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ABSTRACT:

In order to appropriately measure properties in 3D models, accurate georeferencing plays a vital role in structural health monitor-

ing. For that purpose, control points are attached to the surface of the structure and measured geodetically. These points can be

recovered in the virtual model and associated with the geodetic measurements. Automating the process of detecting and associating

control points and geodetic measurements, facilitates the accurate georeferencing of large 3D models. While the number of marker

types for control points is steadily increasing, this work claims that – under a plausible assumption – comparatively simple and

commonly used marker designs can serve for accurate and robust georeferencing. By assuming that control points are asymmet-

rically distributed over the surface of the structure, the correspondence of points is determined by their geometric interrelation. In

this work, an image-based detector for relatively simple control point types is proposed, applying transfer learning on hierarchi-

cal multi-scale attention (HMA) (Tao et al., 2020). For associating detected and geodetically measured points, a RANSAC-based

procedure is presented that determines a geometrically consistent transformation between detected and measured points.

1. INTRODUCTION

The automation and digitization of processes in the field of

structural health monitoring is picking up pace. Images are a

key ingredient to this process, since they form the basis for 3D

reconstruction and the maintenance of an information-rich and

vivid digital representation of the structure. Moreover, the field

of image-based object recognition has made noticeable progress

during the last decade. This is partly due to the availability of

larger datasets and the (re-)introduction of artificial neural net-

works. Making reasonable use of these techniques for purposes

of structural health monitoring can benefit all parties involved.

Performing measurements in the virtual model is essential for

assessing health-critical properties, such as the level of struc-

tural deformation or the size of defects. The unit of measure-

ment is, however, only meaningful, if the model is properly geo-

referenced. A prerequisite for accurate referencing is precise

knowledge of the metric relations within the structure. This

knowledge is, typically, unavailable apriori. On that account,

salient points (control points, targets, fiducial markers) are at-

tached to the surface of the structure. On site, these points are

measured by geodetic experts using professional equipment, in

order to locate the control points in a geodetic reference frame.

Incorporating the measured control points into the virtual model

usually requires manual interaction. Some providers of 3D re-

construction software offer specifically encoded marker types

for printout, that – attached to the structure – can be automati-

cally detected by the software itself. This, however, restricts the

usage to a specifically customized marker type. Being tied to

one specific software for marker detection, also noticeably lim-

its the freedom of the user to choose a preferred software for

reconstruction and georeferencing. Thus, customized marker

types might not render a general solution.

The number of marker designs proposed by the community con-

stantly increases, including novel types of ID encodings. While
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Figure 1. Qualitative results of control point detection.

Top row: input images, central row: prediction, bottom row:

center refinement.

for many applications ID encoding markers are of high value,

it is here demonstrated that georeferencing of a structure can

be accomplished without complex marker designs. Instead of

increasing the complexity of the marker pattern, complexity is

added to the process of relating marker occurrences in the vir-

tual model and on-site measurements. By shifting complexity

to later stages, a more general procedure of automated georef-

erencing is achieved.

Based on this contextual frame, the contributions of this work

are threefold: (1) Transfer learning on the state-of-the-art ap-
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Figure 2. Considered types of control points.

proach of hierarchical multi-scale attention (HMA) (Tao et al.,

2020) is demonstrated to achieve good results for simple marker

types. (2) A procedure is presented, that involves Hough trans-

form for subpixel accurate localization of the control point cen-

ter. (3) In order to compensate for lack of ID encoding in the

markers, RANSAC is adjusted to establish robust correspon-

dences between (virtually) detected and (actually) measured

control points. RANSAC, thereby, yields a plausible transfor-

mation, that can serve as reasonable initial guess for further reg-

istration procedures.

2. RELATED WORK

The related work covers current approaches to control point de-

tection, convolutional neural networks (CNN), and techniques

for point cloud registration.

2.1 Control Point Detection

The detection of control points (CP) or fiducial markers is rel-

evant in a number of fields, i.a. in virtual reality, 3D recon-

struction, drone navigation, or georeferencing. For the growing

field of drone technologies, some providers of related software

offer a module for automated control point detection. PIX4D

provides the module AutoGCP to overcome the manual an-

notation of ground control points (GCP) in the acquired im-

agery1. Including the checkerboard-based GCP pattern, they

cover so-called AeroPoints, which are portable ground stations

with GNSS antennas to obtain accurate global positioning2.

METASHAPE has added a type of coded target marker, which

resembles the ShotCode approach, cf. (Kato and Tan, 2007).

Before capturing a site photographically, the markers need to

be attached in the region of interest. Following a unique coding

schema, each target has an individual circular coding, which

in case of sufficient visibility is subject to automated image-

based detection and unique marker identification. DRONEDE-

PLOY offers a Ground Control AI feature to automated control

point detection3. By using the annotations provided through

user corrections of wrong predictions, they attempt to build up

a real-world training base. Besides checkerboard-based control

points, other types are covered such as cross-based and color-

related patterns.

Apart from the commercial approaches, a handful of coding

projects are publicly accessible. Most notably GEOBITS
4 pro-

vide an approach to automated ArUco marker detection, that

is based on the OpenCV ArUco library (Garrido-Jurado et al.,

2014). The library offers basic and advanced functionality on

the creation and detection of ArUco markers and pose infer-

ence. In science, (Rumpler et al., 2014) presented a workflow

1 https://www.pix4d.com/blog/automatic-ground-control-points
2 https://www.propelleraero.com/aeropoints/
3 https://support.dronedeploy.com/docs/automated-gcp-detection-with-

dronedeploy
4 https://github.com/dronemapper-io/aruco-geobits

of precise and geo-accurate reconstruction involving the design

of ID encoding fiducial markers. Furthermore, the approach is

based on the assumption of known correspondences between

detected and geodetically measured markers. (Yu et al., 2020)

provide an overview over the various different marker designs

that have evolved over the last decades. Moreover, a detection

algorithm for the invented TopoTag is presented, that applies i.a.

thresholding, binarization, and topological filtering to obtain a

robust detection. (DeGol et al., 2017) indicate that approaches

not based on machine learning, might be faster due to their po-

tential independence from GPU computing resources.

The presented current developments in the field of control point

and fiducial marker detection regularly involve the design of

novel marker types and corresponding detection algorithms.

The assumption in the here presented work is, that simpler

control point types are sufficient for automated georeferencing

when exploiting the disambiguating power of unique intrinsic

geometric relation between the point clouds. Simpler marker

types do, furthermore, facilitate the establishment of a conven-

tion in control point usage at structures.

2.2 Convolutional Neural Networks

Starting with the victory in the ImageNet challenge in 2012

(Deng et al., 2009, Krizhevsky et al., 2012), the application

and research of convolutional neural networks (CNN) has con-

stantly increased in science as well as in industry. Leading ap-

proaches in visual recognition tasks, such as image classifica-

tion, object detection, or semantic segmentation are based on

CNNs, e.g. (Cordts et al., 2016, Lin et al., 2014).

Convolutional neural networks are a specific kind of artificial

neural networks that make extensive use of the convolution op-

eration. The convolution operation, due to its spatial properties,

has proven especially suitable for image applications. In a cas-

cade of convolutional and pooling layers the CNN maps the in-

put image to an output. In the case of image classification, the

output represents the candidate classes for the input image. For

semantic segmentation the output is of same height and width as

the input and contains pixelwise, dense class predictions. (Long

et al., 2015) demonstrated that semantic segmentation can be

comparatively naturally approached with fully convolution net-

works. Fully convolutional networks do not contain fully con-

nected layers. Thereby, they become relatively independent of

specific input sizes and can potentially handle images of vari-

ous height and width.

Since artificial neural networks are trained in supervised fash-

ion they require a representative and sufficiently large dataset.

For many domains, however, no such datasets are available. In

order to overcome the lack of data, a number of methods have

evolved, including data augmentation (Shorten and Khoshgof-

taar, 2019, Dwibedi et al., 2017), transfer learning (Tan et al.,

2018), and the incorporation of synthetic data (Richter et al.,

2016). Benchmarking challenges such as Cityscapes (Cordts et

al., 2016), COCO (Lin et al., 2014), or ADE20k (Zhou et al.,

2019) form a solid basis to find proper approaches for transfer

learning.

2.3 Point Cloud Registration

The procedure most commonly referred to in point cloud align-

ment is iterative closest point (ICP) (Besl and McKay, 1992,

Pomerleau et al., 2015). For each step of the iteration and each

point in the source cloud, the closest point in the target cloud is

computed. The corresponding point pairs between source and

target point cloud serve as basis for estimating the transforma-

tion between the source and target. After a sufficient number
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Figure 3. Schematic workflow of control point detection, refinement, correspondence analysis, and transformation computation.

of iterations, the algorithm returns an accurate transformation

between the point clouds. ICP is based on the assumption of

a proper initial alignment. Lacking this initialization, the reg-

istration can run into undesirable transformations based on in-

appropriate correspondences. Furthermore, the original ICP is

restricted to rigid transformations, since e.g. variance in scale

would impede with the closest point computation.

To overcome the initialization constraint (Gelfand et al., 2005)

estimate the initialization based on local geometry descriptors.

Subsequently ICP is executed. In order to obtain a global reg-

istration, (Aiger et al., 2008) and (Makadia et al., 2006) use ap-

proaches based on RANSAC (Fischler and Bolles, 1981): Point

correspondences between source and target cloud are randomly

selected, there based upon, a transformation is estimated, and,

eventually, the difference between transformed source cloud

and target cloud is measured. This procedure is repeated un-

til a well-aligning transformation has been found.

3. DATA

Data form an essential ingredient to data-driven approaches

such as deep learning. The control point types, the image data,

and the 3D object for testing are presented.

3.1 Control Point Types

The number of different control point or fiducial marker types is

constantly growing, cf. (DeGol et al., 2017). Different marker

properties serve different purposes, e.g. color for fast misde-

tection rejection, ID encoding for unique identification, sharp

crossings for precise aiming. For many application fields, the

variety of types impede the establishment of a convention. For

structure inspection, however, it is here claimed that the com-

paratively simple checkerboard-based marker pattern can suf-

fice, cf. Figure 2. The markers show a simple, intuitive pattern

and are presumedly cheap in print and attachment. They have a

clear, well-defined aiming point, and they are the currently most

prevalent ones. They can, optionally, obtain a character-based

identifier in the margin, which, however, is not necessary for the

Training Validation Testing

S2DS
Marker class 70 9 10

Other classes 493 78 83

Synthetic Various bridges – – 546

Various Out of dataset – – 38

Total 563 87 677

Table 1. Images used for training, validation, and testing.

purpose of georeferencing. Figure 2 depicts the checkerboard-

based CPs considered: a square 2 × 2 pattern, a circular 2 × 2
pattern (Secchi disk), and a squared 2× 2 version with 45◦ pat-

tern rotation.

3.2 Dataset

In order to cover a variety of backgrounds and acquisition se-

tups, three sources of image data are used for training and

evaluation, cf. Table 1. Training is based on the structural

defect dataset (S2DS), which consists of a total of 743 im-

ages and corresponding segmentation annotations. It represents

seven classes, including five types of structural defects (crack,

spalling, corrosion, efflorescence, vegetation), background, and

control point. All images were acquired at real inspection sites

and are cropped to size 1024×1024. The dataset contains a

large number of images without markers, which supports mod-

eling the negative class and reduces the bias on the prior. The

images differ with respect to image quality (sharpness, color

constancy, lighting condition, etc.) and acquisition devices

(mobile phone, DSLR/DSLM, drone).

Moreover, 546 images were synthesized and used for testing.

In order to reduce the gap to real images, control points of the

above presented types were rendered onto images from actual

bridges. The control points are furthermore morphed and as-

similated to the background and endowed with noise and blur.

The synthetic nature of the images is still perceptible to the hu-

man eye.

For assessment of the generalization capabilities of the ap-

proach, a dataset with distinctly different backgrounds com-

pared to S2DS was created. While the majority of images from

S2DS shows surfaces of concrete structures, the various dataset

contains images from gray and red stone, plaster and roughcast.

Furthermore, it shows the different marker types in various sizes

and from various angles.

3.3 Bridge Pier

The entire workflow was carried out on various examples and,

due to space constraints in this paper, demonstrated using one

exemplary 3D reconstruction of a real bridge pier. The used

segment is approximately 10 meters high and was reconstructed

with 1460 images using the commercial Metashape software.

The images were captured by a DJI drone carrying a Zen-

museP1 full-frame camera with focal length 35mm. Each im-

age is roughly 45MP large (8192 × 5460 px). For the relevant

part of the bridge, the acquisition distance alternated around 2

meters. The model contains nine of the above specified marker

types, which are asymmetrically distributed over the surface.
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4. DETECTION

The detection of control points and their accurate 3D localiza-

tion involves a number of processing steps. Figure 3 provides

an overview of the proposed workflow. After image-based de-

tection, the results are transferred into the 3D space using dense

point cloud colorization. Based on the centroids from cluster-

ing, the centers of the control points can be refined in the 2D

domain. The following stages are conceptually closer to geo-

referencing and, thus, referred to in Section 5.

4.1 Image-based Detection

In order to achieve a robust performance for control point de-

tection given the not abundant amount of data, the hierarchi-

cal multi-scale attention (HMA) approach by (Tao et al., 2020)

is used for transfer learning. At the time of experimentation,

HMA was the highest ranked approach in the pixel-level se-

mantic labeling task of the Cityscapes benchmark (Cordts et

al., 2016) with accessible code. It is currently occupying the 8th

position in the challenge and still the second highest ranked ap-

proach with published code. The highest ranked approach with

code is an extension of HMA with boundary-aware loss (Borse

et al., 2021), which outperforms HMA by a small margin.

Figure 4 schematically depicts the training and inference pro-

cedure of HMA. During training, the image is fed to the net-

work in two scales. Both scales pass through the backbone, the

HRNet-OCR (Yuan et al., 2020, Sun et al., 2019), which refers

to the high-resolution network with object-contextual represen-

tations. The semantic head consists of the following layers (3×3

conv)✙ (BN)✙ (ReLU)✙ (3×3 conv)✙ (BN)✙ (ReLU)✙

(1 × 1 conv), where conv refers to the convolutional layer, BN

to the batch norm, and ReLU to the rectified linear unit. The

attention head is structurally similar to the semantic head and

yields a probability map. This probability map determines the

attention, that is supposed to be paid to the scale with respect

to the other scale. Since attention is contrastively learned for

two scales, HMA generalizes to an arbitrary number of scales

in inference: The attention is applied to a scale pair, while addi-

tional scales are recursively incorporated into the accumulation

process.

For training, the region mutual information (RMI) loss is used

(Zhao et al., 2019), which consists of a cross-entropy and mu-

tual information component. While cross-entropy assesses each

pixel independently, mutual information considers the local

neighborhood around the pixel. It, thereby, accounts for slight

misalignments in the prediction. Extensive data augmentation

is used, including scaling, rotation, shifting, and blur for 80%

of the samples.

4.2 Cloud Colorization and Clustering

In order to transfer the 2D information from image-based detec-

tion into the 3D space of the model, cloud colorization is per-

formed. For that purpose, each point of the dense point cloud is

projected into all images of the scene. The point is typically in-

visible in many images, while some images – due to proximity

or quality – provide particularly reliable information about the

point. The information is gathered from all images and fused

into a single response for each point, whether the point repre-

sents or not represents a control point.

It is assumed, that points in a local neighborhood are regularly

assigned to the same class. That is, points of the cloud, that rep-

resent control points, are supposed to cluster locally. In order to
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Semantic

Head

∗
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Attention
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Figure 4. Depiction of the training and inference procedure of

hierarchical multi-scale attention (HMA).

extract clusters, the DBSCAN algorithm (“density-based spatial

clustering of applications with noise” (Ester et al., 1996) is ap-

plied: Based on a spatial density criterion, samples are tagged

as either in- or outliers. All inliers of a cluster are presumed to

represent a control point. The centroid fo the cluster serves as

preliminary 3D location of the control point.

4.3 Center Refinement

The result from centroid computation after clustering serves as

a rough estimate of the 3D position of the control point. In or-

der to refine the localization, a dedicated search for the marker’s

center is performed on all images, in which the control point

occurs. For that purpose, the centroid is projected into all im-

ages and Hough transform (Hough, 1962, Duda and Hart, 1972)

for detecting straight lines is computed on the patch around the

projected point. Determining the intersection point of roughly

orthogonal lines, yields a subpixel accurate estimate of the cen-

ter.

Equation 1 denotes the normal representation of a line as as-

sumed for Hough transform. Angle θ and distance ρ span

Hough transform’s two-dimensional parameter space. Straight

lines are determined based on a voting scheme, in which more

votes correspond to higher evidence for the occurrence of such

a line.

x cos(θ) + y sin(θ)− ρ = 0 (1)

l1 = [cos(θ1), sin(θ1),−ρ1]
T

(2)

l2 = [cos(θ2), sin(θ2),−ρ2]
T

(3)

45◦ < |θ1 − θ2| mod 180◦ ≤ 135◦ (4)
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l1 × l2 = p (5)

The straight line with the highest number of votes forms l1 in

the homogeneous line representation. The second line must ful-

fill the relaxed orthogonality constraint, Equation 4, i.e. requires

orientation between 45◦ and 135◦ with respect to l1. The inter-

section point p results from computing the cross product of l1
and l2.

5. GEOREFERENCING

Beside the automated detection of control points, the automated

association of these detected control points with the geodeti-

cally measured ones, is a key aspect of automated georeferenc-

ing. Figure 3 shows the workflow of detection and georefer-

encing. In bundle adjustment, the deviations of multiple occur-

rences of a control point are balanced over points and projection

matrices. The RANSAC-based correspondence analysis is fol-

lowed by the final transformation computation.

5.1 Ray Casting and Bundle Adjustment

Center refinement yields the precise localization of the targeting

point on image level. In order to determine the corresponding

3D position ray casting (Roth, 1982) is performed. In ray cast-

ing a virtual ray is casted from the camera origin through the

respective pixel into the 3D scenery. The point of intersection

with the 3D model serves as 3D coordinate. Due to image over-

lap, which is fundamental to photogrammetric 3D reconstruc-

tion, one control point can occur in multiple images. Applying

ray casting leads to multiple coordinates in 3D space for one

control point. Depending on the accuracy of the reconstructed

model and camera poses, these control point centers are typi-

cally located in close proximity. Which 3D occurrences repre-

sent the same control point can be inferred from control point

clustering earlier in the workflow.

In order to settle the error of the various 3D occurrences of one

control point, bundle adjustment is applied. In a network of

spatial rays spanning from the projection centers through the

image points, the global error is subject to minimization:

arg min
Pi,Xj

n∑

i=1

m∑

j=1

||PiXj − xi,j ||2 (6)

Pi refers to projection matrix i (out of n), Xj to 3D object point

j (out of m), xi,j to the measured image point corresponding

to PiXj , and || . . . ||2 denotes the Euclidean norm. In bundle

adjustment both, projection matrices and object points, are op-

timized, leading to a single occurrence of an object point, i.e.

one 3D representation for each control point.

5.2 Correspondence Analysis and Registration

Based on the lack of reasonable initialization of correspon-

dences and transformation, a RANSAC-based approach for

registration is applied here. Assuming S to be the source

point cloud and R to be the reference point cloud, to which

S is supposed to be transformed. Furthermore, be T a

similarity transformation from S point cloud space into R

point cloud space. Assuming homogeneous coordinates and

correspondence-preserving sorting S,R ∈ R
4×k, where k

refers to the number of control points, and T ∈ R
4×4. Parame-

ter θ represents the correspondence mapping between S and R,

i.e. relates which points in the cloud are mutually assigned. The

optimization objective to solve is:

argmin
θ

‖R − TθS‖2 (7)

That is, a correspondence mapping θ is to be found that yields a

transformation T, which minimizes the Euclidean distances be-

tween corresponding points in source and reference point cloud.

Assuming a similarity transformation for T, seven parameters

for translation, rotation, and scale can be estimated from three

point correspondences.

Being a global registration problem, the correspondences in

this context are, however, not known. To overcome the lack

of correspondence knowledge, RANSAC is applied, i.e. for

each iteration a minimal number of correspondences are ran-

domly selected, the transformation is estimated based on these

correspondences, and the optimization objective is evaluated

based on the inferred transformation. As termination criterion

serves the average distance between the point cloud being be-

low 10cm.

6. EVALUATION

In this section a description of the qualitative and quantitative

results in the image space is provided. Moreover, the procedure

is illustrated in the 3D space of the bridge pier model.

6.1 Detection

Figure 1 qualitatively illustrates the performance of the detector

on three example images. The top row shows the input image,

the central row the predicted segmentation masks (bright rep-

resents low and dark high probabilities), and the bottom row

shows the results of the center point location. All three im-

ages form representative samples from the challenging various

dataset. Even though they are captured in non-orthogonal view,

both fully visible markers (a and c) are robustly detected. The

visible boundaries of the third marker (b) – that is subject to

occlusion – are detected, while the center forms false negatives.

The center refinement is capable of compensating the misclassi-

fication in (b) and yields convincing results for all three images.

Failure cases are shown in Figure 5. The two left images

are synthesized images, while the right is part of the various

dataset. For images (a) and (c) false positive detections occur.

In (a), a louver is falsely classified as control point. Presumably,

the round shape and the dark shades contribute to the classifier’s

(a) (b) (c)

Figure 5. Failure cases of control point detection.

Top row: input images, bottom row: prediction.
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IoU [%] F1 [%] AP [%]

S2DS 98.2 99.1 99.4

Synthetic 95.1 97.5 99.0

Various 73.7 84.8 78.2

Total 89.0 93.8 92.2

Table 2. Performance of the detection approach on the test data.

misjudgment. The checkerboard corner at the center of the con-

trol point, which the human eye might consider salient, seems,

interestingly, less import to the classifier. This is also indicated

by result (b) from Figure 1, where the center receives false neg-

ative detections. In Figure 5 (c) a misclassification occurs for

the window in the background with characteristic white frames.

The false negative for synthetic image (b) might be due to the

texture of the surface that shines through the morphed control

point.

Quantitative results are provided in Table 2. The quantita-

tive evaluation took place on the respective test sets. As per-

formance metrics, intersection-over-union (IoU, aka Jaccard

score), F1 score, and average precision (AP) are used. The

performance on S2DS and the synthetic dataset is near perfect.

Typical misclassification on the synthetic set are the ones re-

ferred to above: louver-like artifacts on the image and rough

surface texture. The performance on the challenging various

dataset is distinctly lower than on the other two datasets. That is

due to the different backgrounds not represented in the training

set, such as stone walls and plaster. Furthermore, as indicated

in Figure 5 (c), objects such as remote windows do occasionally

occur on the images and lead to confusion.

6.2 Registration

Figure 6 shows the 3D model described in Section 3.3. The blue

flags indicate the resulting positions from semantic segmenta-

tion, center refinement, ray casting, and clustering. The results

were converted into the marker format of and imported and vi-

sualized in Metashape. The positions are the ones automatically

determined by the mentioned processing steps. The tags accom-

panying each flag, refer to the ID of the geodetically measured

control points. These IDs were unknown and needed to be as-

signed using the RANSAC-based correspondence analysis.

For the given example the functionality of the procedure is con-

firmed. Potential obstacles that can occur in larger and less con-

trolled environments predominantly involve false positive and

false negative detections. False positives, i.e. detection of a con-

trol point where no one was measured, can be caused by con-

fusing patterns to the detector. Confusion may originate in un-

known backgrounds and environments or the presence of other

high-contrast control points or patterns. Furthermore, control

points might have been overlooked during geodetic measure-

ment. False negatives on the other hand refer to the missed de-

tection of measured control points. Reasons for false negatives

are low image quality, low marker size in the image, missing

images, or occlusions. Redundancy resulting from overlapping

images can potentially compensate up to a certain degree for

occasional false negatives. Many of mentioned deficits can be

resolved beforehand through careful and meticulous image ac-

quisition.

Figure 6. 3D model of a segment of bridge pier with assigned

control points.

7. CONCLUSION

In this work a procedure for images-based control point detec-

tion and automated georeferencing was proposed. Its function-

ing was demonstrated on a 3D model of a corner of a bridge

pier. Compared to other approaches, the here presented ap-

proach is based on relatively few assumptions and restrictions,

which alleviates its broader application in science and industry.

Unlike other approaches, the one presented here does not re-

quire and propose an elaborated, ID encoded type of control

point. Rather it builds upon the simple and already widely used

checkerboard design, which is intuitive to understand, precisely

to target, easy to print and obtain. These properties make it a

candidate choice for a control point convention, i.e. the standard

control point attached to structures. Even though no ID needs to

be encoded into the pattern, IDs at the border of the marker are

still valid and appreciable e.g. for the geodetic reference mea-

surements.

Beyond that, the approach does not assume knowledge about

correspondences between the virtual and measured control

points. It, thus, is correspondence-free in that sense. Cor-

respondences are indispensable for georeferencing. They are,
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however, intrinsically determined in the process through the

proposed RANSAC-based procedure.

Making relatively few assumptions, one assumption, however,

needs to be enforced in order for the procedure to work: the

asymmetry assumption. The control points must be attached in

a way to incorporate at least one aspect of asymmetry. Imagine

the case where eight control points are perfectly precisely at-

tached to the four corners and the bottom of the legs of an ordi-

nary table. Without knowing at least one correspondence, point

cloud registration is not unambiguously achievable. Keeping

the asymmetry assumption in mind, there are no major obsta-

cles for the practical application of the proposed approach.

As mentioned, there are libraries available e.g. for ArUco

marker detection. This library applies traditional image pro-

cessing techniques for accomplishing the task. It can be as-

sumed that for the task of detecting the checkerboard-based

markers used in this work, traditional approaches do a solid

job. Very probably, traditional methods come with the bene-

fit of requiring less computation resources than data-driven ap-

proaches. Moreover, the marker type used here is well-defined

and effective features are more or less immediately clear for the

expert in the field. Thus, a top-down design might also be the

theoretically more elegant solution to control point detection.

The approach used for transfer learning, hierarchical multi-

scale attention (HMA), is likely oversized for the comparatively

easy task of control point detection. HMA, however, occurs

appropriate, when control point detection forms only a minor

component in detection. The ultimate goal is to learn a multi-

class model, that masters not only control point detection, but

the detection of various defects. Providing enough capacity for

additional object classes HMA renders a suitable approach for

inclusion of multiple other classes. That control points can be

represented by a rather simplistic type of markers was demon-

strated in this work.
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