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ABSTRACT: 

 

Disturbance by geomorphic processes is a key factor for current and potential plant species distributions in high mountain regions. We 

implemented and tested an approach for the detection, quantification, and geomorphological classification of 3D topographic change 

using airborne laser scanning (ALS) data. This approach is applied to two point cloud epochs (from 2006 and 2017) to identify and 

analyse changes related to five different process categories in a study area in the European Alps: Fluvial Processes, Rock Glacier 

Movement & Landslides, Channel Erosion & Debris Flow, Rockfall Release & Deposition and Vegetation & Anthropogenic Change. 

The results are assessed through comparison with a manually produced geomorphological map. The analysis covering the eleven-year 

time period provides detailed information on the magnitudes and spatial distribution of change per identified geomorphological 

process.  The study shows that the workflow is capable of providing the fundamental basis for mapping vegetation disturbance by 

geomorphic activity in a high alpine site. 

 

 

1. INTRODUCTION 

Disturbance by geomorphic processes (such as erosion or 

deposition, landsliding and rockfall) is a key factor for current 

and potential plant species distributions in high mountain regions 

(Gentili et al. 2013, Eichel et al., 2018). Thus, geomorphic 

process dynamics and their spatial distribution must be 

considered in addition to microlimatic variation and snow cover 

effects in order to understand the site-specific growing 

conditions, the vegetation succession and to estimate the rescue 

potential of the high-mountain flora in a warming macroclimate. 

 

High-resolution topographic data has proven its usefulness in 

numerous studies of Earth-surface processes at a wide range of 

scales (Passalacqua et al., 2015) and has the potential to provide 

the fundamental basis for mapping vegetation disturbance by 

geomorphic activity. With repeat acquisitions of airborne laser 

scanning (ALS) becoming increasingly available, this opens 

possibilities to investigate morphodynamics through topographic 

change detection for large areas (i.e. several km²). However, the 

small magnitude of many geomorphological processes makes it 

challenging to design a standardised and automated procedure 

that is reproducible and allows comparable and reliable results 

for different study areas (Sailer et al., 2014). This work presented 

here aims to automatically detect, quantify and classify active 

geomorphological processes in a high-mountain area using repeat 

ALS point clouds and to compare the results against 

independently mapped geomorphological reference data. 

 

The paper is divided into five main sections. First, in section 2 

related work is presented. Section 3 presents the main methods 

used in our workflow and gives an overview of the datasets and 

the study area. Section 4 gives an insight into the accuracy of the 

datasets and presents the detected topographic changes and the 

geomorphological map. A detailed comparison of the two results 

is presented and the results are examined regarding possible 
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sources of error and the level of detection. Section 5 summarises 

the results, illustrates the practicability of the approach and 

identifies potential for future extensions.  

 

 

2. RELATED WORK 

2.1 Geomorphological mapping 

Geomorphological mapping provides information on the spatial 

distribution and the type of geomorphic processes. In addition, 

quantitative information about the activity of processes is 

collected by change detection analysis comparing the state of the 

Earth's surface at selected points in time (Schrott and Glade, 

2007). An automated way for obtaining geomorphological 

information is aimed at saving time, reducing workload and 

ensuring reproducibility of results. However, this does not 

exclude the need for insitu observations e.g. as validation 

information (Fekete et al., 2015). Otto and Smith (2013) basically 

distinguish two approaches in digital geomorphological 

mapping: (1) manual mapping and (2) automated or semi-

automated mapping. Manual mapping can lead to detailed results 

but requires trained experts and may lack repeatability. Such a 

heuristic method combines visual interpretation of the terrain to 

identify landforms using orthophotos, terrain models and their 

derivatives. The second, more objective and reproducible (semi-

)automated mapping approach focuses on the application of 

algorithms to delineate and distinguish various landforms (Otto 

and Smith, 2013). Morphometric features such as slope, 

curvature in different directions, flow path length, flow 

accumulation and elevation differences in the terrain are used for 

this purpose. The presented study primarily focuses on the latter 

approach and briefly compares it with results obtained with the 

first approach (manual mapping). 
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2.2 Topographic change detection and semantic labelling 

Calculating elevation differences and volumetric changes from 

two high-resolution digital elevation models (DEMs) is 

straightforward and well established in geomorphology 

(Passalacqua et al., 2015). This DEM-of-difference (DoD) 

approach to topographic change detection has been applied to 

rasterized laser scanning data from repeat airborne (Okyay et al., 

2019), terrestrial (e.g. Baldo et al., 2009) and unmanned aerial 

vehicle (e.g. Mayr et al. 2019) surveys. However, working 

directly on the 3D point clouds obtained by laser scanning, is 

increasingly preferred over raster-based approaches as it 

preserves the high geometric information content needed to 

reliably detect even low-magnitude topographic change (Bernard 

et al., 2021). Lague et al (2013) developed the Multiscale Model 

to Model Cloud Comparison (M3C2) method for calculating 

point cloud distances orthogonally to the local terrain surface as 

a measure for topographic change.  

 

Beyond the detection of topographic change, a semantic labelling 

of processes or landforms (i.e. geomorphic objects) related to the 

change is a crucial step for higher-level information extraction in 

many applications. An automation of this task is especially 

challenging in complex environments and with a diverse set of 

processes potentially driving the change. In a raster-based 

approach, Anders et al. (2013) applied object based image 

analysis (OBIA) combining volumetric changes with a rule-

based classification to analyse change per geomorphic process or 

landform. To distinguish erosion and deposition from tree growth 

or removal, Mayr et al. (2019a) combined a DoD with a machine 

learning classification of land cover (using laser reflectance and 

color orthophotos). Specifically for fluvial environments, 

Kasprak et al. (2017) presented two rule-based approaches to 

process mapping based on repeat DEMs, their differential and 

morphometric derivatives as well as object shape and relative 

orientation. 

 

Regarding terrestrial laser scanning (TLS) in geomorphological 

monitoring and mapping applications, a research focus has been 

on semantic labelling of point clouds by machine learning. This 

includes the use of machine learning on geometric features 

(Brodu and Lague, 2012), machine learning on geometric 

features, laser return intensity and M3C2 distances (Weidner et 

al., 2019), and machine learning on geometric features combined 

with a rule-based topological refinement of the classification in 

an object-based framework (Mayr et al., 2019b). Recently, 

approaches for labelling point clouds or change detected therein 

have successfully integrated also color features (Weidner et al., 

2021) and temporal features (Anders et al., 2020) extracted from 

photogrammetric and permanent terrestrial laser scanning point 

clouds, respectively. Larger-scale studies based on airborne data 

usually lack such features since ALS surveys are repeated rarely 

and with a time lag to orthophoto acquisitions. One of the few 

studies detecting topographic change from ALS point cloud 

distances is presented in Bernard et al. (2021), focusing on 

mapping landslide source areas and deposits in a 5-km² area. In 

the presented study, we apply a similar approach to detect a wider 

range of geomorphic process types in a 30-km² high-mountain 

area. We furthermore derive a geomorphological map and 

information for changes on a process basis from the distance 

calculation, using a rule-set with morphometric parameters. 

 

 

3. METHODS 

3.1 Study site  

The study site covers an area of ca. 30 km² around Mt. 

Schrankogel (3497 m a.s.l.), the second highest peak in the Stubai 

Alps (Tyrol, Austria). It is located in the Sulztal, a tributary valley 

of the Ötztal (Fig. 1). The area is characterized by metamorphic 

siliceous rocks and a strong geomorphic reworking by glacial, 

periglacial, gravitational and fluvial processes (Hoinkes et al., 

2021). 

 

 
Figure 1. Study site with processing units (graticule 500x500 

m). Basemaps: Google Terrain Hybrid; OpenStreetMap 

monochrome. 

 

3.2 Software and scripting 

The processing workflow is implemented in Python 3.7.0 using 

the System for Automated Geoscientific Analyses (SAGA) 

Version 7.10.0 and the extension Laserdata LiS (Release 6432, 

Date 2021-04-16), which provides tools for topographic LiDAR 

point cloud analysis (Conrad et al., 2015; Rieg et al., 2014). The 

outputs are visualised with GRASS GIS for control purposes 

(GRASS Development Team, 2017).   

 

3.3 Overall workflow 

Figure 2 gives an overview of the implemented workflow 

showing the combination of the two main information sets, i.e. 

the ALS point cloud based topographic change and processes 

delineated by geomorphological mapping. On the one hand, we 

detected topographic changes resulting from recent process 

dynamics in the eleven-year time span framed by the ALS 

datasets from 2006 and 2017 and classify them according to the 

dominant processes and landforms. On the other hand, we 

manually produced a geomorphological map, which was used for 

a comparative evaluation of the semi-automatic approach. 

Specifically, we discuss the results with regard to their potential 

for assessing the geomorphic disturbance of vegetation sites 

(Sect. 4.2). 
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Figure 2. Overall workflow and combination of the main 

sources of information. 

 

3.4 Data basis 

Two ALS point clouds from 2006 and 2017 are used for this 

study (Fig. 4, step 1). The 2006 ALS point clouds of the study 

area were recorded in 27 partially overlapping flight strips 

between 6th September 2006 to 19th November 2006. In 

contrast, the 2017 point clouds were acquired in the period from 

2nd August 2017 to 30th August 2017 with 23 overlapping flight 

strips (Federal State of Tyrol, 2021). The fact that areas of snow 

cover in these two datasets differ must be considered during 

analysis and is addressed in the results section (Section 4). The 

absolute height accuracy of the individual flights in airborne laser 

scans is specified by BSF Swissphoto AG with +/- 15 cm height 

(Federal State of Tyrol, 2011). With 4 (+- 2.5) pts/m2 the 2006 

dataset has a lower mean point density in contrast to 27 (+-14.7) 

pts/m2 in the 2017 dataset, which is a disadvantage when 

comparing these two point clouds (see Sect. 4.2). For manual 

mapping, field observations and geotagged photographs taken 

during a field campaign in July and August 2021 and locally 

stored orthophotos (RGB and CIR) from 2003 to 2018 with 

ground sample distance (GSD) of 20 cm were used. Additionally, 

freely available orthophoto-WMS (RGB/CIR) datasets of Tyrol 

with 20 cm resolution were integrated (Federal State of Tyrol, 

2021). 

 

To restrict the performance requirements for the operating system 

and for an efficient data handling and data management the ALS 

data was divided into a graticule with 500 x 500 m tiles (Fig. 1 

and 3) as part of the data preprocessing (Fig. 4, step 1). Point 

cloud subsets for each tile were extracted and processed 

sequentially. Digital elevation models (DEMs) were derived by 

triangulating and gridding the Z-coordinate of laser points. In the 

case of multiple points in one cell, the lowest point was used for 

gridding. The resulting DEM 2006 and DEM 2017 had a grid 

resolution of 0.5 m. 

 

3.5 Point cloud registration 

An accurate co-registration of the datasets is the basis for all 

further processing, as it guarantees an overall data comparability. 

The aim is to minimize differences in the two point clouds by 

reducing registration errors and, thus, to improve the 

identification of actual changes in the terrain (Bernard et al., 

2021). 

For the alignment of the point clouds the iterative closest point 

(ICP) algorithm is applied (Besl and McKay, 1992). The point 

cloud from the 2017 survey with the higher point density was set 

as a reference during registration. The registration is carried out 

using selected stable areas that have neither been affected by 

obvious geomorphological influences, vegetation cover, nor have 

undergone changes due to human activity. These patches are 

selected to be well distributed in the area of interest, not too 

rough, also not overgrown with vegetation and covering a range 

of different orientations. 

 

 
Figure 3. Positions of registration areas (REG) and additional 

validation areas (ADD). Orthophoto WMS for Tyrol/Austria, 

Relief shading based on ALS 2017: Federal State of Tyrol, 

2021. 

 

A DEM of difference (DoD) based on the DEM 2006 and the 

DEM 2017 was calculated for determining and selecting stable 

areas. Moreover, the aforementioned criteria for stable areas were 

controlled by field observations and orthophoto interpretation. 

Figure 3 gives an overview of the areas used for registration and 

validation. 

 

For all selected stable areas points with a 4 m buffer were created 

and areas with elevation differences >20 cm were excluded. 

Outlier points in stable area subsets were filtered by the 

Segmentation by Planes algorithm, which segments a point cloud 

by plane fitting, in this case to a minimum of three points within 

a neighbourhood of 2 m search radius. The maximum distance in 

the robust plane fitting was set 30 cm to discard outliers from the 

computation above this value. The ICP algorithm (Besl and 

McKay, 1992) was applied on the registration area subset to 

determine the transformation matrix, which was then applied to 

co-register the entire 2006 point cloud. 

 

3.6 Detection and quantification of topographic change 

After registration of the ALS 2006 to the 2017 point cloud the 

distance can be calculated. This detection of changes was not 

performed with the DoD but directly on the point clouds in order 

to receive more detailed results in 3D (Fig. 4, step 2). The M3C2 

implementation in SAGA LIS (Fey and Wichmann, 2016) was 

applied to the entire dataset to create a preliminary 3D change 

map. 

 

In the following, processes and landforms are mapped based on 

ALS point clouds, an accuracy check is carried out and outputs 
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are created for visual control and comparison. ALS point cloud 

change detection handles differences data quality and data 

preparation by comprising detection (step 2), quantification (step 

3) and characterisation of changes (step 4) (Fig. 4), as 

conceptually differentiated in Lague et al. (2013). This automated 

workflow allows to separate topographic change represented in 

the 3D point clouds from artefacts e.g. caused by point density 

differences and referencing errors. In step 3 and 4 (Fig. 4) 3D 

distances between the two point clouds are calculated by the 

M3C2 method consequently identifying a selected range of 

geomorphological processes.  

 

 
Figure 4. Change detection and classification workflow with its 

four sub-processes. 

 

Additional validation areas were identified as explained in 

Section 3.5 but this time with respect to the 3D change map (Fig. 

4, step 3: quantification). As an estimate of the smallest 

detectable change, a spatially varying level-of-detection (LOD), 

at the 95% confidence interval is calculated. We used the LOD 

calculation Eq. (1) integrated in the M3C2 implementation by 

Fey and Wichmann (2016).  

 

𝐿𝑂𝐷95% =  ±1.9 (√(
𝜎𝐴

2

𝑛𝐴
+

𝜎𝐵
2

𝑛𝐴
) + 𝑟𝑒𝑔 +

                  𝑚𝑎𝑥 {
1

𝑛𝐴
 ∑ 𝑝𝑜𝑠𝐴 | 

1

𝑛𝐵
 ∑ 𝑝𝑜𝑠𝐵 

𝑛𝐵
𝑖=1

𝑛𝐴
𝑖=1 }) , (1) 

 

where       𝜎2 = plane fitting variance 

                 𝑛 = number of points in fitting radius  

                 𝑟𝑒𝑔 = registration error 

                 𝑝𝑜𝑠 = positional error 

                𝐴, 𝐵 = point cloud A and B 

 

This LOD takes into account the registration error and the local 

plane fitting variance of both point clouds (Lague et al. 2013). To 

estimate the registration error between the two point clouds the 

M3C2 algorithm was applied on additional stable (validation) 

areas (Fig. 3). 

This preliminary registration error estimate was combined with 

the internal dataset quality, taking into account strip adjustment 

errors and the height accuracy specifications of the ALS survey. 

From this, a conservative estimate of the error in each point cloud 

was derived and used as parameter reg (registration error) to 

calculate the LOD. Computed distances larger than the LOD 

were labelled as real change. 

 

3.7 Characterization and semi-automatic classification of 

topographic change 

With the results of the distance calculation (Sect. 3.6) and the 

LOD-based thresholding of real changes, the topographic 

changes between 2006 and 2017 are investigated. Contiguous 

areas of real change were segmented by a connected components 

analysis and classified in combination with morphometric 

features (Fig. 4). 

 

 
Table 1. Relevant datasets for classification and derived 

information. 

 

Table 1 summarizes the datasets used for the characterisation and 

classification step 4 (Fig. 4). First, areas with unexpectedly high 

3D distances due to interference signals and tile effects, 

especially on snow- and ice-covered surfaces (e.g., glacial areas), 

were masked out. These effects are caused by the relatively 

increased changes, e.g. on glacier surfaces and their volume 

change over the 11-year period, as well as by their specific 

surface reflectance-induced roughness. Subsequently, we 

focused on the remaining areas, which are geomorphologically 

relevant (investigation mask, Tab. 1). 

 

A K-Means cluster analysis was used to create an unsupervised 

classification for landform elements based on morphometric 

features, shown in Tab. 1. As Piloyan and Konečný (2017) have 

shown, the geomorphometric parameters elevation, slope, profile 

curvature, plan curvature and flow path length are suitable for 

fast and efficient semi-automated landform classification. In 

other studies, such as Guo et al. (2021), similar parameters were 

found to be suitable for classifying geomorphological units. We 

apply K-Means cluster analysis based on iterative minimum 

distance (Forgy, 1965) with the maximum of 25 iterations and 

the input variables elevation, slope, profile curvature, plan 

curvature and flow path length to generate ten clusters 

(morphometric groups). Two of the ten clusters were deleted due 

to low area fractions and no meaningful assignment to a process 

domain, and eight clusters were reclassified as morphometric 

groups. 

 

Based on the eight morphometric groups and the segmented real 

change layer as mask, a simple rule-set was used to identify 

geomorphic processes and landforms. An overview of the rule-

based classification employing the morphometric parameters 

(Tab. 1), can be found in the supplementary material (Fig. S1). 

This rule-based classification allocated the change objects to the 

Base dataset Derived information

Investigation mask Relevant area for the classification

Real change raster layer Active process areas

Rough form of the processes to be classified

Segmentation basis (Connected Component Labeling)

DEM 2017 DEM (elevation)

Slope

Plan curvature

Profile curvature

Flow path length

Flow accumulation

Morphometric features Rough pre-classification of the segmented areas 

Derived by K-Means Clustering for Grids
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following five classes: Fluvial Processes, Rock Glacier 

Movement & Landslides, Channel Erosion & Debris Flow, 

Rockfall Release & Deposition and Vegetation & Anthropogenic 

Change (see Section 4). 

 

3.8 Manual geomorphological mapping 

Following the approach described by Colwell (1983) and Otto 

and Smith (2013), we manually produced a geomorphological 

map by combining field observations and photographs with 

visual interpretation of remote sensing data (i.e. orthophotos, 

shaded relief maps), and geological maps (Moser, 2011; Kreuss, 

2011). The legend combines different legend concepts based on 

Eichel (2016) and Seijmonsbergen (2013) and is adapted to high 

mountain specific conditions. This manual mapping of 

geomorphic units was carried out independently before the digital 

analysis started to avoid influence of change detection results on 

the manual mapping process. 

 

 

4. RESULTS AND DISCUSSION 

4.1 Registration accuracy and level of detection 

At the additional stable areas used for assessment of the 

registration accuracy (Fig. 3), the mean point cloud distance is 

0.001 m with a standard deviation of 0.023 m (Fig. 5). The typical 

approach would be to use this standard deviation as an estimate 

for the registration error across the entire study area (Fey and 

Wichmann 2016, Bernard et al. 2021). However, a visual 

inspection of the calculated point cloud distances revealed 

distinct spatial patterns indicating local registration problems, 

which we attribute to internal errors in one or both point clouds 

(e.g. inaccurate strip adjustment where multiple strips overlap). 

 

 
Figure 5. Histogram of the 3D distances of the additional stable 

validation areas. 

 

As a result, when a registration error of 0.023 m is applied, point 

cloud distances related to such inaccuracies are misclassified as 

real change in certain parts of the study area (Fig. 6). In the left 

map (a)), light purple areas indicate LOD values as low as 0.14 m 

and blue to white areas indicate high LOD values up to a 

maximum of 0.52 m. Yellow areas in the right map (b)) show the 

identified real changes. Obviously incorrectly detected real 

changes are highlighted and marked in the maps. An example for 

this is shown by the stripe-like pattern of the LOD (Fig. 6, marks 

1 and 2). 

 

For the flight campaign in 2006 a height accuracy of +/-15 cm 

(one standard deviation) was specified as a requirement (Federal 

State of Tyrol, 2011). Even if the actual point cloud accuracy is 

probably much better for most of the area, it seemed reasonable 

to apply these accuracy specifications stated by the flight 

operator, instead of the registration error, for testing purposes. 

With the more conservative height accuracy value of 15 cm 

substituting the registration error (reg parameter) in the LOD 

calculation, previously existing problems of overestimation of 

the real changes were almost eliminated (Fig. 7). 

 

 
Figure 6. LOD and thresholded real change, both calculated 

with an estimated registration error of 0.023 m. 

 

 
Figure 7. Real changes with adjusted registration error of 15 cm 

(red) and real changes without registration error of 2.3 cm 

(yellow), blue ellipses indicate problematic areas with relatively 

low point cloud accuracies. 

 

With the registration error set to 15 cm a more appropriate real 

change result with fewer incorrectly detected areas for the whole 

study area can be generated on costs of change detection 

sensitivity. 

 

4.2 Change detection results 

Besides the location of changes, also the magnitude of change 

and the type of geomorphic process are of interest. Therefore, 

identified real changes were extracted and characterised. First, 

the most important changes are shown and discussed with respect 

to their effect in terms of vegetation disturbance (Fig. 8). This 

will be followed by a closer look at associated process types or 
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landforms (Fig. 8). A detailed change map and the classified real 

changes can be found in the Supplementary material (Fig. S2, S4 

and S5). 

 

In Figure 8 the changes in the Schrankar on the northwest side of 

Schrankogel are depicted more closely. Blue areas show positive 

changes and red areas show negative changes in the distance 

measurement (Fig. 8a). Larger areas belonging to a rock glacier 

could be correctly classified by the rule-set and morphometric 

features as Rock Glacier Movement & Landslides. The rock 

glacier starts probably a bit higher up but, there, it is classified as 

Channel Erosion & Debris Flow (Fig. 8b). This is correct as such 

processes dominate (at least) on the surface but also demonstrates 

that the assignment of a single class can be problematic 

(depending on the application), since two or more classes may 

overlap. 

 

 
Figure 8. a) M3C2 3D distances and b) classified real changes 

in Schrankar between 2006 and 2017. Orthophoto WMS for 

Tyrol/Austria: Federal State of Tyrol, 2021. 

 

At the steep front of the rock glacier, signs of continuous erosion 

were observed in the field, precluding any establishment of a 

vegetation cover. However, topographic changes do not always 

relate to erosion and deposition, as it is typical for Channel 

Erosion & Debris Flows. The case of rock glaciers shows that 

geometric surface change can also result from material creeping 

and moving downhill or, possibly, a loss of ice content. This does 

not always result in disturbance of surface material and, 

therefore, affect the vegetation. Despite identified changes (red 

and blue areas in Figure 8a), vegetation patches exist on parts of 

the rock glacier. In the upper slope area, where changes due to 

channel erosion and deposition predominate, this is not the case, 

as the surface and the vegetation are considerably disturbed by 

sediment transfer. This illustrates that geometric surface change 

(e.g. subsidence by rock glacier degradation or movement) does 

not necessarily result in strong vegetation disturbance and, thus, 

needs a more differentiated analysis. 

 

Figure 8 also shows a problem that occurred during the detection 

of changes. Due to interannual variation of snow patches or 

different acquisition dates of the ALS data, areas of snow cover 

differed i.e., remain at higher altitudes or in shaded areas until 

late summer (see orthophoto, Fig. 8). This additionally leads to 

areas misclassified as real change, which further affects the 

correct assessment of the point cloud distances. 

 

Changes per process are presented below as histograms (Fig. 9). 

The maximum surface changes were limited by the maximum 

search distance <2 m for all process classes. 

 

 
Figure 9. Change histograms per process (X-axis: Distance [m]; 

Y-axis: Frequency), 1. Fluvial Processes, 2. Rock Glacier 

Movement & Landslides, 3. Channel Erosion & Debris Flow, 4. 
Rockfall Release & Deposition, 5. Vegetation & Anthropogenic 

Change. 

 

The process type Alluvial & River Area in plot 1 shows less 

points with negative than with positive change, a similar 

frequency distribution can only be found in plot 5 (Fig. 9). Note 

that the y-axis scale in plot 1 is 10 times lower compared to plot 

2 Rock Glaciers & Landslides (Fig. 9). Rock Glaciers & 

Landslides have the largest share of changes identified here, 

followed by Channel Erosion & Debris Flow (Fig. 9, (2) and (3)). 

The class Vegetation & Anthropogenic Change summarizes all 

changes that are not caused by natural, abiotic geomorphic 

processes, and is included for completeness. While some of these 

changes are still difficult to interpret without closer inspection, 

the relatively sharp peak of point cloud distance frequencies 

around 0.35 m can be explained by tree growth, as the spatial 

distribution largely matches the forest extent (Fig. 9, (5)). 

 

4.3 Geomorphological inventory and comparison of results 

Geomorphological processes were manually mapped at a scale of 

1:5000 as described in section 2.2 and 3.8 (Fig. S3). Processes 

identified by the semi-automatic change detection and 

classification were verified by comparison to the 

geomorphological map (Fig. 10). 

 

Figure 10 shows a subset of the manually mapped landforms 

overlaid with the outlines of topographic change objects 

classified (semi-automatically) by the rule-set and morphometric 

features. Parts of rock glacier areas in the geomorphological map 

and the yellow polygons (Rock Glacier Movement & Landslides) 

in this example agree well. Debris flow areas and their deposits 

also correspond to a large extent to the change areas of Channel 

Erosion & Debris Flow (green polygons). Overlying processes 

could be assessed less precisely in the manual mapping. In the 

example of Figure 8 it has already been pointed out that Channel 

Erosion & Debris Flow areas can also affect rock glacier areas, 

i.e. the classes are not mutually exclusive. In the end, the 

comparison of the two results is only suitable as a simple 

validation possibility to check the meaningfulness of the 

classification. In future, not only more sophisticated approaches 

for a (semi-)automatic classification of topographic change 
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according to process domains but also improved methods for 

validation should be developed. 

 

 
Figure 10. Map subset comparing the semi-automatic change 

detection and classification with manually mapped 

geomorphological landforms. 

 

In cases where additional data (such as individual flight strips and 

trajectory information) is available for the point clouds, the LOD 

could be further improved (i) by a refinement of the strip 

adjustment, (ii) by a quantification of the positional uncertainties 

at point level, and (iii) by a filtering of the points with high 

positional uncertainties (Mayr et al. 2020). Furthermore, a 

correction of laser return intensity values to obtain reflectances 

would be interesting for derivation of a snow mask (e.g., Höfle et 

al. 2007). 

 

 

5. CONCLUSIONS 

We present a workflow that detects and quantifies changes 

between two airborne laser scanning (ALS) point clouds and, 

subsequently, assigns them to different geomorphological 

process types. Overall, the tested approach demonstrates good 

potential for an efficient mapping, quantification, and 

geomorphological interpretation of topographic change. The 

results indicate the spatial distribution of changes and their 

process affiliation, which is an important information for 

botanical and ecological research in high-mountain 

environments. 

 

The outcomes will be further used for detecting areas where 

geomorphic disturbance affects the conditions for vegetation 

establishment and growth. A differentiated assessment of the 

magnitude and frequency of geomorphic disturbance from bi-

temporal ALS point cloud distances alone remains difficult. 

However, the proposed process-oriented classification of 

topographic changes can inform on locally dominant process 

types, and future work could use this for a heuristic assessment 

of the frequency and degree of vegetation disturbance. Thus, we 

plan to further improve the methods for automated process type 

classification, amongst others by a tighter integration of 

geometric and spectral features, allowing us to extend the 

analyses to a regional scale. 

SUPPLEMENTARY MATERIALS 

Supplementary Materials: The following are available online at 

https://doi.org/10.5281/zenodo.6402513. Figure S1: 

Classification preparation and decision tree. Figure S2: 3D 

distance change and change offset overall map. Figure S3: 

Geomorphological map inventoried by manual mapping. Figure 

S4: Classified real changes of the valley area between 2006 and 

2017. Figure S5: Classified real changes between 2006 and 2017. 
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