited in their spatial and 

temporal resolution. With terrestrial infra-red (TIR) 

thermography, however, it is possible to map changes in 

environmental conditions from LST with high spatial and 

temporal resolution, bridging the gap between satellite derived 

LST and direct measurements (Morrison et al., 2020, Scherrer & 

Körner, 2010). Unfortunately, LST retrieval from TIR requires 

atmospheric and emissivity correction. LST has to be corrected 

for atmospheric effects even for ground-based measurements 

with camera to object distances up to a few kilometres 

(Hammerle et al., 2017). Correct estimation of Land Surface 

Emissivity (LSE) in the TIR spectral range has an even larger 

influence in terrestrial thermography, as at-cam measured 

brightness temperature can be significantly lower than LST and 

correction is especially necessary for heterogeneous surfaces 

(Morrison et al., 2020). Emissivity values are object-dependent 

and for natural surfaces (such as rocks, soil, vegetation, water or 

snow) range between 0.90 and 0.99 (Kant & Badarinath, 2002).   

There are different types of methods for retrieval of land surface 

emissivity (Li et al., 2013). Multi-channel-based methods are 

especially used in satellite-based LSE and LST estimation and 

rely on several bands in the thermal infrared range. Physically 

based methods for LSE retrieval need a wide range of different 

input data. Due to their complexity and need for additional data 

and bandwidths these methods are hard to apply in a setting with 

high resolution terrestrial thermography and limited data access 

in mountainous areas such as in the presented study. For these 

applications simpler semi-empirical methods based on surface 

classification or vegetation indices can be applied. The 

assumption for vegetation index-based methods is that the 

surface contains soil and vegetation, but they are usually less 

effective for estimation of rock surface emissivity. Valor & 

Caselles (1996) used the relation between emissivity and 

Normalized Difference Vegetation Index (NDVI) of different 

surfaces to determine LSE. By testing different vegetation 

indices Kodimalar et al. (2020) showed the applicability of the 

method for satellite data but also its difficulties with some 

vegetation indices (VI) being less effective than others and 

seasonal differences. A VI-based estimation of LSE relies on 

beforehand information about emissivity values for different 

surfaces, which can be encoded and used via look-up tables 

(Meerdink et al., 2019; Rubio et al., 2003 and Salisbury & 
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D’Aria, 1992). For urban areas with homogeneous surfaces a 

simple classification of surface types and an assignment of 

emissivities to the surface types can be applied. For 

heterogeneous areas, where mixed pixels occur, containing 

different surface types and emissivities, this approach is not 

accurate enough and a more differentiated approach over VIs and 

calculation of emissivity for mixed pixels is necessary. 

Nevertheless, VI-based methods also need information about soil 

and vegetation emissivity. In most cases bare soil (~0.94) has 

lower emissivity values than full vegetation (~0.985). For pixels 

containing both bare soil and vegetation, emissivity values 

cannot be directly applied. To account for these mixed pixels a 

Fractional green Vegetation Cover (FVC) derived from VI is 

often used to calculate the emissivity per pixel (Sobrino & 

Raissouni, 2000; Tang et al., 2015). 

As green, vital vegetation has much higher emissivities than 

senescent or dry vegetation or woody parts (Meerdink et al., 

2019), LSE is a dynamic variable that is changing along with the 

phenological cycle of the vegetation. Therefore, we strive to 

retrieve the Fractional green Vegetation Cover at an adequate 

temporal resolution to match the days where thermographic time 

series are acquired. Vegetation indices integrate information 

about both fractional cover and greenness or vitality of the 

vegetation, but currently, only permanently installed cameras are 

capable of delivering data at the spatial and temporal resolution 

required for our application. Therefore, the ExcessGreen (ExG; 

Woebbecke et al., 1995) is used as vegetation index that is 

retrievable from the visible spectrum captured by most webcams. 

For comparison, FVC is calculated from an aerial orthophoto 

based, monotemporal NDVI (Zhang et al., 2019), but the focus 

of this study is on an assessment of FVC derived from terrestrial 

close-range sensing against in-situ field data. Finally, we use this 

FVC to retrieve LSE and evaluate the results. 

 

2. STUDY SITE AND DATA 

 
Figure 1. Study area below Mt. Schrankogel, with the webcam 

location (red), all ground control points (of which 11 were 

accurate enough for image processing) and the terrain view angle 

of the camera masked for the area of interest and areas in sight of 

the camera.  

 

2.1 Study Site 

The webcam used in this survey is installed in the Sulztal Valley 

(Stubai Alps, Tyrol), mainly for snow cover mapping and 

vegetation observation as part of the MICROCLIM project 

(https://www.mountainresearch.at/microclim/). Located 

northeast of Mt. Wannenkogel at an elevation of 2645 m a.s.l., 

the camera views the southwestern flanks of Mt. Schrankogel 

from approx. 2200 m a.s.l. upwards to the summit at 3497 m a.s.l. 

(Fig. 1 and Fig. 3). The pictured area covers several vegetation 

types from the subalpine to the nival zone, e.g. subalpine 

shrublands (Rhododendro-Vaccinion and Loiseleurio-

Vaccinion), alpine grasslands (mainly Caricion curvulae, 

Festucion variae, Oxytropido-Elynion), snowbeds (Salicion 

herbaceae) and patches of nival vegetation (Androsacion 

alpinae). Several boulder and scree fields are located in the 

higher parts of the mountain. Bare rocks are exposed at several 

small cliffs in all parts of the area. Due to the steep and fractured 

terrain the study site has heterogeneous surface characteristics, 

which is typical for a high alpine environment. 

 

2.2 Remote Sensing Data 

The installed camera is a commercially available Canon EOS 

2000D. Every 30 minutes the camera automatically sends JPEG 

images to a server. For this survey, 27 days with clear weather 

between 12/07/2021 and 30/10/2021 were chosen. The basis for 

the projection of the webcam images is a DSM with 1 m 

resolution (Dept. of Geoinformation, Province of Tyrol, 2021), 

which has been resampled to 0.5m via SAGA GIS B-spline 

interpolation for better representation of the projected images 

(Conrad et al., 2015). An aerial orthophoto from 2015 (provided 

by the Dept. of Geoinformation, Province of Tyrol, 2021) was 

used to calculate the NDVI and, subsequently, a monotemporal 

FVC for comparison with the webcam-based FVC time series. 

The 1 m resolution NDVI has been resampled to 0.5 m to match 

the DSM resolution. 

 

2.3 In-situ Reference Data 

As reference for the ExG-derived FVC, in-situ surveyed 

vegetation cover is used. At 765 vegetation plots scattered across 

the study area of the project, vegetation cover was recorded 

between 1/7/2021 and 27/7/2021. The area covered by the camera 

includes 506 of the total 765 plots within the study site. The data 

contains in situ estimates of cover of herbs, mosses, bare soil, 

litter scree and rocks, which originate from a vegetation survey 

on 1x1 meter plots (Dullinger et al., unpubl.). As the influence of 

different vegetation types on the ExG is unknown, two different 

approaches were chosen. First, only the cover of the herb layer 

was used (FVCherbs) and second, the cover sum of herb and moss 

layer (FVCherbs+moss), since these are the dominating vegetation 

types of the study site. Since herb and moss layer were estimated 

as independent layers that can overlap, values in the second 

approach can exceed 100%. From a 2D remote sensing point of 

view this makes less sense because a pixel cannot contain more 

than 100% vegetation cover. The location of the plots was 

measured by a differential global navigation satellite system 

(GNSS) with an accuracy of <1 m for 95% of the plots. 

Therefore, the vegetation cover data can be easily extracted and 

compared to projected and georeferenced images. 

 

3. METHODS 

The overall workflow included five steps. After preprocessing 

the webcam time series, a daily ExG was calculated and 

monoplotted onto a DSM. The rasterized ExG images were used 

to calculate the FVC via soil and vegetation thresholds. In the last 

step LSE maps are calculated for every time step. A validation 

was performed with an NDVI-derived FVC (Fig. 2). 
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Figure 2. Overall workflow of the study.  

 

3.1 Webcam Images and ExG 

As shadows have a large impact on calculated vegetation indices 

(Jiang et al., 2019) the image time series of an entire day was 

utilized to avoid differences in the vegetation index calculation 

due to dark areas from shadows. Barbosa et al. (2019) stressed 

the importance of evaluating shading-affected regions in RGB 

imagery to be used for VI derivation (including ExG). In this 

exemplary study, shadows from cloud coverage were assumed to 

have a similar impact on the VI as the terrain dependent shadows. 

Therefore days with bad weather conditions or high cloud cover 

were excluded by manual selection. To further minimize shadow 

effects in the calculated VI time series, the daily VI for each pixel 

was calculated based on the 95th percentile of the RGB intensity 

values I95 recorded on the respective day (eq. 1; eq. 2). 

 

𝐼𝑖,𝑗 = {𝐼𝑖,𝑗,0, 𝐼𝑖,𝑗,1, … , 𝐼𝑖,𝑗,𝑛 } (1) 

 

 

𝐼𝑖,𝑗
95 = {

0.5 ∗ (𝐼𝑖,𝑗,𝑛∗0.95 + 𝐼𝑖,𝑗,𝑛∗0.95+1)

𝐼𝑖,𝑗,⌈𝑛∗0.95⌉
  

𝑓𝑜𝑟 𝑛 ∗ 0.95 ∈ ℤ

𝑓𝑜𝑟 𝑛 ∗ 0.95 ∉ ℤ
 

 

(2) 

 

where Ii,j… sorted intensity values for given pixel i,j 

 n… number of timesteps 

 

The derived composite images for the timespan examined in this 

study are nearly shadow free and will be used for ExG 

calculation.  

Another problem occurred during calculation of the vegetation 

index. Due to a limited bandwidth of the internet connection, 

webcam images are transmitted in compressed JPEG format. 

This introduces compression artefacts in homogeneous areas of 

the images, which are not evident during visual inspection. 

However, these artefacts emerge as blocks of 16x16 pixels when 

calculating ExG. A full correction of the images could not be 

performed within this study. As the images will be projected to a 

relatively coarse DSM (compared to the image ground 

resolution) the images were resampled from 6000x4000 pixels to 

a coarser resolution of 3000x2000 pixels prior to monoplotting, 

to reduce the influence of this issue. The artefacts are still visible 

afterwards, but with less difference between the artefacts borders. 

An example of the resulting images is given in Figure 3. Since 

the rock in the lower left corner of the images (Fig. 3) is not of 

interest, this part of the image was masked during data analysis. 

Based on the resampled and shadow-reduced RGB composite 

images, the ExG was calculated for each pixel as suggested by 

Woebbecke et al. (1995) (eq. 3): 

 

𝐸𝑥𝐺 =
2 ∗ 𝐺

(𝑅 + 𝐺 + 𝐵)²
−

𝑅

(𝑅 + 𝐺 + 𝐵)2 −
𝐵

(𝑅 + 𝐺 + 𝐵)²
 

 

(3) 

 

where  R, G, B ... Red, Green, Blue channels of the image

  

3.2 Monoplotting and Projection Accuracy 

For mapping ExG and FVC and to make these compatible with 

other georeferenced data sources, a monoplotting procedure had 

to be applied. The steps were as follows: 

1. Differential GNSS measurements of Ground Control 

Point (GCP) locations (X0,Y0,Z0).  

Objects that are well visible in the webcam images were chosen 

as GCPs. Most of the objects are boulders in grassland or the foot 

of rock pillars and rock walls.  

2. Retrieving the GCPs location (x0,y0) in the webcam 

images manually.  

Out of 24 measured GCPs, 11 were identifiable on the images 

and thus suitable as input for the monoplotting. As inaccuracies 

were introduced to the monoplotting by a poor visual 

identification of GCPs in the images and the manual coordinate 

extraction, it was necessary to refine the projection parameters 

(see step 5). 

3. Calculating camera orientation (pitch, yaw, roll) and 

projecting pixel coordinates (x,y) to raster coordinates 

(X,Y,Z).  

Each raster cell on the DSM is given a pair of pixel coordinates 

from the image. As the camera parameters and lens properties for 

the installed camera are unknown, a 3rd degree polynomial 

function was used as a simplified approximation for the lens 

distortion (Ma et al., 2003). 

4. Estimating the effects of projection errors. 

The offset Δd and offset direction vd for each projected GCP is 

calculated. As a measure for the effect of projection errors on the 

projected ExG image the maximum ExG difference for a pixel 

and its neighbours within a search radius equal to Δd is calculated 

as in eq. 4.  

Figure 3. Preprocessed RGB composite of Mt. Schrankogel from 

the webcam below Mt. Wannenkogel. The 95th percentile of the 

daily time series of the intensity values for each band has been 

calculated for a shadow-minimized RGB image (10/08/2021). In 

the center of the image, the two large boulder fields are visible. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2022-367-2022 | © Author(s) 2022. CC BY 4.0 License.

 
369



 

𝑄𝑖,𝑗

= max ({√(𝑥𝑖,𝑗 − 𝑥𝑖+1,𝑗)
2

, … , √(𝑥𝑖,𝑗 − 𝑥𝑖−𝑐∗∆𝑑,𝑗−𝑐∗∆𝑑)²}) 

 

(4) 

 

where Q ... max. change in given search radius 

 x ... pixel value of image 

 i,j ... cell coordinates 

 c ... cell size of rasterized image  

 

The variability of the ExG around a given pixel is used as 

indicator for the possible error that can occur due to an offset of 

the projected pixel. In homogeneous areas this variability is 

small, but in heterogeneous areas the error can be high even for 

small offsets (Fig. 4). 

5. Adjust camera parameters.  

The calculated camera parameters and orientation can be adjusted 

manually according to vd and the results from the accuracy 

assessment. 

6. Projecting images onto the DSM. 

Monoplotting was scripted in Python 3.0. In addition to the 

inaccurate manual extraction of the GCP image coordinates, the 

incidence angle σ of the webcam below Mt. Wannenkogel 

remains a problem for the accuracy of the projected image, as the 

offset of the projected pixel increases exponentially with a 

decreasing σ. σ is calculated as angle between the camera-to-

surface vector and the surface normal vector which is given by 

the DTM slope and aspect. For these reasons, a mask was 

implemented into the monoplotting to avoid large offsets by 

excluding areas with low σ and coarse ground resolution. As 

indicator for ground resolution the pixel length in viewing 

direction Δl was calculated from σ, camera resolution and 

distance to webcam. As a trade-off between the required ground 

resolution and areal coverage, the mask was set to Δl <= 3 m, 

otherwise too much of the area of interest would be excluded. For 

the projected ExG and later FVC, Q only serves as quality 

measure but for the following data analysis steps, Q was 

implemented as a mask to exclude areas where large errors due 

to inaccurate monoplotting are possible.  

After masking with Δl the mean GCP projection error was 3.60 

m. Within this range projected ExG images showed a variability 

between 0.0 and 0.22 (without considering the rock in the lower 

left corner of the image; Fig. 3 and Fig. 4). Homogeneous areas 

such as the scree and boulder fields are less error prone than 

heterogeneous areas in the lower parts of the mountain. 

Transitions between different surface types, e.g. snow to rock, 

show especially high variability. 

 

 

3.3 Calculating Fractional Vegetation Cover and time series 

A cloud-free day in mid-summer (10/08/2021) was chosen to 

determine the thresholds and relationship between ExG and the 

vegetation cover. Visually, the relation between ExG and the in-

situ vegetation cover data suggests a non-linear relationship, 

which is analysed as well (Figure 5). The ExG thresholds for bare 

soil and full vegetation (tsoil and tveg) are hard to determine, even 

though data from the vegetation plots can be used as reference in 

this survey. Especially high cover values show a range of ExG 

values between approx. 0.02 and 0.2 for both datasets (FVCherbs 

and FVCherbs+moss). Without the measured data the thresholds 

would have to be determined manually from the VI (ExG or 

NDVI) histogram. As a simple automated curve fitting gives a 

too low soil threshold for the ExG, a different approach was 

chosen. The soil threshold (FVC = 0) was determined by taking  

 

the mean ExG of all raster values with a measured vegetation 

cover below 0.05. Then tveg (FVC = 1) was determined by taking 

the mean ExG of all raster values with FVC above 0.95. With 

these thresholds FVCExG,linear was calculated as a linear function 

between the thresholds for the two datasets of FVCherbs and 

FVCherbs+moss as in eq. 5 (Fig. 5).  

 

𝐹𝑉𝐶𝐸𝑥𝐺,𝑙𝑖𝑛𝑒𝑎𝑟,𝑖,𝑗

= {
0

(𝐸𝑥𝐺𝑖,𝑗 − 𝑡𝑠𝑜𝑖𝑙)/(𝑡𝑣𝑒𝑔 − 𝑡𝑠𝑜𝑖𝑙)

1

  
𝑓𝑜𝑟 𝐸𝑥𝐺𝑖,𝑗 ≤ 𝑡𝑠𝑜𝑖𝑙

𝑓𝑜𝑟 𝑡𝑠𝑜𝑖𝑙 < 𝐸𝑥𝐺𝑖,𝑗 < 𝑡𝑣𝑒𝑔

𝑓𝑜𝑟 𝐸𝑥𝐺𝑖,𝑗 ≥ 𝑡𝑣𝑒𝑔

 

 

(5) 

 

where FVC... Fractional vegetation cover from VI 

 ExG... ExcessGreen from webcam images  

 tsoil, tveg... soil and vegetation threshold 

 i,j… coordinates  of raster pixel 

 

To account for the nonlinear relationship between ExG and the 

vegetation cover a square root function was used as a second 

approach (FVCExG,sqrt). Therefore tsoil was set as fixed starting 

point and a square root function was fitted to the data (eq. 6) (Fig. 

5).  

 

𝐹𝑉𝐶𝐸𝑥𝐺,𝑠𝑞𝑟𝑡,𝑖,𝑗 = {
0

𝑎 ∗ √𝐸𝑥𝐺𝑖,𝑗 − 𝑡𝑠𝑜𝑖𝑙
         

𝑓𝑜𝑟 𝐸𝑥𝐺𝑖,𝑗 ≤ 𝑡𝑠𝑜𝑖𝑙

𝑓𝑜𝑟 𝐸𝑥𝐺𝑖,𝑗 < 𝑡𝑠𝑜𝑖𝑙
 

 

                                                                                          (6) 

 

where  FVC... Fractional vegetation cover from VI 

 a… coefficient from model selection 

 ExG... ExcessGreen from webcam images  

 tsoil, tveg... soil and vegetation threshold 

 i,j… coordinates  of raster pixel 

 

Afterwards FVCExG,sqrt > 1 was set to 1. The same procedure was 

then applied to the NDVI from the orthophotos of 2015 to 

calculate FVCNDVI for use as a reference (Fig. 6). 

Three highly vegetated and 3 non-vegetated pixels were 

randomly chosen from the projected images for analysis of ExG 

Figure 4. Maximum difference between neighbouring pixels in 

projected ExG image within the range of mean GCP projection 

error of 3.60 m. 
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and FVC changes over the year. To avoid uncertainties by 

choosing just a single pixel the pixel neighborhood with a radius 

of 3 m was averaged for each of the 25 dates in summer and 

autumn 2021.  

 

 
Figure 5. Relationship between ExG (10.08.2021) and FVC 

(measured field data). Fitted functions are indicated in red 

(square root-function) and blue (linear model). 

 

 

 
Figure 6. Relationship between NDVI (orthophoto 2015) and 

FVC (measured field data). Fitted functions are indicated in red 

(square root-function) and blue (linear model). 

 

3.4 Calculating emissivity 

A threshold-based method was used to calculate LSE from FVC 

(Sobrino & Raissouni, 2000; Kodimalar et al., 2020), which 

estimates LSE by a linear combination of soil and vegetation 

emissivity. 

 

𝜀𝑖,𝑗 = 𝐹𝑉𝐶𝑖,𝑗𝜀𝑣𝑒𝑔 + (1 + 𝐹𝑉𝐶𝑖,𝑗)𝜀𝑠𝑜𝑖𝑙 + 𝑐 (7) 

 

where 𝜀𝑖,𝑗 … emissivity of given pixel i, j 

 𝐹𝑉𝐶𝑖,𝑗 … FVC of given pixel i, j 

 𝜀𝑣𝑒𝑔, 𝜀𝑠𝑜𝑖𝑙 … emissivity of soil, vegetation 

 𝑐 … cavity term 

 

In-field measurements of 𝜀𝑣𝑒𝑔 and 𝜀𝑠𝑜𝑖𝑙 were not possible, 

therefore the two thresholds were chosen as suggested by Valor 

& Caselles (1996) with 𝜀𝑠𝑜𝑖𝑙 = 0.95 and 𝜀𝑣𝑒𝑔 = 0.985. The 

cavity term c considers the radiation due to internal reflections 

within the vegetation and is calculated as in eq. 8. 

 

 

where 𝑑𝜀 … mean value of cavity effect 
 𝐹𝑉𝐶𝑖,𝑗 … FVC of given pixel i, j 

 

As there are no direct measurements of 𝑑𝜀 in the field, 𝑑𝜀 is 

assumed to be 0.005 as suggested by Kodimalar et al. (2020). 

 

 

 
Figure 7. Relationship between calculated FVC from 

ExG/NDVI and FVC from field data (only herbs).  

 
Figure 8. Relationship between FVC calculated from NDVI and 

FVC calculated from ExG.  

 

 

4. RESULTS 

Both ExG and NDVI show a good correlation to FVC for low 

FVC values between 0 and 0.2. On the other hand, both indices 

show significantly more scatter the higher the FVC. Whereby 

ExG has a triangle shaped relation to FVC that is hard to interpret, 

especially for high FVC values from 0.6 to 1.0. The R² values 

showed the best results for a linear relation when compared to 

FVCherbs (0.35 for ExG, 0.58 for NDVI). FVC correlates stronger 

with NDVI than with ExG, likely because vegetation reflectance 

is stronger in the near-infrared than in the green band (Tucker 

1977). 

The calculated FVC for non-vegetated boulder fields (Fig. 3) 

ranges between 0.0 and 0.40, which is probably due to the fact 

that the boulders are relatively dark and covered with lichen and 

therefore appear “green”. 

Comparing FVCExG,linear  and FVCNDVI,linear independently from 

the field data shows an R² of 0.65 and RMSE of 0.041 (Fig. 8). 

FVCExG,linear tends to underestimate vegetation cover compared to 

FVCNDVI,linear. The correlation  of FVCNDVI,linear and field data 

(FVCherbs) was higher (R² = 0.42) compared to FVCExG,linear and 

field data (R² = 0.21). 

The mean values of ExG over the surveyed time period range 

between 0.0 and 0.049 with a slight decrease from summer to 

autumn. Boulder fields show almost constant ExG, as expected. 

The fluctuations probably occur due to the previously described  

internal camera adjustments concerning different lighting 

conditions. In contrast, the observed vegetated areas have high 

ExG values around 0.17 from the start of the study until end of 

𝑐 = 4 ∗ 𝑑𝜀 ∗ 𝐹𝑉𝐶𝑖,𝑗(1 − 𝐹𝑉𝐶𝑖,𝑗) (8) 
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august. From there on they decrease to values similar to those of 

the boulder fields. 

The calculated FVC shows a similar response (Fig. 9b). Mean 

FVC in the study area ranges around 0.35 in summer and 

decreases during autumn to around 0.15. Due to the high soil 

threshold FVC values for boulder fields with no vegetation apart 

from lichen range around 0.2. The observed vegetated areas in 

the time series of the FVC show the same decrease as with the 

ExG. The values decrease from 100% coverage in summer to 0 - 

20% in autumn. Although the cover of the total vegetation 

remains more or less constant over the year, photosynthetic 

activity and “greenness” are strongly reduced in late summer and 

autumn. 

By comparing the two maps in Figure 11 two differences are 

noticeable. First, compared to FVCNDVI,linear, FVCExG,linear  

overestimates FVC values on the boulder fields on the higher 

slopes of the mountain as well as on the two boulder fields in the 

center of the image. FVCNDVI,linear has FVC values of 0 in the 

same areas. Second, as already described above, FVCExG,linear 

tends to underestimate FVC for vegetated areas. Or more 

precisely, the variability of ExG for vegetated areas is higher than 

the variability of NDVI, therefore the variability of FVCExG,linear 

is higher, which leads to a mean underestimation of FVC for 

vegetated areas. An adjustment of the two thresholds could partly 

solve these problems. 

Surface emissivity shows a significant decrease from August 

mean to October mean for vegetated areas, which can be 

attributed to the decrease of emissivity values from green and 

active vegetation to dry and senescent vegetation. Many areas 

show the full spectrum between emissivity of full vegetation 

cover (0.985) and soil emissivity (0.950) and therefore a decrease 

of 0.035 (Fig. 11). Depending on the absolute level of emitted 

thermal radiation, this can result in a correction of measured LST 

by ca. ±3 K. This emissivity decrease also agrees well with the 

FVC from NDVI. 

 

5. DISCUSSION 

A visual inspection of the relationship between ExG and FVC 

(Fig. 5) and the calculated FVC from ExG (Fig. 8) suggest that a 

nonlinear relation, such as a square root function as explained 

above, would fit the data better. It is also hard to evaluate the 

quality of the determined soil thresholds as from a visual 

inspection of the resulting FVCExG,linear the threshold value of -

0.002 should be higher. This is especially noticeable in areas with 

ExG values close to tsoil where calculated FVC values occur to be 

too high compared to observations in the field. 

Choosing the soil threshold higher and using a square root 

function for FVC calculation would define a clear border 

between FVC = 0 and FVC > 0 (“no vegetation” and “vegetation 

fraction”). The comparison of the remotely sensed data and the 

field measurements therefore seems to be problematic and 

complex (Fig. 5 and 6). Despite this, the two VIs can both be 

attested a moderate performance for calculating FVC (Fig. 6), 

with the often used NDVI approach still being the more reliable 

method. The high RMSE for both calculated FVCs is another 

indicator for the differences and mismatch to the field data. 

Although the well-tested NDVI-based FVC matches the field 

data better, the ExG-based FVC compares surprisingly well to 

Figure 10. FVC maps calculated from ExG (left) and NDVI (right). White shows non-vegetated areas, green vegetated areas.  

 

 

 

Figure 9. Time series of ExG (a) and FVC (b) for two different 

surface types. 
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the NDVI-based FVC (Fig. 8), despite its relatively low 

correlation with the field data.     

Both the aerial orthophotos and the webcam images contain raw 

digital numbers (DN). In contrast to satellite images, these DN 

cannot be transformed into surface reflectance (due to unknown 

spectral response functions of the sensors, and a lack of 

illumination correction). Using DN instead of surface 

reflectance, the consistency of calculated VIs and all further 

derivatives, therefore, suffers from effects of topography, 

illumination and sensor response. 

For the NDVI it is a known issue that it saturates at high biomass 

or leaf-area-index (e.g. forest; Riihimäki et al. 2017), i.e. at some 

point the NDVI remains constant although biomass/LAI 

increases further. Here, it seems to be the other way round: High 

values of FVC are not always represented by ExG. Possibly not 

all plants are green enough or illumination, surface, sensor and 

sun direction play a role. 

For the time series analysis of webcam images this uncertainty is 

aggravated by the automatic exposure adjustments of the camera. 

They react to varying cloud cover and change even over the 

course of one day several times, as the camera automatically tries 

to find the best settings for the given situation. Nevertheless 

trends for different surfaces are clearly visible (Fig. 9a). 

These trends and changes follow the decrease of photosynthetic 

activity in autumn. The intensity of the green band decreases 

while the intensity of the red band increases due to reduced 

photosynthetic activity of the plants. The decrease of chlorophyll 

in plants during autumn leads to a relative increase of reflectance 

in the red band of the camera and a relative decrease in the green 

band.  This is especially true for grassy slopes and seems less 

noticeable for higher vegetation such as shrubs. For total 

vegetation cover mapping this effect poses a problem as the 

fractional cover actually does not change. Aiming at LSE 

retrieval, however, the Fractional Green Vegetation Cover is 

crucial as senescent and dry grass have lower LSE values (closer 

to LSE values of bare soil) than green vegetation. Hence, ExG 

and the derived Fractional Green Vegetation Cover correctly 

reflect the decrease of emissivity from “green” grass in summer 

to dry or senescent grass in autumn. Under these circumstances, 

the emissivity of grass can even fall below the values of bare soil 

and rocks (Meerdink et al., 2019). This is reasonable if lichen-

covered rocks prevail, as lichen usually have a higher emissivity 

in TIR than bare rocks (Salisbury & D’Aria, 1992). 

By calculating the FVC from an orthophoto, the whole area is 

covered, whereas calculating FVC from a terrestrial camera some 

areas within the study site are out of sight due to the terrain (Fig. 

10). In addition, some areas with high σ were masked as well and 

contribute to the reduction of the covered area. As an input to a 

correction model for LST measurements from a terrestrial 

thermal camera with the same location and viewing angle, the 

obtained coverage is sufficient. For FVC mapping of the entire 

southwestern part of Mt. Schrankogel, many gaps with no data 

occur. Nevertheless, a large part of the southwestern flanks of Mt. 

Schrankogel is visible. In future, the spatial coverage could be 

improved with imagery from two other webcams installed at the 

study site. 

So far, the presented approach to LSE retrieval does not take into 

account that senescent grass can have lower emissivity values 

than bare soil, as 0.95 is the limit in the chosen approach 

(Kodimalar et al., 2020). Future work could test an approach that 

estimates soil fractional cover with constant emissivity from 

summer FVC, combined with a variable vegetation fraction 

emissivity from ExG (or any other available VI), as both soil 

emissivity and true FVC will not change significantly during the 

season (Fig. 12). Emissivity changes during the season should be 

accounted for if measurements over longer time periods are 

made. The other way round, in emissivity retrieval from RGB 

imagery, seasonal changes in vegetation radiation reflectance 

have to be considered. 

Using the in-field measurements of FVC as basis for threshold 

calculation and reference seems to be problematic as the 

compatibility between field data and remote sensing data is 

questionable in this case. That is true for both NDVI and ExG. A 

mismatch of the two data sources occurs for areas with low FVC 

in form of a too low threshold (especially for ExG) and for areas 

with high FVC in form of large scattering (both ExG and NDVI).  

 

 
Figure 11. Difference between October emissivity mean and 

August emissivity mean. 

 

 

 
 

Figure 12. Pixel emissivity from FVC.  

 

6. CONCLUSION 

The study presents a workflow for extraction of land surface 

emissivity (LSE) from webcam imagery and assesses difficulties 

concerning seasonal changes and technical equipment. The 

results show that ExG from webcam imagery performs slightly 

worse than the well tested NDVI. Despite its relatively good 

agreement with in situ derived FVC, the monotemporal natureof 

orthophoto-based NDVI limits its validity and applicability for 

retrieving LSE over longer time spans. Using webcam image 

time series to parameterize LSE allows to track seasonal changes 

in vegetation emissivity, which can be an advantage if inter-daily 

variation of emissivity is expected to be a significant factor. The 

results of this study will be used to correct multitemporal 

measurements of land surface temperature (thermal infrared) and 

illustrate the parameterization of LSE based on Fractional green 

Vegetation Cover derived from a multitemporal vegetation 

index. 
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