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ABSTRACT:

Satellite imaging is shifting from the photo-interpreter era to one of automatic monitoring. Indeed, the vast amount of data provided
by the recent constellations of satellites, performing recurrent observation of every point on the globe, can only be handled by
automatic methods; controlling false detections is thus crucial. The low costs of those satellites often imply lower resolution; the
fusion of multi-date images can compensate to some extent the low resolution. Given their future role in the energetic transition
and their spread over countries or continents, monitoring wind turbines is a natural candidate for such studies. This work details an
algorithm for automatic, multi-date wind turbine detection on low resolution optical satellite images. The method is based on the a
contrario statistical approach to provide a control of false detections and exploits the geometry of wind turbines’ shadows and hubs.

1. INTRODUCTION

A wind turbine is a device that converts the wind’s kinetic en-
ergy into electricity. It is composed of a vertical tower at the top
of which stands the hub with its three rotating blades, see Fig-
ure 1. The American Wind Energy Association (AWEA, 2019)
identifies wind as America’s top renewable, no-emissions en-
ergy source. Therefore, wind turbines may have a key role to
play in the energetic transition coming within the next decades.
Being able to detect automatically their locations and thus their
number and installed capacity could prove useful in managing
the electrical network and planning wind power plant projects.

As the objective is to monitor the energy production of coun-
tries, huge areas must be acquired and analyzed. As a res-
ult, using aerial, drone or most high resolution commercial
satellite images is too expensive. Images used must have an
adequate resolution for detecting wind turbines – their hubs’
length are around 10 meters – but still be inexpensive enough
so that the cost of monitoring doesn’t overwhelm the value of
the generated data. The Sentinel-2 constellation, launched by
the European Spatial Agency (ESA) in 2015 and 2017, provides
free optical images of the whole world with a revisit time of 5
days and a 10 meters resolution. Images produced by Sentinel-2
seem therefore to be adapted to our objective.

Object detection in remote sensing is often dealt with neural
networks. For this study though, we prefer the more probab-
ilistic a contrario approach (Desolneux et al., 2007) for two
reasons. Firstly, we do not have access to a large database of
correctly annotated wind turbine images. Secondly we can nat-
urally build an a contrario method using the shadow of the wind
turbine and the brightness of its hub.

This paper presents a new application of the a contrario frame-
work to wind turbine detection in remote sensing, using images
with resolution lower than what can be found in previous works.
The article is structured as follows. In Section 2, we explore the
state of the art of wind turbine detection in remote sensing. We
then describe our proposed method in Section 3. Finally, in
∗ Corresponding author: nimandroux@gmail.com

Figure 1. Pictures of wind turbines. Left, seen from the ground.
If we ignore the blades, we can see its T-shape: we call tower the

vertical bar and hub the top horizontal bar. Middle, scene of a
wind farm acquired with Sentinel-2. Right, detail of middle

picture on the central wind turbine. We can spot it thanks to its
dark shadow and its bright hub. This example is one of the most

visible case we can get with Sentinel-2 images.

Section 4 we quantitatively evaluate our method on a dataset
we created and discuss the results.

2. STATE OF THE ART

Remote sensing detection has boomed over the past
years (Cheng and Han, 2016), with the launch of many satel-
lite constellations capable of acquiring data at high or very high
resolution. The objects of detection are variable: trees, build-
ings, roads, airports, ships, etc. Wind turbine detection still re-
mains quite untouched despite the usefulness of knowing their
locations for meteorological (Christiansen and Hasager, 2005),
environmental (Chang et al., 2016), radar analysis (Nepal et
al., 2015), or electricity management reasons (Han et al., 2018,
Supper & Supper, 2019, Abedini et al., 2019).

The majority of state-of-the-art methods use neural net-
works (Han et al., 2018, Supper & Supper, 2019, Abedini et al.,
2019, Manso-Callejo et al., 2020, Zhang et al., 2020). Other
non deep learning based methods have also been developed
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Figure 2. Height histogram of US wind turbines in meters.

such as the algorithm developped by Chen et al. (Chen et al.,
2018). These methods produce accurate results, but require
fully-annotated database of relatively high resolution images (at
least 2 m/px), which are rarely publicly available and expensive
to get or to create (Manso-Callejo et al., 2020); especially for
neural networks when one needs thousands of examples.

A recent work (Mandroux et al., 2021) focuses on Sentinel-2
images, using an a contrario method. We based our research
on this method and improve it by the addition of temporal co-
herence along multi-date images.

3. PROPOSED METHOD

The structure of a wind turbine is T-shaped, with a vertical
tower at the top of which stands the hub, where the rotating
blades connect (see Figure 1). The height of a majority of
towers is around 80 meters (Hoen et al., 2018) (see Figure 2).
For heat reasons they are all painted in white (see Figure 1). As
we can see in Figure 1, a wind turbine’s footprint is composed
of two parts: the dark shadow induced by the tower, and the
bright hub. Since this kind of footprint is shared by every wind
turbine in the world, we can use this knowledge coupled with
the known positions of the satellite and the sun and a hypothesis
on the height of the tower to build a detector. This detector is
the fusion of a shadow detector and a hub detector. To use most
of that knowledge and quantify the degree of certainty of our
detections, we choose the a contrario framework (Desolneux
et al., 2007). To avoid blurring effects due to possibly rotating
blades acquired by the push-broom scanning, only one spectral
band is used: the blue B02 one. Given the sun’s (resp. satel-
lite’s) altitude θ and azimuth ϕ, and the tower’s height h, the
coordinates (x, y) at the end of the shadow (resp. hub) are:

(x, y) =

(
− h sin(ϕ)

| tan(θ)| , −
h cos(ϕ)

| tan(θ)|

)
. (1)

3.1 A contrario framework

The a contrario approach is inspired on visual percep-
tion (Desolneux et al., 2007). Human vision is attracted by
patterns which differ from their background. If the background
can be probabilistically modeled, one can question this model
by observing the structure of some of the pixels present in the

image, and then quantify how far it diverges from the model. If
it diverges sufficiently, it means there is a structure to be detec-
ted. This is stated by the non-accidentalness principle (Witkin
and Tenenbaum, 1983, Lowe, 1985) which informally says that
an observed structure is meaningful only when the relation
between its parts is too regular to be the result of an accidental
arrangements of independent parts. This leads to a statistical
framework used to set detection thresholds automatically in or-
der to control the number of false detections.

Following the a contrario methodology (Desolneux et al.,
2007), we define the Number of False Alarms (NFA) of an
event e with an observed measurement k(e) as

NFA(e) = Ntests · P
[
KH0(e) ≥ k(e)

]
, (2)

where the right hand term is the probability of obtaining, in
the background model H0, a value KH0(e) larger or equal to
the observed one k(e); Ntests is the total number of tests per-
formed. The smaller the NFA, the more unlikely the event e is
to be observed by chance in the background model H0; thus,
the more meaningful. The a contrario approach prescribes ac-
cepting as valid detections the candidates with NFA < ϵ for a
predefined value ϵ. It can be shown (Desolneux et al., 2007)
that under H0, the expected number of tests with NFA < ϵ is
bounded by ϵ. As a result, ϵ gives an a priori estimate of the
mean number of false detections under H0.

3.2 Pixel values comparisons

Let U be an image. Consider each of its pixels ui to be a con-
tinuous random scalar variable, and suppose these variables are
iid. This is the background random model H0 for our a con-
trario setting. Under these assumptions,

P(ui1 ≤ ui2) = P(ui1 ≥ ui2) =
1

2
,

for i1 ̸= i2. More generally,

P

(
l⋂

k=1

(ui0 ≤ uik )

)
= P

(
l⋂

k=1

(ui0 ≥ uik )

)
=

1

2l
. (3)

Let Xi,j = 1ui≤uj , where 1 is the indicator function, be a
random variable; thus Xi,j = 1 if ui ≤ uj and Xi,j = 0
otherwise. Symmetrically, let Yi,j = 1ui≥uj . Denoting B the
Bernoulli distribution, we know, from Eq. (3) that Xi,j ∼ B( 1

2
)

and Yi,j ∼ B( 1
2
).

Let J = {j1, j2, . . . , jl} with jk all different. We define the
random variable

Xi,J =

l∏
k=1

Xi,jk . (4)

By independence, Xi,J ∼ B( 1
2l
). Symmetrically, we can define

Yi,J ; Yi,J ∼ B( 1
2l
).

Finally, let X = {Xi1,J1 , . . . , Xin,Jn}, with i1 ̸= . . . ̸= in,
#J1 = · · · = #Jn = l, and ∀1 ≤ i, j ≤ n, Ji ∩ Jj = ∅. We

define SX =

n∑
s=1

Xis,Js . By the iid hypothesis,

SX ∼ Bin

(
n,

1

2l

)
, (5)
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Figure 3. Left, a wind turbine view from a Sentinel-2 image,
with its hub shadow (blue cross), pylone foot (red cross) and hub
(green cross). Middle, zoomed in, the sampling along the pylone
shadow where ns = 5. Right, zoomed in, the sampling around

the hub where nh = 4.

where Bin is the binomial distribution. What we have stated
allows us to easily compute the probability for a group of spe-
cific pixels to have larger values than neighbours. Intuitively,
we will be surprised to find a group X of n random variables
such that SX is large (i.e., large relative to the what would be
expected under H0).

3.3 Shadow detection

3.3.1 Monodate For each pixel ui ∈ U , we want to com-
pute if it is a plausible candidate for the beginning of the
wind turbine’s shadow. Given the satellite’s metadata and the
knowledge of the sun’s position, one can compute the foot-
print of the shadow, and sample it. For each of these samples
uik , 1 ≤ k ≤ ns, we consider the two neighbours perpendicular
to the shadow’s direction: Jik = {uik,1 , uik,2}, see Figure 3,
middle. We consider

sshadowi =

ns∑
k=1

Xik,ik,1 ×Xik,ik,2 , (6)

where sshadowi takes a value between 1 and ns, the larger the
value the better the agreement with a shadow being observed
at pixel ui. Under the random assuptions H0, and using Eq. 5,
sshadowi becomes the random variable Sshadow

i ∼ Bin(ns,
1
4
).

3.3.2 Multidate Let T = (U1, . . . , Un) be n images of the
exact same scene at different dates. For each of these im-
ages, one can compute the shadow score of a given pixel i:
sshadowi,Uq

, 1 ≤ q ≤ n. We consider the multidate shadow score
of pixel i:

sshadowi,T =

n∑
q=1

sshadowi,Uq
. (7)

Under the random model H0, sshadowi,T follows the random vari-
able Sshadow

T ∼ Bin(nT ,
1
4
), where nT =

∑n
q=1 nsq and nsq

is the number of shadow samples in the image Uq .

3.4 Hub detection

3.4.1 Monodate For each pixel ui ∈ U , we want to com-
pute if it is a plausible candidate for the bottom of the turbine’s
tower. Given the satellite’s metadata, one can compute the po-
sition of the hub (Figure 3 green cross) and sample it. No-
tice that the apparent hub is a bit shifted relative to the pylon
foot because the satellite is not necessary at the wind turbine
zenith; the more the wind turbine is far from the nadir point of
view, the more it appears slanted. For each of these samples
uik , 1 ≤ k ≤ nh, we consider the six neighbours which are the

vertices of a hexagon centered in uik : Jik = {uik,1 , . . . , uik,6},
see Figure 3, right. We consider

shubi =

nh∑
k=1

6∏
l=1

Yik,ik,l , (8)

where shubi takes a value between 1 and nh, the larger the value
the better the agreement with a hub being observed at pixel ui.
Under the random assuptions H0, and using Eq. 5, shubi be-
comes the random variable Shub

i ∼ Bin(nh,
1
26
). nh is set to 7

for the experiments. Therefore the hub is sampled by 7 points:
the central one and six others just around it.

3.4.2 Multidate Let T = (U1, . . . , Un) be n images of the
exact same scene at different dates. For each of these images,
one can compute the hub score of a given pixel i: shubi,Uq

, 1 ≤
q ≤ n. We consider the multidate hub score of pixel i:

shubi,T =

n∑
q=1

shubi,Uq
(9)

Under the random assumptions H0, shubi,T follows the random
variable Shub

T ∼ Bin(n × nh,
1
26
), where nh is the number of

hub samples in a given image.

3.5 Tightening tests

We have presented the theoretical framework of the method.
Yet, we could dramatically improve the performances by tight-
ening the tests. Rather than wanting for a shadow-sampled pixel
to be just darker than its two neighbors, we ask it to be darker
than its two neighbors minus a threshold ts. Similarly, for a
hub-sampled pixel, we want it to be brighter than its six neigh-
bors plus a threshold th. These thresholds have been fixed em-
pirically for this article, further research could focus on a more
substantial definition.

We replace Xi,j by X̂t
i,j = 1(ui ≤ uj − t) and Yi,j by Ŷ t

i,j =
1(ui ≥ uj + t). With these new notations, we can define the
new hub and shadow scores:

ŝhubi =

nh∑
k=1

6∏
l=1

Ŷ th

ik,ik,l
, (10)

ŝshadowi =

ns∑
k=1

X̂ts

ik,ik,1
× X̂ts

ik,ik,2
. (11)

3.6 Shadow and hub aggregation

Once ŝshadowi,T and ŝhubi,T are computed, we need to decide how
to use these two pieces of information. Since a wind turbine
footprint is composed of a shadow and a hub, we want both
structures to be detected.

Since we know the distributions of Sshadow
T (resp. Shub

T ), we
can compute the probability of false alarms for a shadow (resp.
hub) detection: pshadowi = P(Sshadow

T ≥ ŝshadowi,T ) (resp. hub).
Finally, the number of false alarms for shadow (resp. hub) de-
tection is NFAs

i = Ntests × pshadowi (resp. hub), which corres-
ponds to the expected number of false alarms under H0 when
Ntests trials are made – here, the number of pixels in the image.
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Finally, we impose both NFAs to be low enough, to avoid false
alarms. Given a threshold ϵ ∈ R, we compute NFAi and deduce
the final detection map by thresholding:

NFAi =

{
NFAs

i × NFAh
i if (NFAs

i ≤ ϵ) and (NFAh
i ≤ ϵ)

Ntests otherwise.
(12)

DETECi =

{
1 if NFAi ≤ ϵ
0 otherwise. (13)

4. DATA, EXPERIMENTS AND RESULTS

4.1 First experiment and performance quantification

We selected a Sentinel-2 scene of 1000 × 1000 pixels, down-
loaded 4 dates of the same scene: in March, September, Novem-
ber and December. We avoided summer dates to have the most
visible shadows. We also avoided cloudy dates: there is no
cloud in the used images. On the selected scene are 40 wind tur-
bines, and various landscapes: town, roads, relief, crops, paths,
water, trees. We applied both algorithms to it. As said in Sec-
tion 3, only the B02 channel was used. We set the threshold
ϵ = 1 and applied our multidate algorithm on the time series;
we got a shadow detection map, a hub detection map, and a
global detection map. Since the original image is 1000× 1000
pixels, we show partial panels of it, see Figure 4. The first panel
shows the only false positive we got.

We can state four remarks about this experiment. First, except
for the example shown, there is no other false positive detected.
Having one false positive is in agreement with our choice of
threshold ϵ = 1 for the NFA. It means that we expect to get 1
false positive, and it is the case here. Secondly, wind turbines
are well detected, thanks to the double classifier shadow-hub:
around 80% of them are spotted. Thirdly, the good detecting is
mainly due to the shadow detector, which gets very few false
positives. We can see a plum-shaped detection pattern, which
tends to be corrected by the hub detector. Fourthly, the hub
detector is very loose: it detects all kind of structures: roads
and relief as we can see on Figure 4, but also buildings and
local maxima. To quantify it: 1.6% of the pixels in the image
are detected by the hub detector. It could be decent if we were
not working on an image containing millions of pixels: here,
this 1.6% corresponds to 16, 000 detections. As a result, given
the small number of positives, it is an enormous amount of false
positives detected by the hub detector.

We compare the performance of the proposed approach to the
monodate one (Mandroux et al., 2021). For both algorithms, de-
tection maps have been computed and ROC curves plotted, see
Figure 5. We can see that the multidate method clearly outper-
forms the monodate one, its ROC curve being close to perfec-
tion. Yet the monodate ROC curve we computed here is quite
better than in the original article (Mandroux et al., 2021), so we
should assess that the selected image is easier than the database
used in the previous article. Nevertheless, in absolute terms the
level of performance obtained by the multidate method seems
close to perfect, and suggests that we got what we wanted: a
good detector of wind turbines. That would be true if we were
not looking at a vast amount of pixel candidates in which only
a few are objects of interest; since it is the case, the ROC curve
does not give a correct vision of the absolute performances.

Indeed, it is a good way to show that the multidate method is
better than the monodate one, since we only had this measure

Figure 4. Two panels of detections of our algorithm, ϵ = 1. The
first panel shows a false positive highlighted by a green square,
the second panel shows some true positives. On both panels, the

first image is the blue channel of the Sentinel-2 scene in
November, the top right is the hub detection map, the bottom left

one is the shadow detection map, the last one is the detection
map. On the detection maps, white pixels are detected, black

ones are not.
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Figure 5. Comparison in performances between the multidate
and monodate method. In blue, the ROC curve of the multidate
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value ϵ. In orange, the performance of a pure random classifier.
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of performance for the monodate method, but we shall not be
too enthusiastic at the sight of this nearly perpendicular curve.
Hence, we should better look at another metric which we call
the rate of false alarms. It is the number of false positives per
square kilometer. It allows us to compute an estimate of the
total number of false alarms we would get if we tried the al-
gorithm on a way bigger area like a whole country or a con-
tinent, and thus determines more specifically our performances,
see Figure 6.

It shows that to detect more than 80% of the wind turbines, we
get 0.01 false positives by square kilometers. This is a poor res-
ult if our aim is to apply the algorithm on a whole country which
size can exceed the million of square kilometers: we would get
an order of magnitude of 1, 000, 000 × 0.01 = 10, 000 false
alarms, which is a lot to check manually.

Another way of quantifying the performances is the Precision-
Recall curve, see Figure 7. This figure shows good perform-
ances: up to around 75% of the wind turbines can be found
without any false positive. The associated mean Average Preci-
sion is 0.939. To give a rough idea of comparison, deep learn-
ing methods (Zhang et al., 2020) can give an Average Precision
between 0.9 and 0.98 using images with much better resolution:
between 0.5 and 2 meters, whereas Sentinel-2 optical ones have
a resolution of 10 meters.
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Figure 7. Precision-Recall graph of the multidate method. Each
point is obtained by varying ϵ, the NFA threshold.

4.2 Large scale experiment

We tried the algorithm on 100 square kilometers, which enabled
us to work on a fully annotated image and produce the quantit-
ative performances. In absolute terms, it is not a small area: it
is practically the size of the city of Paris in France. But it stays
small compared with the size of a country. So we tried the same
algorithm on a 100 × 100 = 10, 000 square kilometers area, a
size close to the State of Connecticut in the USA. The chosen
area contains the previous 100-square-kilometers one, which is
annotated. The rest is not: we suppose it empty of wind tur-
bines, and we look manually at the detected pixels to check
whether a wind turbine was effectively detected. There again,
we avoid clouds and only use images free of it; this can be done
automatically using cloud detectors such as Fmask (Qiu et al.,
2019).

For computer memory reasons, we do not apply the algorithm
to the whole 10, 000 by 10, 000 image, but we divide it into
1000 by 1000 images. This affects the choice of epsilon: we
will need it stricter than 1. We try 3 values of NFA threshold:
ϵ = 1, 0.1 and 0.01. For a given series of 4 1000-by-1000
images, the computation time is 14s; for the whole scene, it is
around 23 minutes. It was executed on a PC with an Intel®
Xeon(R) E-2176M CPU @ 2.70GHz × 12 and 16 GB memory.

For ϵ = 1, the loosest threshold, we detect a bit too much. We
expect to detect on average ϵ = 1 false positives on every 1000
by 1000 image, and we get something closer to 3 or 4 false
positives on average, which is worse but not very different from
what we expected. The false positives come from, sorted in
descending frequency: crops, buildings, roads, relief, and also
randomness. Figure 8 shows some zoomed failures. On the
bright side, we detect three other wind turbine fields, containing
about 30 wind turbines each. Approximately 60% of them are
detected, which is less than anticipated with our study on the
first experiment. It confirms what we suspected before: the first
experiment had very visible wind turbines and was a favorable
case of study. Figure 9 shows some zoomed good detections.

When ϵ decreases, the threshold tightens, thus the number of
false alarms and true positives. With ϵ = 0.1, we expect to get
on average 0.1 false positives by 1000 by 1000 image. We get a
total of 26 false positives, which corresponds to 0.26 false pos-
itive by 1000 by 1000 image. There again, it is more than ex-
pected, but still close to. The number of correct detections falls
too: only 45% of wind turbines are detected. With ϵ = 0.01, we
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Figure 8. Bad results of multidate detection. The first column is the Sentinel-2 scene, the second one is the final detection map with
ϵ = 1, the third one is the detection map with ϵ = 0.1, the final one is the detection map with ϵ = 0.01. Each row shows a different

example. On the detection maps, white pixels are detections, black ones are not. On some of the rows, a rectangular green box is
drawn to ease the matching between the columns.
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Figure 9. Good results of multidate detection. The first column is the Sentinel-2 scene, the second one is the final detection map with
ϵ = 1, the third one is the detection map with ϵ = 0.1, the final one is the detection map with ϵ = 0.01. Each row shows a different

example. On the detection maps, white pixels are detections, black ones are not. On some of the rows, a rectangular green box is
drawn to ease the matching between the columns.
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should only get 1 false positive in total, but we get 15. Those
are no mere coincidences, and come from difficult structures on
the ground. The fraction of true positives decreases to 40%.

Looking at Figure 8, on its first and second rows, dark lines co-
herent with shadow’s directions according to the sun azimuth
are clearly visible; the shadow detector activates rightly. We
could nonetheless argue about the width of the line: it is too
large compared to a wind turbine’s, so there might be some re-
finements to do there. For the hub, it is quite different: on the
crop structure of the first line, we cannot really see any local
maximum, and the detection here seems abusive. There is sub-
stantial improvement to be made on these cases. On the second
row it is less blameworthy as we can see a local maximum at
the base of the would-be wind turbine. In fact, if what we see
there are indeed tall white buildings projecting their shadows
on the floor, then we shall not be surprised to detect them. The
third row shows an example of false negative where the shadow
detector fails because of the weak contrast between shadow and
neighbors. The fourth and fifth rows show examples of detec-
tions due to randomness: no visible structure, the Sentinel-2
looks very noisy, the detectors’ thresholds are barely passed.
As ϵ decreases, these random detections disappear.

On Figure 9, the first two rows show newly detected wind tur-
bines. Thanks to the automatic detection, we were able to find
these wind turbines and their associated fields, which would
not have been easily found otherwise. The wind turbines on the
first row are very visible; on the second one, some of them are
more difficult. For example the shadow of the one close to the
left border is polluted by a ground structure which might be a
road. As ϵ decreases, the most polluted of them are not detected
anymore. The third row shows a convincing true negative. We
can see three dark lines coherent with the shadow’s directions,
associated with a local bright maxima. They are not detected
thanks to our hypothesis on the height of the wind turbines:
their shadows are not long enough. The fourth row shows some
weak true positives, which barely pass the detectors’ tests and
become false negatives when ϵ decreases.

5. CONCLUSION

An algorithm for wind turbine detection in Sentinel-2 images
was described which leverages the information on multi-date
images to compensate for the low resolution, improving the
state of the art. The method is based on the a contrario stat-
istical framework to control false detections, resulting in a low
false detection rate. Yet, when aiming at automatic detection
on continent-wide extensions, the false detection rate may still
not be good enough. Future work will address this issue by im-
proving the hub detection step, by coupling optical and SAR
data and by adding a mechanism for selecting dates with good
images. The latter improvement shall also tackle the major dif-
ficulty of cloudy images. Another hint is first detecting wind
turbine clusters and then refining the detection by the identific-
ation of individual wind turbines on higher-resolution images;
high-resolution (and expensive) images would only be required
for very limited zones.
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