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ABSTRACT:

Long-term retrospective road data are required for various analyses (e.g., investigation of urban sprawl, analysis of road network
evolution). Yet, it is challenging to extract roads from scanned historical maps due to their dissatisfying quality. Although deep
learning has been exerting its superiority in image segmentation, its application to road extraction from historical maps is rarely
seen in existing studies. Deep learning usually requires quite large amounts of training data, which is time-consuming and tedious
to label. Data augmentation can to some extent solve this issue. The existing data augmentation techniques vary each training
sample as a whole (e.g., rotation, flipping). But some features or symbols on maps will never occur in practice when they are
rotated or flipped (e.g., numbers, labels). To solve this problem and to further improve the diversity of training samples, we propose
a novel data augmentation method, which varies the target features instead of the whole training sample. The method is validated
by applying it to road extraction from the historical Swiss Siegfried map. The experiment results show the effectiveness of the
proposed method.

1. INTRODUCTION

Historical maps contain valuable retrospective spatial informa-
tion that can be rarely found elsewhere. Many historical map
series have been scanned into raster format and made widely
accessible (Tsorlini et al., 2014). Long-term road network data
are used to analyze the evolution of the road networks (Strano
et al., 2012; Zhao et al., 2015) and to realistically reconstruct
streetscapes of the past for education, entertainment and re-
search purposes1. The wide applications of road data and the
image processing challenges due to the poor quality of histor-
ical maps (e.g., bleaching, paper distortion, blurring) (Leyk et
al., 2005) induce an urgent demand for efficient methods to ex-
tract roads from historical maps.

Recently, deep learning has become a research hotspot and has
been utilized widely owing to its generalisability. Specific-
ally for image processing tasks, convolutional neural networks
(CNN) have become the default choice. Convolutional layers
in deep learning architectures take input image (patches) of any
size and operate on local input regions based on relative spa-
tial coordinates, unlike fully connected networks, which have
fixed dimensions and do not explicitly exploit the spatial char-
acteristics. Thus, Long et al. (2015) propose Fully Convolu-
tional Network (FCN) by converting conventional fully con-
nected layers to convolutional layers and supplementing the
convolutional layers by successive deconvolution layers for up-
sampling. Apart from this, skip connections are added to com-
bine finer scale predictions and coarser ones. The spatial in-
formative output of FCNs make them a natural choice for end-
to-end dense prediction tasks like image segmentation (Buslaev
et al., 2018). An improvement to the original FCN has been in-
troduced by Ronneberger et al. (2015) in the form of the U-Net
architecture. Compared with the original FCN, one important
modification in U-Net is that the upsampling part also has a
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large number of feature channels corresponding to the down-
sampling part, which allows the network to propagate context
information to higher resolution layers. Consequently, the up-
sampling part is more or less symmetric to the downsampling
part. The downsampling steps gradually generate increasingly
abstract feature maps of the input image, while the upsampling
steps progressively reobtain the dimensions of the input and en-
able precise localization (Ronneberger et al., 2015). Concat-
enation operations are used to copy the feature maps of an in-
termediate step in the downsampling path to the corresponding
step in the upsampling path, which empowers the network to
combine low-level and high-level feature representations.

Saeedimoghaddam and Stepinski (2020) employ deep CNNs
for road intersection extraction from USGS historical maps. Al-
though with this method, road intersections represented as both
single lines and double lines can be successfully extracted, road
branches cannot be extracted, which are essential to the analysis
of road network growth and urban sprawl (Masucci et al., 2014).
Chiang et al. (2020) report a set of experiments for railroad ex-
traction from USGS historical maps to investigate the impact of
deep CNN architectures on feature extraction accuracy. Despite
of the rapid development and the superiority in image segment-
ation and feature recognition of deep CNNs, their application to
road extraction from historical maps is to some extent limited
up to now (Jiao et al., 2021).

Unlike the easy availability of historical maps, it is time-
consuming and laborious to manually label the corresponding
training data. However, deep learning usually requires large
amounts of training data. One solution to this issue is data aug-
mentation, which can be used to enhance the size and quality
of training datasets so that performant machine learning mod-
els can be trained (Shorten and Khoshgoftaar, 2019). Con-
ventional data augmentation methods are applied on the image
patch level, which, for example, flip or rotate the image patch
as a whole. This study proposes to use data augmentation on
the feature level by rotating or flipping the target features only.
It not only avoids the generation of possibly unrealistic training
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data resulting from rotating or flipping some map features (e.g.,
labels, numbers, triangulation points), but also improves the di-
versity of training samples, thereby empowering the deep learn-
ing network to learn invariant representations unique to target
features (e.g., roads). The effectiveness of the novel data aug-
mentation method is verified by applying it to road extraction
from the Swiss Siegfried map.

2. DATA AND METHOD

2.1 Data

The Swiss Siegfried map is a comprehensive Swiss national
map series published between 1872 and 1949 at the scales of
1:25,000 (Jura and Swiss plateau) and 1:50,000 (Alps) (Heitzler
and Hurni, 2020; Jiao et al., 2020). The map series depicts vari-
ous geographical features such as buildings, roads, railways,
hydrological features, vegetation areas. The Siegfried map
sheets are scanned into raster format by Swiss Federal Office of
Topography, and georeferenced based on the map frame corner
points and the coordinate grid lines (Heitzler et al., 2018). The
size of each scanned map sheet is 7,000 pixels × 4,800 pixels.
The resolution of map sheets used in this study is 1.25 m/pixel
with a scale of 1:25,000. The map sheet has three color chan-
nels, namely RGB.

Roads are represented by six different symbols, namely single
dashed line, single solid line, the combination of a solid line
and a parallel dashed line, two parallel lines, a thin line together
with a thicker line, and two parallel lines with short strokes in
between, as marked by red arrows shown in Figure 1. The sym-
bols correspond to different road grades.

Figure 1. Roads on Siegfried map. Geodata © Swisstopo

The labelled road data we have at hand only covers Zurich city.
The red lines in Figure 2 show the labelled data, which are road
centerlines. Figure 2(a) is an overview of the data overlaying
the corresponding Siegfried map sheets, (b) a part of the data,
and (c) buffers of roads in (b), as shown by white areas. The
buffers are generated based on road width. For example, the
width of roads represented by single solid lines and dashed lines
is usually four meters, so the buffer size is two meters.

2.2 Sampling strategy

To get training samples from the input map sheet and to avoid
the data imbalance issue, we adopt the following sampling
strategy. First, “positive” points that are located close to roads
are randomly generated in road buffers. “Negative” points that
are located far from roads are also randomly generated. The
positive points are randomly shifted by a small displacement
within a neighbourhood of 13 pixels × 13 pixels. Image tiles
centered at these sampling points are cropped from the map
sheet, which are sized 128 pixels × 128 pixels. The positive
points are shifted as roads will not always go through the center
point of an image tile. The green dots in Figure 3 show the pos-
itive points and red dots the negative ones. The green embossed
rectangle represents the map tile cropped centered at one posit-
ive point, and the red embossed rectangle the tile centered at one
negative point. With this strategy we obtain sampling tiles with
roads and without roads, so that the network can learn features
of both road areas and non-road areas. In this study, the ratio
of the positive samples to the negative samples is empirically
set as about 5:1. Additionally, this sampling strategy allows for
flexibly adding sampling points for a certain feature (road class
in this use case). For example, if we see from the results that a
certain road class is not well extracted, sampling points can be
added specially for this road class.

2.3 A novel data augmentation method

Data augmentation is a data-space solution to the problem of
over-fitting as well as limited training data, which are common
issues in many applications of deep CNNs (Sun et al., 2019). It
encompasses a suite of image transformations, such as scaling,
rotation, flipping, color variation, noise injection, etc. (Shorten
and Khoshgoftaar, 2019). Data augmentation enforces the net-
work to learn and identify the desired invariance of feature rep-
resentations. Specifically for our use case, the learned feature
representations of roads should be invariant to variations in the
map tiles that are irrelevant for the segmentation task (Dosovit-
skiy et al., 2014).

Color and scaling features are essential to road segmentation,
so they should not be varied in data augmentation, and there is
already much noise in the scanned Siegfried maps. Thus, we
use the other two image transformations, namely rotation and
flipping. Most of previous data augmentation methods rotate or
flip the whole image or image patch. Siegfried maps, however,
contain several features that only occur in certain ways. For
example, numbers and triangulation points should not be ro-
tated or flipped. Labels can only be rotated slightly and cannot
be flipped, as large degree rotation (e.g., larger than 90°) and
flipping are not character-preserving transformations (Shorten
and Khoshgoftaar, 2019). Therefore, we rotate and flip only the
road features, as we have road buffers as ground truth. Spe-
cifically, roads are first extracted from the original image patch
based on the ground truth. They are randomly rotated or flipped.
The remaining features on the patch are not rotated or flipped.
The original road areas on the patch are replaced by pixels with
the background color of the Siegfried map. Then, the rotated
or flipped roads are overlaid on the patch, which produces an
“augmented” patch. The ground truth is also rotated or flipped
accordingly. Figure 4 shows two examples, where (a) and (c) re-
spectively present the original map tiles cropped from Siegfried
map, while (b) displays the result of rotating the roads in (a)
by 270° anti-clockwise, and (d) vertical-axis flipping the roads
in (c). Especially, the label in (d) is not transformed. These
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Figure 2. The road training data and its buffers. Geodata © Swisstopo

Figure 3. Sampling points and the corresponding map tiles.
Geodata © Swisstopo

road-only transformations empower the network to learn the
features unique to roads, such as long slenderness, color, con-
nectivity, topology, etc. Furthermore, the road-only rotation and
flipping change the relative spatial relation between roads and
non-roads, thereby adding more diversity to the training data
than previous whole-image (patch) transformations.

2.4 Road extraction with U-Net

The road segmentation model in this study is developed based
on a U-Net architecture. Specifically, the following parameters
apply: The first convolution layer of the U-Net in this study
has 16 channels. The bottleneck has 256 channels, as each
downsampling step doubles the number of channels. The U-
Net consists of four downsampling steps and four upsampling
steps. Moreover, dropout is used at each downsampling and up-
sampling step with increasing dropout rates towards the bottle-
neck. It significantly prevents overfitting by avoiding the units
co-adapting too much as well as enables to train and combine
many different network architectures by randomly sampling a
“thinned” network consisting of all the units that survive dro-
pout (Srivastava et al., 2014; Jenny et al., 2020). The network
is shown in Figure 5. For computing the probability of the

Figure 4. (a) a map tile cropped from Siegfried map, (b) rotating
the roads in (a) by 270° anti-clockwise, (c) another map tile, (d)

horizontal flipping the roads in (c). Geodata © Swisstopo

produced feature vector being road, a 1x1 convolution together
with a sigmoid operation (Han and Moraga, 1995) is applied, as
shown with a blue rectangle.The target prediction area is sized
64×64 pixels, as shown by a yellow embossed square. To en-
able the model to make precise predictions around the border
of the target area, the input map tile is expanded by 32 pixels
on each side. Thus, the input tile is 128×128 pixels. Further-
more, the weights in the filters are initialized with the method
proposed by He et al. (2015), which helps with convergence of
very deep networks trained directly from scratch. The sampled
map tiles and their corresponding road buffers as ground truth
are fed into the U-Net for training.
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Figure 5. The U-Net architecture. Geodata © Swisstopo

3. EXPERIMENT

3.1 Training scenarios

We use Keras library to implement the experiment. We
use Adam optimizer and initialize the learning rate as 0.001
(Kingma and Ba, 2014). Dice loss is used as the loss func-
tion (Dice, 1945; Milletari et al., 2016). Each model is trained
with 100 epochs. The batch size is 64. To verify the effect-
iveness of the novel data augmentation method and the flexib-
ility of improving results by adding samples of a certain road
class, we implement three training scenarios, namely 1) train-
ing with 5000 original samples cropped from the Siegfried map,
2) training with 5000 original samples and additional 1400
samples produced with the novel data augmentation method,
and 3) training with 5000 original samples, 1400 samples pro-
duced with the novel data augmentation method as well as 500
samples explicitly cropped from features of road class 1. As
it is found that road class 1 is less well extracted than other
classes, the latter case has been added to specifically improve
the extraction capabilities of the model for road class 1, which
is represented by dashed line.

3.2 Postprocessing

The trained models are applied to Siegfried map sheets that
cover other areas than Zurich city. The pixel values in the ras-
ter prediction results indicate the probability of the pixel be-
ing a road, as shown with the white areas in Figure 6. Pixels
with the probability greater than 0.5 are taken as roads. Sub-
sequently, morphological operations are adopted to skeletonize
the road areas. Then, the skeletons are vectorised and simplified
as road centerlines by the “raster to polyline” tool in ArcGIS.
Road extraction results from three typical areas, namely urban
area, suburban area and rural area, are reported in Figure 7.
Red lines represent road centerlines, which overlay the corres-
ponding map images. The overlaid images are shown with 50%
transparency to highlight the centerlines.

3.3 Evaluation

As shown in Figure 6, raster predictions with conventional and
novel data augmentation have much fewer false positives, espe-
cially around streams and forest borders, which have very sim-
ilar shape with roads. Predictions of novel data augmentation
are more robust than those of conventional method, especially
for double-line roads. In the rural area, the highly curved foot-
path is extracted with better continuity with the novel method

than the conventional method. In addition, we use accuracy and
F1 score for quantitatively evaluating raster road predictions,
while correctness and completeness for vector road centerlines
(Wegner et al., 2013). For raster predictions, the metric val-
ues are calculated with the number of correctly or wrongly pre-
dicted pixels, namely true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). To compute cor-
rectness and completeness, three-meter buffers are generated
for the predicted centerlines and the ground truth. Correctness
and completeness values are computed with the lengths of TP,
TN, FP, FN.

Four Siegfried map sheets, including one covering an area in
the northern part of Switzerland, which contains a city and
hills (sheet number TA 017 1940), one covering rural area in
the Swiss plateau (sheet number TA 199 1941), one covering
rural area in the periphery of the Swiss Alps (sheet number
TA 385 1941), and the last covering small cities/towns in the
eastern part of Switzerland (sheet number TA 219 1944), are
selected for evaluating and comparing results obtained by the
models trained without data augmentation vs. with novel data
augmentation vs. with both novel data augmentation and addi-
tional samples around road class 1. The average metrics values
of the four sheets are reported in Table 1, Table 2 and Table
3, respectively. Accuracy, F1 and correctness obtained with
novel data augmentation outperform those without data aug-
mentation. Especially, correctness is largely improved because
of the false positives reduced by applying the novel data aug-
mentation method. Adding additional samples of road class 1
further improves the results, as shown in Table 3.

Metrics Values
Accuracy 96.83%
F1 score 77.37%
Completeness 95.68%
Correctness 64.37%

Table 1. Quantitative road extraction results (5000 original
samples without data augmentation).

4. CONCLUSION

In recent years, deep learning techniques open an avenue to
solve the challenge of extracting roads from historical maps.
As a solution to the problem of limited training data, data aug-
mentation is commonly used in deep learning applications. To
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Figure 6. The comparison between raster road predictions obtained without data augmentation vs. with conventional data
augmentation vs. with novel data augmentation. Geodata © Swisstopo

Metrics Values
Accuracy 97.20%
F1 score 79.63%
Completeness 95.24%
Correctness 66.66%

Table 2. Quantitative road extraction results (5000 original
samples plus 1,400 augmented samples of novel data

augmentation).

address the fallaciousness due to data augmentation applied to
a whole image patch and to enhance the diversity of training
samples, this study proposes a novel data augmentation method,
which varies the target features instead of the whole image

Metrics Values
Accuracy 97.76%
F1 score 83.05%
Completeness 96.65%
Correctness 67.35%

Table 3. Quantitative road extraction results (5000 original
samples with additional 500 samples around road class 1, plus

1,400 augmented samples of novel data augmentation).

patch. The experiment results show the effectiveness of the pro-
posed method. Especially, the method is very useful to reduce
false positives. Although in this study we exemplarily apply
the method to road extraction from historical maps, it can be
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Figure 7. Vector road centerlines extracted by the model trained with novel data augmentation. Geodata © Swisstopo

generalizable to other features and data sources. Possible im-
provements and future work is to explore the optimal ratio of
the augmented samples to the original ones.
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